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Tracking Nonlinear Noisy Dynamic Systems over
Noisy Communication Channels

Alireza Farhadi and N. U. Ahmed

Abstract—This paper is concerned with tracking a vector of
signal process generated by a family of distributed (geograph-
ically separated) nonlinear noisy dynamic subsystems over the
binary symmetric channel. Nonlinear subsystems are subject to
bounded external disturbances. Measurements are also subject
to bounded noises. For this system and channel, subject to
constraints on transmission rates, cross over probabilities and
Lipschitz constants, a simple methodology is presented ensuring
tracking with bounded mean absolute error.

Index Terms—Tracking, the binary symmetric channel, the
erasure channel, nonlinear systems.

I. INTRODUCTION

ONE of the emerging applications of sensor networks is
in the tracking and automation of distributed systems.

Some examples are civil infrastructure monitoring and control,
intelligent solar farms, automated manufacturing of composite
materials, etc. In these applications each sensor observes the
state of a dynamic system under noisy environment and the
observation signal 𝑌𝑡 is then encoded, and transmitted to the
fusion center where it is decoded all within one time step
(i.e., the time duration between two successive time instants
𝑡 and 𝑡 + 1). Therefore, the commonly used techniques for
data transmission are not suitable for tracking dynamical
systems. In fact, these techniques are based on the separation
principle and block encoding and decoding which result in
a long decoding delay. This necessitates development of new
techniques for real time communication of signals or messages
produced by dynamic systems.

Dynamic systems can be viewed as continuous alphabet
sources with memory. Consequently, many works in the lit-
erature are dedicated to the question of tracking and control
over Additive White Gaussian Noise (AWGN) channel, which
itself is naturally a continuous alphabet channel (e.g., [1] -
[4]). However, addressing the question of tracking over digital
links [5]-[17], which is naturally consistent with modern
communication systems, is more interesting. Recently, there
has been a significant progress in addressing this question only
for linear dynamic systems over communication channels.
Some references are [1]-[11]. A few of these publications
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(e.g., [12]-[17]) considered the problem of tracking nonlinear
dynamic systems, in which the communication channel is a
digital noiseless channel [12]-[17] and the dynamic system is
noiseless [12]-[16].

Nonlinear dynamic systems subject to noise, and noisy
communication channels are more realistic representations of
complex network of dynamic and communication systems.
Motivated by this, we study in this paper the problem of
tracking nonlinear dynamic systems with distributed (geo-
graphically separated) nonlinear subsystems subject to both
process noise and measurement noise, over the Binary Sym-
metric Channels (BSCs). A simple methodology for tracking
this system is presented under the constraints on transmission
rates, cross over probabilities, and Lipchitz constants. This
gives satisfactory results on tracking with bounded mean
absolute error. This paper complements the results of [1]-
[11] by considering nonlinear dynamic systems rather than
linear systems. It also complements the results of [12]-[17] by
considering nonlinear noisy dynamic systems over the BSC.

The paper is organized as follows. In Section II, problem
formulation is presented. In Section III, we find an equivalent
erasure type communication channel for transmission via the
BSC. Then we present a methodology for tracking a nonlinear
system consisting of distributed subsystems. In Section IV, we
present an example of a nonlinear noisy dynamic system; and
we use computer simulations to demonstrate the promising
performance of the proposed design technique. We conclude
the paper in Section V.

II. PROBLEM FORMULATION

In this paper we are concerned with a cluster of 𝑛 distributed
small sized sensor nodes. The 𝑖th node (𝑖 ∈ {1, 2, ..., 𝑛})
consists of sensors, a data processor, and a wireless commu-
nication unit which is equipped with a low capacity battery.
Each sensor node uses a multimode transmission technique.
The 𝑖th node uses low power transmission mode to transmit
message bits and high power transmission mode to transmit
flag bits. Multimode transmission technique is one of the
adaptive communication methods and has been used in the
literature [18]-[20]. In multimode transmission some of the
system parameters such as rate or modulation are adapted
to the changes of status of the transmitter, receiver, and
transmission environment. Due to capacity limitation of the
battery, most of the time, sensor nodes are tuned to transmit
under low power transmission mode. The 𝑖th sensor node
directly communicates with a fusion center located at a proper
distance from all sensor nodes. For communication purposes,
the modulator is the binary phase shift keying and the demod-
ulator is the coherent maximum likelihood estimator. Since
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the 𝑖th node sends message bits to the fusion center under
low power transmission mode, the communication channel
(for transmission) is modeled as the BSC. The BSC is a
memoryless channel with the binary input {0, 1} and the
binary output {0, 1} which flips the transmitted bit with the
cross over probability 0 ≤ 𝑝𝑖 ≤ 1

2 . This channel is obtained
by employing the binary phase shift keying modulator and
coherent maximum likelihood demodulator. On the other hand,
flag bits are noise free because they are transmitted under high
power transmission mode. This noise free communication is
equivalent to transmission of a sequence of bits consisting of
the flag bit and other bits used for error correction, which
are transmitted under the low power transmission mode over
the BSC with a rate less than the channel capacity. Therefore,
by Shannon’s coding theorem [21] reliable communication is
possible for this transmission.

The fusion center is equipped with a high capacity power
supply. Therefore, the power of the transmitter of the fusion
center can be chosen large enough so that the channel noise
is negligible for transmission from the fusion center to the
sensor nodes. Therefore, transmission from the fusion center
to each of the sensor nodes can be considered noiseless.

Let (Ω,ℱ(Ω), 𝑃 ) be a complete probability space and
suppose all the random variables and random processes arising
in our study of the network of systems and communication
channels in this paper are based on this probability space. This
system of multiple sensors defined on the probability space
(Ω,ℱ(Ω), 𝑃 ) is used to track a nonlinear dynamic system
consisting of 𝑛 distributed coupled subsystems, as described
below:

(𝑠𝑖) : 𝑋
(𝑖)
𝑡+1 = 𝐹𝑖(𝛽

(1)
𝑖 𝑋

(1)
𝑡 , ..., 𝛽

(𝑛)
𝑖 𝑋

(𝑛)
𝑡 ) +𝑊

(𝑖)
𝑡 ,

𝑋
(𝑖)
0 = 𝜉𝑖, 𝑖 = 1, 2, ..., 𝑛, (1)

where 𝑡 ∈ N+
△
= {0, 1, 2, ...}, 𝑋(𝑖)

𝑡 ∈ ℜ is the state of the
𝑖th subsystem, random variable 𝜉𝑖 ∈ ℜ is the initial state,
𝑊

(𝑖)
𝑡 ∈ ℜ is the process (system) noise of the 𝑖th subsystem,

and 𝛽
(𝑗)
𝑖 , 𝑗 ∈ {1, 2, ..., 𝑛} is either zero or one indicating

the coupling from subsystem 𝑠𝑗 to subsystem 𝑠𝑖 (i.e., 𝛽(𝑗)
𝑖 =

0 means there is no coupling between the indicated nodes
and therefore, the description of the nonlinear function 𝐹𝑖(⋅)
does not include the corresponding variable 𝑋

(𝑗)
𝑡 ). Note that

𝛽
(𝑖)
𝑖 is always 1. Throughout this paper it is assumed that the

system noise is essentially bounded, that is, ∣𝑊 (𝑖)
𝑡 ∣ ≤ Ω𝑖 (∀𝑡 ∈

N+), P-a.s. It is also assumed that the probability measure of
the initial state 𝑋

(𝑖)
0 has a bounded support. That is, there

exists a compact set [−𝑙
(𝑖)
0 , 𝑙

(𝑖)
0 ] ⊂ ℜ such that 𝑃 (𝑋

(𝑖)
0 ∈

[−𝑙
(𝑖)
0 , 𝑙

(𝑖)
0 ]) = 1. The nonlinear function 𝐹𝑖(⋅) is assumed to

be Lipschitz continuous. That is, if the nonlinear function 𝐹𝑖(⋅)
is a function of variables 𝛾1,...,𝛾𝑚 ∈ ℜ (𝑚 ≤ 𝑛), there exists
a positive scalar 𝐾𝑖 > 0 such that for every 𝛾1,...,𝛾𝑚 ∈ ℜ and
𝜂1,...,𝜂𝑚 ∈ ℜ, we have ∣𝐹𝑖(𝛾1, ..., 𝛾𝑚) − 𝐹𝑖(𝜂1, ..., 𝜂𝑚)∣ ≤
𝐾𝑖

(
∣𝛾1 − 𝜂1∣+ ...+ ∣𝛾𝑚 − 𝜂𝑚∣

)
.

The 𝑖th sensor node observes the state of the 𝑖th subsystem
and provides a noisy output given by 𝑌

(𝑖)
𝑡 = 𝑋

(𝑖)
𝑡 + 𝐺

(𝑖)
𝑡 ,

where 𝐺
(𝑖)
𝑡 ∈ ℜ is the measurement noise. It is assumed to

be essentially bounded, i.e., ∣𝐺(𝑖)
𝑡 ∣ ≤ Υ𝑖 (∀𝑡 ∈ N+), P-a.s.,

and has zero mean, i.e., 𝐸[𝐺
(𝑖)
𝑡 ] = 0, where 𝐸[⋅] denotes the

Fig. 1. Automated manufacturing of composite materials.

expected value. The observation signal 𝑌 (𝑖)
𝑡 is encoded and

then transmitted via the BSC to the fusion center where it is
reconstructed (decoded).

The objective of this paper is to find encoders and decoders
to achieve mean absolute tracking for the nonlinear system (1)
at the fusion center. This is formally defined as follows.

Definition 2.1: Consider the nonlinear system (1) with a
cluster of sensor nodes, as described above. Let �̂�

(𝑖)
𝑡 ∈ ℜ

denote the reconstructed version of the state variable 𝑋(𝑖)
𝑡 ∈ ℜ

at the fusion center at time 𝑡. Also, let ℰ(𝑖)
𝑡

△
= ∣𝑋(𝑖)

𝑡 − �̂�
(𝑖)
𝑡 ∣

denote the tracking error associated with the 𝑖th sensor node
(𝑖 ∈ {1, 2, ..., 𝑛}). Then, we have mean absolute tracking
if and only if for each 𝑖 ∈ {1, 2, ..., 𝑛} there exist an
encoder, a decoder and a finite non-negative scalar 𝐷𝑖 such
that 𝐸[ℰ(𝑖)

𝑡 ] ≤ 𝐷𝑖, ∀𝑡 ∈ N+.

One potential application of the cluster of sensor nodes,
as described above, is in the automated manufacturing of
composite materials. One important step in manufacturing
of composite materials is autoclave curing process, in which
the blended materials are hardened inside an autoclave cure
cylinder via heat and pressure. It is known that monitoring
a composite’s thermal or dielectric profile during autoclave
curing process, and adjusting the heat or pressure accordingly,
is important for having a high quality product. Traditionally,
this is done by embedding a wired sensor network inside the
composite material under cure. However, the wires brought out
at the end of process is a source of damage to the material. To
overcome this drawback, a wireless sensor network, as shown
in Fig. 1, can be used.

III. TRACKING NONLINEAR SYSTEMS

In this section, we address the tracking problem in the
mean absolute sense, as described in Definition 2.1. Here, we
first present an equivalent erasure type communication channel
for transmission via the BSC. Then we present encoders and
decoders for tracking the nonlinear dynamic system (1) over
the equivalent erasure channels and therefore over the BSCs.
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A. Equivalent Communication Channel for Transmission via
the BSC

Consider the 𝑖th sensor node. During each time step (i.e.,
the time period between two successive sampling times 𝑡 and
𝑡 + 1), the 𝑖th encoder encodes the observation signal 𝑌 (𝑖)

𝑡

into 𝑅𝑖 message bits and transmits these 𝑅𝑖 bits one by one,
under the low power transmission mode, via the BSC within
the specific time period of 𝑇 seconds (which is less than the
time step). After receiving each message bit the fusion center
broadcasts the received bit via the digital noiseless feedback
link to all nodes. Therefore all sensor nodes are aware of
the received bit. If the bit is received correctly, then the 𝑖th
encoder sends the next message bit. If the bit is flipped, then
the 𝑖th transmitter is turned off for the rest of time period of 𝑇
seconds to conserve power. After the transmission time period
of 𝑇 seconds, if all transmitted 𝑅𝑖 message bits are received
correctly, then the 𝑖th encoder sends the flag bit “1”, under
the high power transmission mode, to inform the decoder that
it can decode the transmitted message bits. If at least one of
message bits is flipped, then the encoder sends the flag bit
“0” under high power transmission mode. Recall that the flag
bits are always received correctly. Similar to message bits, the
fusion center also broadcasts the received flag bit to all nodes.
At each time step, if the decoder receives the flag bit “1”,
it knows that the 𝑅𝑖 message bits were received correctly;
and therefore, it decodes the transmitted bits. If it receives
the flag bit “0”, it disregards the transmitted message bits.
Hence, the above protocol (consisting of transmission via the
BSC and feedback acknowledgments) may be viewed as a
transmission via a feedback erasure channel with rate 𝑅𝑖 and
erasure probability 𝛼𝑖 = 1− (1−𝑝𝑖)

𝑅𝑖 . This is a memoryless
channel, which transmits 𝑅𝑖 bits in each channel use. The
transmitted bits are received either correctly with probability
1 − 𝛼𝑖 or erased with probability 𝛼𝑖 [6]. In this case, the
transmitter knows via the feedback acknowledgment whether
the transmitted 𝑅𝑖 bits were received correctly or not.

Because each node communicates with the fusion center
via the BSC, there is a possibility of collision of the received
signals at the fusion center. In order to avoid such collision
we need to employ an appropriate technique. Here, we use
a Time Division Multiple Access (TDMA) scheme, in which
each time step is divided into 𝑛 non-overlapping time slots of
identical size and each slot is allocated to each sensor node.
Each sensor node uses its allocated time slot to transmit its
message bits and associated flag bit.

Having the above equivalent erasure model with rate 𝑅𝑖

for transmission via the BSC, we now present encoders and
decoders for the mean absolute tracking.

B. Encoders and Decoders for the Mean Absolute Tracking

In this section, we employ a differential coding technique
for the mean absolute tracking of the nonlinear system (1).
Differential coding techniques code the signal difference; and
consequently, the amount of information to be sent is reduced.
This type of coding has been used frequently in the literature,
for instance in [6], [22]. In [6] using a differential quantization
technique, tracking over the packet erasure channel is possible.

Also using a differential coding scheme, reliable communica-
tion over AWGN channel is guaranteed as demonstrated in
[22].

Now, consider the 𝑖th node (𝑖 ∈ {1, 2, ..., 𝑛}) in the cluster
of sensor nodes, as described earlier. It is easy to verify that

∣𝑌 (𝑖)
0 ∣ = ∣𝑋(𝑖)

0 +𝐺
(𝑖)
0 ∣ ≤ 𝑙

(𝑖)
0 +Υ𝑖

△
= 𝐿

(𝑖)
0 .

At time 𝑡 = 0, the set [−𝐿
(𝑖)
0 , 𝐿

(𝑖)
0 ] is partitioned into 2𝑅𝑖

equal size, non-overlapping subintervals and the center of
each subinterval is chosen as the index of that interval. Upon
observing 𝑌

(𝑖)
0 , the index of the subinterval which includes

𝑌
(𝑖)
0 is encoded into 𝑅𝑖 bits and transmitted via the channel.

If erasure does not occur, the decoder can identify the index
of the subinterval where 𝑌

(𝑖)
0 is located and the value of this

index is chosen as 𝑌
(𝑖)
0 which is the reconstructed (decoded)

version of 𝑌
(𝑖)
0 . Let �̂�(𝑖)

0 (= 𝑌
(𝑖)
0 ) denote the reconstructed

(decoded) version of the initial state 𝑋
(𝑖)
0 . Then, the decoding

error for this case is bounded above by

ℰ(𝑖)
0 = ∣𝑋(𝑖)

0 − �̂�
(𝑖)
0 ∣ = ∣𝑌 (𝑖)

0 −𝐺
(𝑖)
0 − 𝑌

(𝑖)
0 ∣

≤ ∣𝑌 (𝑖)
0 − 𝑌

(𝑖)
0 ∣+Υ𝑖 ≤ 𝐿

(𝑖)
0

2𝑅𝑖
+ Υ𝑖.

If erasure occurs, then 𝑌
(𝑖)
0 = �̂�

(𝑖)
0 = 0; and therefore

ℰ(𝑖)
0 = ∣𝑋(𝑖)

0 − �̂�
(𝑖)
0 ∣ = ∣𝑌 (𝑖)

0 −𝐺
(𝑖)
0 − 𝑌

(𝑖)
0 ∣ ≤ 𝐿

(𝑖)
0 +Υ𝑖.

Hence, we may write ℰ(𝑖)
0 ≤ 𝑉

(𝑖)
0 + Υ𝑖, where 𝑉

(𝑖)
0 =

𝐿
(𝑖)
0 𝑀

(𝑖)
0 and 𝑀

(𝑖)
0 is a random variable satisfying 𝑀

(𝑖)
0 = 1

if erasure occurs, and 𝑀
(𝑖)
0 = 1

2𝑅𝑖
if erasure does not occur.

At time instant 𝑡 = 1, using feedback acknowledgments
from the fusion center, the 𝑖th sensor node can determine
�̂�

(1)
0 (= 𝑌

(1)
0 ), ..., �̂�(𝑛)

0 (= 𝑌
(𝑛)
0 ). Therefore, from Lipschitz

continuity assumption, it follows that

∣𝑌 (𝑖)
1 − 𝐹𝑖(𝛽

(1)
𝑖 �̂�

(1)
0 , ..., 𝛽

(𝑛)
𝑖 �̂�

(𝑛)
0 )∣

= ∣𝐹𝑖(𝛽
(1)
𝑖 𝑋

(1)
0 , ..., 𝛽

(𝑛)
𝑖 𝑋

(𝑛)
0 )

−𝐹𝑖(𝛽
(1)
𝑖 �̂�

(1)
0 , ..., 𝛽

(𝑛)
𝑖 �̂�

(𝑛)
0 ) +𝐺

(𝑖)
1 +𝑊

(𝑖)
0 ∣

≤ 𝐾𝑖

𝑛∑
𝑗=1

𝛽
(𝑗)
𝑖 ∣𝑋(𝑗)

0 − �̂�
(𝑗)
0 ∣+Υ𝑖 +Ω𝑖

≤ 𝐾𝑖

𝑛∑
𝑗=1

𝛽
(𝑗)
𝑖 (𝑉

(𝑗)
0 +Υ𝑗) + Υ𝑖 +Ω𝑖 = 𝐿

(𝑖)
1 .

Then, the interval [−𝐿
(𝑖)
1 , 𝐿

(𝑖)
1 ] is partitioned into 2𝑅𝑖 equal

size, non-overlapping subintervals, and the center of each
subinterval is chosen as the index of that interval. Upon
observing 𝑌

(𝑖)
1 , the index of the subinterval which includes

𝑌
(𝑖)
1 −𝐹𝑖(𝛽

(1)
𝑖 �̂�

(1)
0 , ..., 𝛽

(𝑛)
𝑖 �̂�

(𝑛)
0 ) is encoded into 𝑅𝑖 bits and

transmitted to the fusion center. If erasure does not occur, then
the decoder can identify the index of the subinterval which
contains 𝑌

(𝑖)
1 − 𝐹𝑖(𝛽

(1)
𝑖 �̂�

(1)
0 , ..., 𝛽

(𝑛)
𝑖 �̂�

(𝑛)
0 ) and the value of

this index plus 𝐹𝑖(𝛽
(1)
𝑖 �̂�

(1)
0 , ..., 𝛽

(𝑛)
𝑖 �̂�

(𝑛)
0 ) is chosen as 𝑌

(𝑖)
1 ,

which is the reconstructed (decoded) version of 𝑌
(𝑖)
1 . Let

�̂�
(𝑖)
1 (= 𝑌

(𝑖)
1 ) denote the reconstructed (decoded) version of

𝑋
(𝑖)
1 . Then, the decoding error for this case is bounded above

by

ℰ(𝑖)
1 = ∣𝑋(𝑖)

1 − �̂�
(𝑖)
1 ∣ = ∣𝑌 (𝑖)

1 −𝐺
(𝑖)
1 − 𝑌

(𝑖)
1 ∣ ≤ 𝐿

(𝑖)
1

2𝑅𝑖
+Υ𝑖.
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If erasure occurs, then 𝑌
(𝑖)
1 = �̂�

(𝑖)
1 =

𝐹𝑖(𝛽
(1)
𝑖 �̂�

(1)
0 , ..., 𝛽

(𝑛)
𝑖 �̂�

(𝑛)
0 ); and therefore, ℰ(𝑖)

1 =

∣𝑋(𝑖)
1 − �̂�

(𝑖)
1 ∣ ≤ 𝐿

(𝑖)
1 + Υ𝑖. Hence, we may write

ℰ(𝑖)
1 ≤ 𝑉

(𝑖)
1 + Υ𝑖, where 𝑉

(𝑖)
1 = 𝐿

(𝑖)
1 𝑀

(𝑖)
1 and 𝑀

(𝑖)
1 is

a random variable satisfying 𝑀
(𝑖)
1 = 1 if erasure occurs, and

𝑀
(𝑖)
1 = 1

2𝑅𝑖
if erasure does not occur.

Following the procedure, as described above, we construct
the following sequence {�̂�(𝑖)

1 , �̂�
(𝑖)
2 , �̂�

(𝑖)
3 , ⋅ ⋅ ⋅ }.

In the following proposition we show that using the above
methodology we have the mean absolute tracking.

Proposition 3.1: Consider the nonlinear system (1) and
cluster of sensor nodes, as described earlier, over the BSCs.
Using flag bits and feedback from the receiver, the trans-
mission over the BSC is equivalent to the transmission over
the erasure channel with feedback, as described in Section
III-A. For this transmission, suppose that the rates {𝑅𝑖}𝑛𝑖=1

are chosen such that the following matrix is stable (i.e., all its
eigenvalues are in the open unit circle).

𝒜 =

⎛
⎜⎜⎜⎜⎝

𝐾1𝛽
(1)
1 ( 1−𝛼1

2𝑅1
+ 𝛼1) ... 𝐾1𝛽

(𝑛)
1 ( 1−𝛼1

2𝑅1
+ 𝛼1)

.

.

.

𝐾𝑛𝛽
(1)
𝑛 ( 1−𝛼𝑛

2𝑅𝑛
+ 𝛼𝑛) ... 𝐾𝑛𝛽

(𝑛)
𝑛 ( 1−𝛼𝑛

2𝑅𝑛
+ 𝛼𝑛)

⎞
⎟⎟⎟⎟⎠

. (2)

Then, there exist encoders and decoders that guarantee the
mean absolute tracking in the sense of Definition 2.1 .
Proof: Choose any rates {𝑅𝑖}𝑛𝑖=1 under which the matrix 𝒜
is stable. Recall that for the 𝑖th node (𝑖 ∈ {1, 2, ..., 𝑛}), the
random variable 𝑀

(𝑖)
𝑡 satisfies: 𝑃 (𝑀

(𝑖)
𝑡 = 1

2𝑅𝑖
) = 1−𝛼𝑖 and

𝑃 (𝑀
(𝑖)
𝑡 = 1) = 𝛼𝑖. This random variable indicates the suc-

cessful transmission (if 𝑀
(𝑖)
𝑡 = 1

2𝑅𝑖
); or failed transmission

(if 𝑀
(𝑖)
𝑡 = 1) at time 𝑡. Therefore, it is independent of the

other variables 𝑀 (𝑖)
˜𝑡

for �̃�(∈ N+) ∕= 𝑡. It is also clear that the

process {𝑀 (𝑖)
𝑡 }𝑡∈N+ is identically distributed. So, the random

process {𝑀 (𝑖)
𝑡 }𝑡∈N+ is an i.i.d. process. It is also evident that

the process 𝑀 (𝑖)
𝑡 and 𝑀

(𝑗)
𝑡 are mutually independent for any

𝑗(∕= 𝑖) ∈ {1, 2, ..., 𝑛}.
Using the methodology described in Section III-B, we have
ℰ(𝑖)
𝑡 = ∣𝑋(𝑖)

𝑡 − �̂�
(𝑖)
𝑡 ∣ ≤ 𝑉

(𝑖)
𝑡 +Υ𝑖, P-a.s., where

𝑉
(𝑖)
𝑡 = 𝐾𝑖𝑀

(𝑖)
𝑡

𝑛∑
𝑗=1

𝛽
(𝑗)
𝑖 (𝑉

(𝑗)
𝑡−1 +Υ𝑗) +𝑀

(𝑖)
𝑡 (Υ𝑖 +Ω𝑖),

𝑉
(𝑖)
0 = 𝐿

(𝑖)
0 𝑀

(𝑖)
0 , 𝑡 = 1, 2, 3, ... .

Let 𝑑𝑖𝑎𝑔(⋅) denote the diagonal matrix and
∏

𝑛≥𝑗≥1 𝑎𝑗
△
=

𝑎𝑛𝑎𝑛−1...𝑎1 denote the ordered product. By a straightforward
computation, one can easily verify that

𝑉 𝑡 = 𝐴𝑡𝑉 𝑡−1 +𝐴𝑡Υ+𝑀 𝑡(Υ + Ω), 𝑉 0 =

⎛⎜⎜⎜⎜⎝
𝑉

(1)
0

.

.

.

𝑉
(𝑛)
0

⎞⎟⎟⎟⎟⎠ ,

∀𝑡 ≥ 1 (3)

where

𝑉 𝑡 =

⎛⎜⎜⎜⎜⎝
𝑉

(1)
𝑡

.

.

.

𝑉
(𝑛)
𝑡

⎞⎟⎟⎟⎟⎠ , 𝑀 𝑡 = 𝑑𝑖𝑎𝑔(𝑀
(1)
𝑡 , ...,𝑀

(𝑛)
𝑡 ),

Υ =

⎛⎜⎜⎜⎜⎝
Υ1

.

.

.
Υ𝑛

⎞⎟⎟⎟⎟⎠ , Ω =

⎛⎜⎜⎜⎜⎝
Ω1

.

.

.
Ω𝑛

⎞⎟⎟⎟⎟⎠ ,

𝐴𝑡 =

⎛⎜⎜⎜⎜⎝
𝐾1𝛽

(1)
1 𝑀

(1)
𝑡 . . . 𝐾1𝛽

(𝑛)
1 𝑀

(1)
𝑡

.

.

.

𝐾𝑛𝛽
(1)
𝑛 𝑀

(𝑛)
𝑡 . . . 𝐾𝑛𝛽

(𝑛)
𝑛 𝑀

(𝑛)
𝑡

⎞⎟⎟⎟⎟⎠ .

It follows easily from (3) that

𝑉 𝑡 =
( ∏

𝑡≥𝑗≥1

𝐴𝑗

)
𝑉 0 +

( 𝑡∑
𝑗=1

(
∏

𝑡≥𝑚≥𝑗

𝐴𝑚)
)
Υ

+
( 𝑡∑

𝑗=1

(
∏

𝑡≥𝑚≥𝑗+1

𝐴𝑚)𝑀 𝑗

)
(Υ + Ω), ∀𝑡 ∈ N+. (4)

Hence,

𝐸[𝑉 𝑡] =
( ∏

𝑡≥𝑗≥1

𝐸[𝐴𝑗 ]
)
𝐸[𝑉 0] +

( 𝑡∑
𝑗=1

(
∏

𝑡≥𝑚≥𝑗

𝐸[𝐴𝑚])
)
Υ

+
( 𝑡∑

𝑗=1

(
∏

𝑡≥𝑚≥𝑗+1

𝐸[𝐴𝑚])𝐸[𝑀 𝑗 ]
)
(Υ + Ω)

= 𝒜𝑡𝒱0 +
( 𝑡∑

𝑗=1

𝒜𝑡−𝑗+1
)
Υ+

( 𝑡∑
𝑗=1

(𝒜𝑡−𝑗ℳ)
)
(Υ + Ω)

where

𝒱0 =

⎛⎜⎜⎜⎜⎝
𝐿
(1)
0 (1−𝛼1

2𝑅1
+ 𝛼1)

.

.

.

𝐿
(𝑛)
0 (1−𝛼𝑛

2𝑅𝑛
+ 𝛼𝑛)

⎞⎟⎟⎟⎟⎠ ,

ℳ = 𝑑𝑖𝑎𝑔(
1− 𝛼1

2𝑅1
+ 𝛼1, ...,

1− 𝛼𝑛

2𝑅𝑛
+ 𝛼𝑛).

Let [𝑉𝑡]𝑖 denote the 𝑖th component of the vector 𝑉 𝑡 ∈ ℜ𝑛,
i.e., [𝑉𝑡]𝑖 = 𝑉

(𝑖)
𝑡 . It follows from the above equation that

𝐸[𝑉
(𝑖)
𝑡 ] =

[
𝐸[𝑉 𝑡]

]
𝑖
= [𝒜𝑡𝒱0 +

( 𝑡∑
𝑗=1

𝒜𝑡−𝑗+1
)
Υ

+
( 𝑡∑

𝑗=1

(𝒜𝑡−𝑗ℳ)
)
(Υ + Ω)]𝑖, ∀𝑡 ∈ N+.

Following our assumptions, the matrix 𝒜 is stable. Hence, for
each 𝑖 ∈ {1, 2, ..., 𝑛}, there exists a non-negative scalar 𝑃𝑖
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defined as follows:

𝑃𝑖 = sup
𝑡∈N+

[𝒜𝑡𝒱0 +
( 𝑡∑

𝑗=1

𝒜𝑡−𝑗+1
)
Υ

+
( 𝑡∑

𝑗=1

(𝒜𝑡−𝑗ℳ)
)
(Υ + Ω)]𝑖,

such that 𝐸[𝑉
(𝑖)
𝑡 ] ≤ 𝑃𝑖, ∀𝑡 ∈ N+. This completes the proof

because ℰ(𝑖)
𝑡 ≤ 𝑉

(𝑖)
𝑡 + Υ𝑖, P-a.s.; and therefore, 𝐸[ℰ(𝑖)

𝑡 ] ≤
𝐸[𝑉

(𝑖)
𝑡 ] + Υ𝑖 ≤ 𝑃𝑖 +Υ𝑖

△
= 𝐷𝑖, ∀𝑖 ∈ {1, 2, ..., 𝑛}.

Remark 3.2: i) If the system is completely decoupled (i.e.,
∀𝑖 ∈ {1, 2, ..., 𝑛} we have 𝛽

(𝑖)
𝑖 = 1 and 𝛽

(𝑗)
𝑖 = 0, ∀𝑗 ∕= 𝑖),

the matrix 𝒜 is diagonal (i.e., 𝒜 = 𝑑𝑖𝑎𝑔
(
𝐾1(

1−𝛼1

2𝑅1
+

𝛼1), ...,𝐾𝑛(
1−𝛼𝑛

2𝑅𝑛
+ 𝛼𝑛)

)
); and therefore, it is stable if and

only if 𝐾𝑖(
1−𝛼𝑖

2𝑅𝑖
+ 𝛼𝑖) < 1, ∀𝑖 ∈ {1, 2, ..., 𝑛}.

ii) For the special case of the digital noiseless channel (i.e.,
𝛼𝑖 = 0, ∀𝑖 = {1, 2, ..., 𝑛}), we have tracking in the almost sure
sense. From (4) it follows that for this case using the proposed
technique we have ℰ(𝑖)

𝑡 ≤ 𝑉
(𝑖)
𝑡 + Υ𝑖 (∀𝑖 ∈ {1, 2, ..., 𝑛}), P-

a.s., where 𝑉
(𝑖)
𝑡 is the 𝑖th component of the vector 𝑉 𝑡 ∈ ℜ𝑛,

as described below:

𝑉 𝑡 = 𝐴𝑡𝑉 0 + (

𝑡∑
𝑗=1

𝐴𝑡−𝑗+1)Υ + (

𝑡∑
𝑗=1

𝐴(𝑡−𝑗)𝑀)(Υ + Ω),

𝐴 =

⎛⎜⎜⎜⎜⎜⎝
𝐾1𝛽

(1)
1

2𝑅1 . . .
𝐾1𝛽

(𝑛)
1

2𝑅1

.

.

.
𝐾𝑛𝛽

(1)
𝑛

2𝑅𝑛
. . .

𝐾𝑛𝛽
(𝑛)
𝑛

2𝑅𝑛

⎞⎟⎟⎟⎟⎟⎠ , 𝑉 0 =

⎛⎜⎜⎜⎜⎜⎝
𝐿

(1)
0

2𝑅1

.

.

.
𝐿

(𝑛)
0

2𝑅𝑛

⎞⎟⎟⎟⎟⎟⎠ ,

𝑀 = 𝑑𝑖𝑎𝑔(
1

2𝑅1
, ...,

1

2𝑅𝑛
).

Now, following our assumptions, the rates {𝑅𝑖}𝑛𝑖=1 are chosen
such that the matrix 𝐴 is stable. Hence, for each 𝑖 ∈
{1, 2, ..., 𝑛}, there exists a non-negative scalar 𝑃𝑖, as given
below:

𝑃𝑖 = sup
𝑡∈N+

[𝐴𝑡𝑉 0 + (

𝑡∑
𝑗=1

𝐴𝑡−𝑗+1)Υ

+(

𝑡∑
𝑗=1

𝐴𝑡−𝑗𝑀)(Υ + Ω)]𝑖,

such that 𝑉 (𝑖)
𝑡 ≤ 𝑃𝑖, ∀𝑡 ∈ N+, P-a.s.; and therefore ℰ(𝑖)

𝑡 ≤
𝑃𝑖 +Υ𝑖, ∀𝑡 ∈ N+, P-a.s.
iii) The results of this section can be extended to the multi-
dimensional case 𝑋

(𝑖)
𝑡 ∈ ℜ𝑞𝑖 , 𝑞𝑖 ≥ 1 without much difficulty.

For the special case, 𝑛 = 1, the results of Proposition 3.1 yield
the following result.

Corollary 3.3: Consider the system (1) with only one sub-
system (𝑛 = 1) over the BSC. Using flag bits and feedback
from the receiver, the transmission over the BSC is equivalent
to the transmission over the erasure channel with feedback, as
described in Section III-A. For this equivalent transmission,

Fig. 2. Dead - zone nonlinearity function.

suppose that the rate 𝑅1 is chosen such that the following
condition holds:

𝐾1(1− 𝛼1)

2𝑅1
+𝐾1𝛼1 < 1. (5)

Then, the methodology of Section III-B guarantees mean
absolute tracking.

Remark 3.4: We have the following remarks regarding the
above result.
i) It is evident that the results of Corollary 3.3 also holds for
linear systems (i.e., 𝑋(1)

𝑡+1 = 𝐾1𝑋
(1)
𝑡 +𝑊

(1)
𝑡 ). For this special

case, the condition (5) reduces to the conditions presented in
[8], [9], [23].
ii) It was shown in ([8], Chapter 7, Theorem 7.2.1) that a nec-
essary and sufficient condition for the mean absolute tracking
of a fully observed linear system subject to bounded external
disturbance (i.e., 𝑋

(1)
𝑡+1 = 𝐾1𝑋

(1)
𝑡 + 𝑊

(1)
𝑡 , ∣𝑊 (1)

𝑡 ∣ ≤ Ω1)
over the binary erasure channel (i.e., 𝑅1 = 1) with erasure
probability 𝛼1 is 𝐾1 < 2

1+𝛼1
. It is interesting to notice that

for the special case of 𝑅1 = 1, the condition (5), which
guarantees the mean absolute tracking over the equivalent
erasure channel, reduces to the above condition.
iii) It was shown in [23] that a necessary and sufficient condi-
tion for mean square tracking of the scalar partially observed
linear system with mode 𝐾1 over the digital noiseless channel
(i.e., 𝛼1 = 0) is 𝑅1 > log𝐾1. Again, it is interesting to notice
that for this case, the condition (5), which guarantees the mean
absolute tracking over the equivalent erasure channel, reduces
to the above condition.
iv) It was shown in [9] that a necessary and sufficient condition
for mean square tracking of the scalar partially observed linear
system with mode 𝐾1 over an erasure channel with high rate
(i.e., 𝑅1 → ∞) and erasure probability 𝛼1 is 𝐾2

1𝛼1 < 1.
Again for this high rate case, it is clear that the condition
(5), which guarantees the mean absolute tracking over the
equivalent erasure channel, reduces to 𝐾1𝛼1 < 1, which is
similar to the above condition.
From the above discussions it follows that the proposed tech-
nique presents some optimal features for the mean absolute
tracking over the equivalent erasure channel.

In general, we can protect the message bits over the
binary symmetric channel by adding some extra bits for
error correction. Using such techniques, the probability of
receiving message bits correctly will increase. However, this
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Fig. 3. Left figure: 𝑋(1)
𝑡 (solid line) and �̂�

(1)
𝑡 (dotted) versus time step.

Right figure: ℰ(1)
𝑡 versus time step.
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Fig. 4. Left figure: 𝑋(2)
𝑡 (solid line) and �̂�

(2)
𝑡 (dotted) versus time step.

Right figure: ℰ(2)
𝑡 versus time step.

will increase the number of transmitted bits. Therefore, we can
just use few extra bits for error correction in each transmission.
Consequently, the receiver may not be able to correct all the
flipped message bits. But, using feedback acknowledgments
from the receiver, the transmitter will know if the receiver is
able to correct all the flipped message bits. Thus, if there are
still some flipped message bits, which can not be corrected at
the receiver using the implemented error correction technique,
the transmitter sends the flag bit “0” to inform the receiver that
the received message bits contain errors, which can not be
corrected. Since the decoding law is recursive, if the receiver
decodes the message bits containing errors, the decoding error
may grow with time. Therefore, the decoder disregards the
message bits if it receives the flag bit “0” and reconstructs the
state using the available message bits received correctly.

IV. SIMULATION RESULTS

In this section, we illustrate the performance of the proposed
design technique. Let 𝑑𝑎,𝑏(𝑋) denote the dead-zone nonlinear-
ity function as shown in Fig. 2. Here, we are concerned with
a simple nonlinear dynamic system consisting of two coupled
subsystems 𝑠1 and 𝑠2, as described below:

(𝑠1) :

{
𝑋

(1)
𝑡+1 = 𝐹1(𝑋

(1)
𝑡 , 𝑋

(2)
𝑡 ) +𝑊

(1)
𝑡 , 𝑋

(1)
0 = 𝜉1,

𝑌
(1)
𝑡 = 𝑋

(1)
𝑡 +𝐺

(1)
𝑡 ,
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Fig. 5. Left figure: ℰ(1)
𝑡 versus time step for 𝑅1 = 𝑅2 = 1. Right figure:

ℰ(2)
𝑡 versus time step for 𝑅1 = 𝑅2 = 1.

(𝑠2) :

{
𝑋

(2)
𝑡+1 = 𝐹2(𝑋

(1)
𝑡 , 𝑋

(2)
𝑡 ) +𝑊

(2)
𝑡 , 𝑋

(2)
0 = 𝜉2,

𝑌
(2)
𝑡 = 𝑋

(2)
𝑡 +𝐺

(2)
𝑡 ,

where 𝐹1(𝛾1, 𝛾2) = 𝑑 1
2 ,1.1

(𝛾1 + 𝛾2), 𝐹2(𝛾1, 𝛾2) = 𝑑1,1(𝛾1 +

𝛾2), 𝑋
(𝑖)
𝑡 ∈ ℜ, 𝑌 (𝑖)

𝑡 ∈ ℜ, 𝑊 (𝑖)
𝑡 ∈ ℜ, 𝐺(𝑖)

𝑡 ∈ ℜ (𝑖 ∈ {1, 2}),
random variables 𝜉1 and 𝜉2 are uniformly distributed with
distribution 𝜉1 ∼ 𝑈(−1, 1) and 𝜉2 ∼ 𝑈(−2, 2), respectively,
𝑊

(1)
𝑡 and 𝑊

(2)
𝑡 are i.i.d. with distribution 𝑊

(1)
𝑡 ∼ 𝑈(−1, 1)

and 𝑊
(2)
𝑡 ∼ 𝑈(−2, 2), respectively, and 𝐺

(𝑖)
𝑡 is i.i.d. with dis-

tribution 𝐺
(𝑖)
𝑡 ∼ 𝑈(−1, 1). Here, 𝜉1 and 𝜉2 are independent of

system noises and measurement noises. Furthermore, {𝜉1, 𝜉2},
{𝑊 (1)

𝑡 , 𝐺
(1)
𝑡 }, {𝑊 (2)

𝑡 , 𝐺
(2)
𝑡 }, {𝑊 (1)

𝑡 , 𝐺
(2)
𝑡 } and {𝑊 (2)

𝑡 , 𝐺
(1)
𝑡 }

are mutually independent.
Note that the nonlinear functions 𝐹1(⋅) and 𝐹2(⋅) are

Lipschitz because for each 𝛾1, 𝛾2, 𝜂1, 𝜂2 ∈ ℜ, we have

∣𝐹1(𝛾1, 𝛾2)− 𝐹1(𝜂1, 𝜂2)∣ ≤ 1.1(∣𝛾1 − 𝜂1∣+ ∣𝛾2 − 𝜂2∣),
(𝑖.𝑒., 𝐾1 = 1.1), and

∣𝐹2(𝛾1, 𝛾2)− 𝐹2(𝜂1, 𝜂2)∣ ≤ ∣𝛾1 − 𝜂1∣+ ∣𝛾2 − 𝜂2∣,
(𝑖.𝑒., 𝐾2 = 1). For subsystem 𝑠𝑖 we use the methodology
presented in Section III to transmit observations to the fusion
center via the BSC with cross over probability 𝑝𝑖 = 0.1. For
this transmission, we have 1− 𝛼1 = (1− 𝑝1)

𝑅1 = 0.9𝑅1 and
1 − 𝛼2 = (1 − 𝑝2)

𝑅2 = 0.9𝑅2 . Hence, the matrix 𝒜 is given
by

𝒜 =

(
1.1(0.9

𝑅1

2𝑅1
+ 1− 0.9𝑅1) 1.1(0.9

𝑅1

2𝑅1
+ 1− 0.9𝑅1)

(0.9
𝑅2

2𝑅2
+ 1− 0.9𝑅2) (0.9

𝑅2

2𝑅2
+ 1− 0.9𝑅2)

)
.

Table I summarizes the pair (𝑅1, 𝑅2) under which the matrix
𝒜 is stable. It also includes the corresponding upper bounds on
the tracking errors, i.e., 𝐷1 and 𝐷2. From Table I, it follows
that the rates 𝑅1 = 3 and 𝑅2 = 3 (which are relatively small)
correspond to the smallest values for 𝐷1 and 𝐷2.

Simulation Results. The results shown in Fig. 3 and
Fig. 4 illustrate the performance of the proposed technique
for tracking the above nonlinear system at the fusion center,
with the rates 𝑅1 = 3 and 𝑅2 = 3. It is clear from the figures
that the reconstructed signals coincide with the actual signals.
This certainly indicates the promising performance of the
design technique presented in this paper. Fig. 5 illustrates the
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TABLE I
ADMISSIBLE RATES (𝑅1, 𝑅2) AND THE CORRESPONDING (𝐷1,𝐷2)

(𝑅1, 𝑅2) ; (𝐷1, 𝐷2) (𝑅1, 𝑅2) ;(𝐷1,𝐷2)
(2,2) ; (11.51, 11.02) (2,3) ; (9.89, 8.88)
(2,4) ; (11.06, 10.42) (2,5) ; (14.3, 14.69)
(2,6) ; (21.7, 24.42) (2,7) ; (45.7, 56)
(3,1) ; (35.43, 49.2) (3,2) ; (9.15, 9.49)
(3,3) ; (8.06, 7.84) (3,4) ; (8.85, 9.04)

(3,5) ; (10.91, 12.15) (3,6) ; (14.93, 18.3)
(3,7) ; (24.19, 32.22) (3,8) ; (59.22, 85.16)
(4,1) ; (70.88, 92.42) (4,2) ; (10.84, 10.59)
(4,3) ; (9.38, 8.59) (4,4) ; (10.43, 10.03)

(4,5) ; (13.31, 13.95) (4,6) ; (19.6, 22.51)
(4,7) ; (37.72, 47.19) (5,2) ; (15.74, 13.75)
(5,4) ; (14.93, 12.85) (5,5) ; (21.09, 19.77)
(5,6) ; (40.36, 41.44) (6,2) ; (28.07, 21.72)
(6,3) ; (20.65, 14.99) (6,4) ; (25.75, 19.62)
(6,5) ; (48.73, 40.44) (7,2) ; (83.92, 57.77)
(7,3) ; (41.97, 27.1) (7,4) ; (67.32, 45.62)

performance of the technique when 𝑅1 = 𝑅2 = 1. It is clear
from the figure that for these rates the tracking errors explode.
Note that according to Table I, for the rates 𝑅1 = 𝑅2 = 2,
which are very close to the rates 𝑅1 = 𝑅2 = 1, the mean
absolute tracking error is bounded.

V. CONCLUSION

In this paper, we have developed a simple technique for
design of encoders and decoders for tracking nonlinear noisy
dynamic systems over the binary symmetric channel. The
promising performance of this technique has been illustrated
by an example. For future it should be of great interest to
consider more relaxed assumptions for dynamic system, e.g.,
local Lipschitz continuity instead of global one. Also, it may
be interesting to consider a Lipschitz condition based on 𝑝-
norm instead of 1-norm as considered in this note.
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