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Abstract

This paper is concerned with a distributed model predictive control method that is based on a

distributed optimization method with two-level architecture for communication. Feasibility (constraints

satisfaction by the approximated solution), convergence and optimality of this distributed optimization

method are mathematically proved. For an automated irrigation channel, the satisfactory performance

of the proposed distributed model predictive control method in attenuation of the undesired upstream

transient error propagation and amplification phenomenon is illustrated and compared with the perfor-

mance of another distributed model predictive control method that exploits a single-level architecture

for communication. It is illustrated that the distributed model predictive control that exploits a two-level

architecture for communication has a better performance by better managing communication overhead.

Keywords- Distributed model predictive control, large-scale linear systems, networked control

system optimization.
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I. INTRODUCTION

A. Motivation and Background

In large-scale systems, the total number of constraints and decision variables can be very

large. In many cases this means the computation overhead (the time spent computing the optimal

solution) using centralized model predictive control methods at each receding horizon may not

be practical. Towards overcoming this computational scalability problem, in [1] a Distributed

Model Predictive Control (DMPC) method for solving a constrained linear quadratic optimal

control problem with single-level architecture for communication is proposed which exploits

the computational power often available at each sub-system in the network. This distributed

control method consists of two steps: 1) Initialization and 2) Iterated (parallel) computation and

communication for exchanging updates of components of the overall decision variable between

distributed computing resources.

To provide scope for managing the communication overheads, the authors of [1] proposed

in [2] a distributed optimization method that exploits a hierarchical (two-level) architecture

for communication (see Fig.1) and a three-step algorithm including an extra outer iterate step.

The distributed decision makers are grouped into q disjoint (non-overlapping) neighborhoods.

Exchange of information between decision makers within a neighborhood occurs after each

update, whereas the exchange of information between neighborhoods is limited to be less

frequent. Within a neighborhood, each decision maker frequently updates its local component of

the overall decision variable by solving an optimization problem of reduced size. The updated

value is then communicated to all other neighboring decision makers. This intra-neighborhood

update and communication is referred as an inner iterate. In addition to inner iterates, updates

of decision variables from other neighborhoods are received periodically. These are referred to

as outer iterates. Between outer iterates, distributed decision makers continue to compute and

refine the local approximation of the optimal solution, with fixed values for decision variables

from outside the neighborhood. In [1] the authors mathematically proved feasibility (constraints

satisfaction by the approximated solution), convergence and optimality of the two-step algorithm.

However, in [2] the authors assumed these properties for the three-step optimization algorithm,

and they did not provide any mathematical proofs for feasibility, convergence and optimality

under the hierarchical exchange of updates.
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B. Paper Contributions

This paper aims to further develop the results of [2] by providing mathematical proofs for

feasibility, convergence and optimality of the distributed optimization method presented therein

[2] that exploits a two-level architecture for communication. Then, a distributed model predictive

control method which is based on this distributed optimization method is proposed. This method

is applied to automated irrigation channel; and the satisfactory performance of this distributed

model predictive control method in attenuation of the undesired upstream transient error prop-

agation and amplification phenomenon is illustrated and compared with the performance of the

distributed model predictive control method of [1] that exploits a single-level architecture for

communication. It is illustrated that the proposed distributed model predictive control method that

exploits a two-level architecture for communication has a better performance by better managing

communication overhead.

The literature on the subject of distributed model predictive control is quite rich [3]-[13].

In [4] the authors designed a Lyapunov - based distributed model predictive control method

for nonlinear systems that take asynchronous measurements and delays into account. In [5] the

authors designed an iterative Lyapunov - based distributed model predictive control method for

large-scale nonlinear systems subject to asynchronous, delayed state feedback. In comparison,

the distributed model predictive control method of this paper is an iterative Jacobi- based method

that uses a synchronous communication architecture. In [6] the authors proposed an iterative dual

decomposition approach for distributed model predictive control of linear systems. The authors

also presented a stopping condition to distributed optimization algorithm that keeps the number

of iterations as small as possible and gives a feasible, stabilizing solution. There are also many

papers that have used distributed model predictive control for irrigation channels, such as [10]-

[13]. In [10] the authors presented an accelerated gradient - based distributed model predictive

control method for linear systems; and they illustrated a successful application of this method to

the power reference tracking problem of an hydro power valley system. An hydro power valley

system may consist of several irrigation channels/rivers and lakes and exhibits nonlinear and

large-scale dynamics and a globally coupled cost functional that prevents distributed methods to

be applied directly. The authors in [10] proposed a linearization and approximation technique

that enabled them to apply the developed gradient - based distributed model predictive control

method for power reference tracking of hydro power valley systems. In terms of application, the

control objective of [10] is different from the objective of this paper, which is the improvement of

the transient response of automated irrigation channels that automatically regulate water levels.
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[11]-[13] also presented distributed model predictive control methods for water level regulation

in irrigation channels for delivering the required amount of water in the right time and place.

In [11] the authors presented the use of a serial iterative distributed model predictive control

method for water level regulation. However in terms of application, the objective of [11]-[13]

is different from the objective of this paper; because, unlike [11]-[13], this paper presents a

distributed model predictive control method as the secondary control layer in addition of the

existing first control layer, which automates the irrigation channels, to improve the performance

of the existing automated irrigation channels. Nevertheless, [11]-[13] use a single -layer control

via distributed model predictive methods.

C. Notations

Throughout certain conventions are used: 0 denotes the zero vector, || · || the Euclidean norm

and R denotes the set of real numbers. ‘=̇’ means ‘by definition is equivalent to’, N=̇{1, 2, 3, ...}

and ′ denotes matrix/vector transpose. a << b means a > 0 is much smaller than b > 0.

D. Paper Organization

The paper is organized as follows: Section II briefly describes the distributed optimization

method of [2], and proofs for feasibility, convergence and optimality of this method is presented

in Section III. In Section IV, the distributed model predictive control method that is based

on the distributed optimization method of [2] is presented and in Section V the satisfactory

performance of this method in attenuation of the undesired upstream transient error propagation

and amplification phenomenon in automated irrigation channels is illustrated and compared with

the performance of the distributed model predictive control method of [1]. In Section VI the paper

is concluded by summarizing the contributions of the paper and direction for future research.

II. DISTRIBUTED OPTIMIZATION METHOD WITH HIERARCHICAL ARCHITECTURE FOR

COMMUNICATION

The distributed optimization method of [2] is concerned with n interacting sub-systems: S1,

S2, ... , Sn each equipped with a decision maker with limited computational power for solving

the following optimization problem

min
(u1,...,un)

{
J(g, u1, ..., un), ui ∈ Ui,∀i

}
. (1)

Here, g is a collection of known vectors, J ≥ 0 is a finite-horizon quadratic cost functional of

decision variables with horizon length N , for each i = 1, 2, ..., n, ui ∈ RNmi is the decision
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Fig. 1. Two-level architecture for exchanging information between distributed decision makers.

variable associated with sub-system Si and Ui is a closed convex subset of the Euclidean space

RNmi that includes zero vector.

For the simplicity of presentation, without loss of generality, the dependency of the cost

functional J on g is dropped. Throughout, it is assumed that decision makers have knowledge

of known parameters described by g and also the expression for the cost functional J in (1).

To manage the communication overhead, the distributed optimization method of [2] uses a

two-level architecture for exchanging information between distributed decision makers. This

communication architecture involves a collection of disjoint neighborhoods of sub-systems (see

Fig. 1). In each neighborhood at least one decision maker is selected as the neighborhood

cluster head such that all the sub-systems of the neighborhood and also all the sub-systems

of the nearest neighboring neighborhood are within the effective communication range of the

neighborhood cluster head so that the communication graph between cluster heads is connected.

That is, there is a communication path between a cluster head to any other cluster heads.

A simple communication architecture is obtained by implementing a Time Division Multiple

Access (TDMA)/Orthogonal Frequency Division Multiple Access (OFDMA) scheme[14] as

follows: Decision makers in different neighborhoods broadcast their updated decision variables

simultaneously without collision using OFDMA scheme; and within a neighborhood, decision

makers exchange their updated decision variables without collision using TDMA scheme. The

coordination between cluster heads is also achieved by implementing a TDMA scheme as

proposed in [15]. This is a synchronous communication. Asynchronous communication is also

possible via exchanging flags between decision makers. When a decision maker receives all

required information from all other decision makers in its neighborhood, it broadcasts a flag
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to all other decision makers in its neighborhood to inform them that it is ready to update its

decision variable. Also, when this decision maker receives flags of all other decision makers in

its neighborhood, it knows that it is time to update its decision variable. Similarly, asynchronous

communication between cluster heads is possible via exchanging flags between cluster heads.

Without loss of generality, suppose sub-systems S1, S2,...,Sn are distributed into q disjoint

neighborhoods, as follows: N1 = {S1, .., Sl1}, N2 = {Sl1+1, ..., Sl2}, ..., Nq = {Slq−1+1, ..., Sn}.

Then, the distributed optimization method of [2] approximates the solution of the optimization

problem (1) by taking the following three steps:

• Initialization: The information exchange between neighborhoods at outer iterate t ∈ {0, 1, 2, ...}

makes it possible for every sub-system Si to initialize its local decision variable as h0
i =

uti ∈ RNmi , i ∈ {1, ..., n}, where u0
i ∈ Ui are chosen arbitrarily at t = 0.

• Inner Iterate: Between every two successive outer iterates there are p̄ inner iterates. Every

sub-system Si of the neighborhood Ne (e = 1, 2, ..., q) performs p̄ inner iterates simultane-

ously with other sub-systems, as follows:

For each inner iterate p ∈ {0, 1, ..., p̄− 1}, sub-system Si first updates its decision variable

via

hp+1
i = πih

∗
i + (1− πi)hpi , (2)

where πi are chosen subject to πi > 0,
∑l1

j=1 πj = 1, ... ,
∑n

j=lq−1+1 πj = 1 and

h∗i =̇argminhi∈UiJ(h0
1, ..., h

0
le−1

, hple−1+1, ..., hi, ..., h
p
le
, h0

le+1, ..., h
0
n) (note that l0 = 0, lq = n).

Then, it trades its updated decision variable hp+1
i with all other sub-systems in its neigh-

borhood Ne.

• Outer Iterate: After p̄ inner iterates, there is an outer iterate update as follows:

ut+1
i = λih

p̄
i + (1− λi)uti, (3)

where uti = (ut
′
i [0] ut

′
i [1] . . . ut

′
i [N − 1] )′ ∈ RNmi , uti[j] ∈ Rmi , j = 0, 1, 2, ..., N−

1, and λi, i = 1, 2, ..., n, are chosen subject to λi > 0, λ1 = ... = λl1 , λl1+1 = ... =

λl2 , ..., λlq−1+1 = ... = λlq (λlq = λn), λl1 + λl2 + ... + λlq = 1. Then, there is an outer

iterate communication, in which the updated decision variables ut+1
i are shared between all

neighborhoods; and subsequently, between all sub-systems.

As will be shown in the next section, by increasing t, (ut1, u
t
2, ..., u

t
n) converges to (u∗1, u

∗
2, ..., u

∗
n),

which is the optimal solution of the optimization problem (1). Hence, for a large enough t̄,

(ut̄1, u
t̄
2, ..., u

t̄
n) is an approximation of the optimal solution.
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We now define communication overhead, computation overhead and computational latency of

the above three-step algorithm as follows.

Definition 2.1: (Communication Overhead) Communication overhead is defined as the total

time spent for exchanging information between distributed decision makers for approximating

the solution of the optimization problem (1) by ut̄i.

Definition 2.2: (Computation Overhead) At a given inner iteration define the decision maker

with the longest processing time as the dominating decision maker at this iteration. Then,

computation overhead is defined as the summation of the processing times of the dominated

decision maker for approximating the solution of the optimization problem (1) by ut̄i.

Definition 2.3: (Computational Latency) Computational latency is the summation of the com-

munication overhead and computation overhead.

Remark 2.4: For the one neighborhood case (i.e., q = 1, p̄ = 1), the above three-step algorithm

is reduced to the two-step algorithm of [1], in which it only involves initialization step and inner

iterate updates (2) with p = t followed by outer iterate communication.

III. FEASIBILITY, CONVERGENCE AND OPTIMALITY RESULTS

In this section, it is shown that given a feasible initialization (i.e., u0
i ∈ Ui), the iterates (3)

are feasible (i.e., uti ∈ Ui, t ∈ {0, 1, 2, ...}), the cost functional is non-increasing for each outer

iterate (and so converges as t→∞), and the iterates (ut1, ..., u
t
n) converge to the optimal solution

(u∗1, ..., u
∗
n) of the constrained optimization problem (1). Note that as J ≥ 0 is quadratic and

the constraint sets are convex, there exists a unique optimal solution (u∗1, ..., u
∗
n). Feasibility and

convergence properties are shown for a general convex finite-horizon cost functional J(u1, ..., un);

however, for optimality it is also assumed that the cost functional is quadratic.

Feasibility, convergence and optimality proofs presented here closely follow those given in

[1]. The changes are required to develop new proofs are as follows:

• For feasibility proof, first we need to prove feasibility of inner iterates, and then feasibility

of outer iterates as proved in [1].

• For convergence proof, we need to show that the cost functional is non-increasing at each

inner iterate between each two successive outer iterates in addition of showing that the cost

functional is non-increasing at each outer iterate as proved in [1] .
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• For optimality proof, as we consider the general case with n sub-systems subject to inner

and outer iterates update and communication, a more detailed and complicated proof must be

presented compared with the proof presented in [1] for optimality, which is concerned with

a system with only two sub-systems subject to outer iterates update and communication.

Proposition 3.1: (Feasibility) Given the above convex finite-horizon cost functional J , convex

control constraint sets Ui and a feasible initialization, the inner and outer iterates (2) and (3) are

feasible.

Proof: By assumption, the initialization, h0
i = u0

i is feasible. Since U1, ..., Un are convex,

the convex combination (2) with p = 0 implies that (h1
1, ..., h

1
n) is feasible. Feasibility for

p ∈ {1, ..., p̄ − 1} follows similarly by induction. Now as u0
i and hp̄i are feasible, the convex

combination (3) with t = 0 implies that (u1
1, ..., u

1
n) is feasible. Subsequently, the feasibility for

t > 1 and each p ∈ {0, 1, ..., p̄−1} between every two successive outer iterates follows similarly.

Next we show the convergence of the cost functional J under the solution (3).

Proposition 3.2: (Convergence) Given a feasible initialization, convex finite-horizon cost func-

tional J(ut1, ..., u
t
n) is non-increasing at each outer iterate t ∈ {0, 1, 2, ...} and converges as

t→∞.

Proof: For each t ∈ {0, 1, 2, ...}, the cost functional satisfies the following:

J(ut+1
1 , ..., ut+1

n )

= J
(
λl1(h

p̄
1, ..., h

p̄
l1
, utl1+1, ..., u

t
n) + ...+ λlm(ut1, ..., u

t
lm−1

, hp̄lm−1+1, ..., h
p̄
lm
, utlm+1, ..., u

t
n)

+...+ λlq(u
t
1, ..., u

t
lq−1

, hp̄lq−1+1, ..., h
p̄
n)
)

≤ λl1J(hp̄1, ..., h
p̄
l1
, utl1+1, ..., u

t
n) + ...+ λlmJ(ut1, ..., u

t
lm−1

, hp̄lm−1+1, ..., h
p̄
lm
, utlm+1, ..., u

t
n)

+...+ λlqJ(ut1, ..., u
t
lq−1

, hp̄lq−1+1, ..., h
p̄
n), (4)

where the equality follows from (3), and the inequality follows from the convexity of the cost

functional. Now, define

Jm =̇ J(ut1, ..., u
t
lm−1

, hp̄lm−1+1, ..., h
p̄
lm
, utlm+1, ..., u

t
n), m ∈ {1, 2, ..., q}, (5)

whereby it is understood that J1 = J(hp̄1, ..., h
p̄
l1
, utl1+1, ..., u

t
n) and Jq = J(ut1, ..., u

t
lq−1

, hp̄lq−1+1, ..., h
p̄
n).

Note that lq = n.
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Then, Jm satisfies the following bound

Jm = J
(
ut1, ..., u

t
lm−1

, πlm−1+1(h∗lm−1+1, h
p̄−1
lm−1+2, ..., h

p̄−1
lm

) + ...

+πlm(hp̄−1
lm−1+1, ..., h

p̄−1
lm−1, h

∗
lm), utlm+1, ..., u

t
n

)
≤ πlm−1+1J(ut1, ..., u

t
lm−1

, h∗lm−1+1, h
p̄−1
lm−1+2, ..., h

p̄−1
lm

, utlm+1, ..., u
t
n) + ...

+πlmJ(ut1, ..., u
t
lm−1

, hp̄−1
lm−1+1, ..., h

p̄−1
lm−1, h

∗
lm , u

t
lm+1, ..., u

t
n)

≤
( lm∑
j=lm−1+1

πj

)
J(ut1, ..., u

t
lm−1

, hp̄−1
lm−1+1, ..., h

p̄−1
lm

, utlm+1, ..., u
t
n)

= J(ut1, ..., u
t
lm−1

, hp̄−1
lm−1+1, ..., h

p̄−1
lm

, utlm+1, ..., u
t
n),

where h∗lm−1+1, h∗lm−1+2, ...h∗lm have been generated at inner iterate p̄, the first equality follows

from (2) for p = p̄, the first inequality follows from the convexity of the cost functional, the

second inequality follows from the fact that the cost functional J for h∗j , j = lm−1 + 1,...,lm, is

not greater than J for hp̄−1
j , and the second equality follows from the fact that

∑lm
j=lm−1+1 πj = 1.

By following a similar argument, it can be shown for m ∈ {1, 2, ..., q} that

Jm ≤ J(ut1, ..., u
t
lm−1

, hp̄−1
lm−1+1, ..., h

p̄−1
m , utlm+1, ..., u

t
n)

≤ J(ut1, ..., u
t
lm−1

, hp̄−2
lm−1+1, ..., h

p̄−2
lm

, utlm+1, ..., u
t
n) ≤ ... ≤ J(ut1, ..., u

t
n). (6)

Consequently, from (4), (6) it follows that

J(ut+1
1 , ..., ut+1

n ) ≤
(
λl1 + λl2 + ...+ λlq

)
J(ut1, ..., u

t
n) = J(ut1, ..., u

t
n).

That is, the cost J(ut1, ..., u
t
n) is non-increasing at each outer iterate t. Hence, the non-negative

cost functional J converges as t→∞ by the monotone convergence theorem [16].

Now, in the following proposition using the contradiction argument we show that the conver-

gent point J̄ is the optimal value of the cost functional, i.e., J̄ = J(u∗1, ..., u
∗
n); and the iterates

(ut1, ..., u
t
n) converge to the unique optimal solution (u∗1, ..., u

∗
n), as t→∞.

Proposition 3.3: (Optimality) Given a feasible initialization, strictly convex and quadratic cost

J , and closed convex control constraint sets Ui, the cost J(ut1, ..., u
t
n) converges to the optimal

cost J(u∗1, ..., u
∗
n), and the iterates (ut1, ..., u

t
n) converge to the unique optimal solution (u∗1, ..., u

∗
n),

as t→∞.

Proof: For the clarity of the proof we first present the sketch of the proof: From convergence

result, it follows that the cost converges to some J̄ ≥ 0 and all iterates belong to a sequentially

compact set. Hence, there must exist one sub-sequence (ut1, ..., u
t
n)t∈T , T ⊂ {1, 2, 3, ...} and

an accumulation point (ū1, ..., ūn) such that this sub-sequence converges to this point. Then,
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using a contradiction argument it is shown that this accumulation point must be the optimal

solution. Now, as this point is an arbitrary accumulation point and (ut1, ..., u
t
n)t∈T is also an

arbitrary convergent sub-sequence of the sequence (ut1, ..., u
t
n)t≥0, from the above analysis, it is

concluded that every convergent sub-sequence of the sequence (ut1, ..., u
t
n)t≥0 converges to the

same limit, which is the optimal solution. Therefore, it must be the case that the entire sequence

(ut1, ..., u
t
n)t≥0 with the property of limt→∞ J(ut1, ..., u

t
n) = J̄ which is made of convergent sub-

sequences, converges to the optimal solution.

Now, the details of the proof are as follows: From Proposition 3.2, it follows that the cost

converges to some J̄ ≥ 0. Because J is quadratic and strictly convex, its sub level sets Lev≤a(J)

are compact and bounded for all a ≥ 0. Therefore, all iterates belong to the compact and bounded

set Lev≤J(u01,...,u
0
n)(J) ∩ U1 × ... × Un. Hence, there is at least a sub-sequence T ⊂ {1, 2, 3, ...}

and one accumulation point (ū1, ..., ūn) such that (ut1, ..., u
t
n)t∈T converge to (ū1, ..., ūn) and

limt∈T ,t→∞ J(ut1, ..., u
t
n) = J(ū1, ..., ūn) = J̄ .

Suppose for the purpose of contradiction that J̄ 6= J(u∗1, ..., u
∗
n), and therefore (ū1, ..., ūn) 6=

(u∗1, ..., u
∗
n). Because J(.) is convex, we have:

∇J(ū1, ..., ūn)′(U∗ − Ū) ≤ ∆J=̇J(u∗1, ..., u
∗
n)− J(ū1, ..., ūn), (7)

where U∗ = (u∗
′

1 . . . u∗
′
n )′ and Ū = ( ū

′
1 . . . ūn

′ )′. ∇J can be partitioned as

follows: ∇J(ū1, ..., ūn) = (∇u1J(ū1, ..., ūn)′ . . . ∇unJ(ū1, ..., ūn)′ )′. Then, from the

inequality (7) it follows that at least one of ∇uiJ(ū1, ..., ūn)′ × (u∗i − ūi) must be less than

or equal to ∆J
n

. For simplicity, without loss of generality, suppose i = 1. Then, by applying

Taylor’s theorem to J(ut1 + ε(u∗1 − ut1), ut2, ..., u
t
n), ε > 0, we have:

J(ut1 + ε(u∗1 − ut1), ut2, ..., u
t
n) = J(ut1, ..., u

t
n) + ε∇J(ut1, .., u

t
n)′



u∗1 − ut1
0

.

.

.

0


+O(ε2). (8)

By the definition of the convergence of J(ut1, ..., u
t
n) and (ut1, ..., u

t
n)t∈T there exists a t1 ∈ T such

that for all t ∈ T so that t ≥ t1, the difference between J(ut1, ..., u
t
n) and J(ū1, ..., ūn) and also

the difference between (ut1, ..., u
t
n) and (ū1, ..., ūn) are negligible. Hence, as ∇u1J(ū1, ..., ūn)′×
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(u∗1 − ū1) ≤ ∆J
n

, for all t ≥ t1, we have the following inequality:

J(ut1, ..., u
t
n) + ε∇J(ut1, .., u

t
n)′



u∗1 − ut1
0

.

.

.

0


+O(ε2) ≤ J(ū1, ..., ūn) +

ε∆J

n
+O(ε2). (9)

Now, from (4) and (6) it follows that

J(ut+1
1 , ut+1

2 , ..., ut+1
n ) ≤ λl1J1 + λl2J2 + ...+ λlqJq ≤ J(ut1, u

t
2, ..., u

t
n),

where Jm, m = 1, 2, ..., q, are given in (5). From these inequalities and as limt∈T ,t→∞ J(ut+1
1 , ut+1

2 ,

..., ut+1
n ) = J̄ and limt∈T ,t→∞ J(ut1, u

t
2, ..., u

t
n) = J̄ , it follows that

lim
t∈T ,t→∞

(λl1J1 + λl2J2 + ...+ λlqJq) = J̄ . (10)

From (6) and the definition of the convergence of J(ut1, ..., u
t
n) it follows that for all t ∈ T so

that t ≥ t1, we have the following inequalities: Jm ≤ J̄ , ∀m ∈ {1, 2, ..., q}. This means that for

each m there exists an εm ≥ 0 such that limt∈T ,t→∞ Jm = J̄ − εm. Hence, from (10) it follows

that
∑q

m=1 limt∈T ,t→∞ λlmJm(= J̄ −
∑q

m=1 λlmεm) = J̄ . From this equality and as λlm > 0

it follows that εm = 0, ∀m ∈ {1, 2, ..., q} giving the following result: limt∈T ,t→∞ Jm = J̄ ,

∀m ∈ {1, 2, ...,m}. This result combined with (6) for m = 1 similarly results in the following:

lim
t∈T ,t→∞

J(hp1, h
p
2, ..., h

p
l1
, utl1+1, ..., u

t
n) = J̄ , ∀p ∈ {1, 2, ..., p̄}. (11)

Now, convexity of J(.) results in the following inequality:

J(h1
1, h

1
2, ..., h

1
l1
, utl1+1, ..., u

t
n) = J(π1(h∗1, u

t
2, ..., u

t
l1

) + π2(ut1, h
∗
2, ..., u

t
l1

) + ...

+πl1(u
t
1, u

t
2, ..., h

∗
l1

), utl1+1, ..., u
t
n)

≤ π1J(h∗1, u
t
2, ..., u

t
n) + π2J(ut1, h

∗
2, ..., u

t
n) + ...

+πl1J(ut1, ..., h
∗
l1
, utl1+1, ..., u

t
n)

≤ (π1 + π2 + ....+ πl1)J(ut1, ..., u
t
n) = J(ut1, ..., u

t
n),

where h∗1 = argminh1∈U1J(h1, u
t
2, ..., u

t
n) and h∗2,...,h∗l1 are defined similarly. Consequently, from

(11) and as π1, π2, ..., πl1 > 0, it follows from a similar argument that

lim
t∈T ,t→∞

J(h∗1, u
t
2, ..., u

t
n) = J̄ . (12)
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Now, consider the left hand side of (8). As U1 is a convex set and ut1 + ε(u∗1 − ut1) = (1 −

ε)ut1 + εu∗1 is a convex combination of ut1, u
∗
1 ∈ U1 for ε ∈ (0, 1], it follows for ε ∈ (0, 1] that

ut1 + ε(u∗1 − ut1) ∈ U1. Hence, as h∗1 = argminh1∈U1J(h1, u
t
2, ..., u

t
n), it is evident for ε ∈ (0, 1]

that J(h∗1, u
t
2, ..., u

t
n) ≤ J(ut1 + ε(u∗1 − ut1), ut2, ..., u

t
n). Consequently, from (12) for all t ∈ T so

that t ≥ t1 the following inequality holds:

J̄ ≤ J(ut1 + ε(u∗1 − ut1), ut2, ..., u
t
n). (13)

Hence, from (8), (9) and (13), for sufficiently small ε > 0 and all t ∈ T so that t ≥ t1, it follows

that J̄ ≤ J̄ + ε∆J
n

. But, as ∆J < 0, from the inequality J̄ ≤ J̄ + ε∆J
n

it follows that J̄ < J̄

giving a contradiction. Therefore, by contradiction we have J(ū1, ..., ūn) = J̄ = J(u∗1, ..., u
∗
n)

and (ū1, ..., ūn) = (u∗1, ..., u
∗
n). Now, as (ū1, ..., ūn) was an arbitrary accumulation point and

(ut1, ..., u
t
n)t∈T was an arbitrary convergent sub-sequence of the sequence (ut1, ..., u

t
n)t≥0, from the

above analysis it is concluded that every convergent sub-sequence of the sequence (ut1, ..., u
t
n)t≥0

converges to the same limit of (u∗1, ..., u
∗
n). Therefore, it must be the case that the entire sequence

(ut1, ..., u
t
n)t≥0 with the property of limt→∞ J(ut1, ..., u

t
n) = J̄ which is made of convergent sub-

sequences, converges to the optimal solution (u∗1, ..., u
∗
n).

IV. DISTRIBUTED MODEL PREDICTIVE CONTROL METHOD

Because the distributed optimization method of previous sections is concerned with a convex

optimization problem with quadratic cost functional of decision variables, in this section we

propose a distributed model predictive control method with linear dynamics, convex constraint

sets and quadratic cost functional. As will be shown in this section this distributed model

predictive control problem can be written in terms of a convex optimization problem with a

quadratic cost; and hence, the distributed optimization method of previous sections can be used

to solve it.

This section is concerned with a dynamic system with n distributed interacting linear time

invariant sub-systems Si, i = 1, 2, ..., n, of the following form, in which each of them is equipped

with a decision maker that generates the decision variable ui.

Si :


xi[k + 1] = Aixi[k] +Biui[k] +

∑n
j=1,j 6=iMjxj[k] +Njuj[k],

yi[k] = Cixi[k],

zi[k] = Dixi[k],

k = {0, 1, 2, ...}is the time instant.

(14)

For the system (14) we are concerned with the Linear Quadratic (LQ) constrained optimal

control problem (15) subject to the dynamics of sub-systems (14) and the operational constraints
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xi[k] ∈ Xi and ui[k] ∈ Gi, where Xi is a closed convex subset of the real Euclidean space with

dimension ni > 0 (i.e., Xi ⊂ Rni) modeling constraint set on the ith state variable; and Gi is a

closed convex subset of Rmi modeling constraint set on the ith decision variable.

min
(u1,u2,...,un)

{JL(x[0], r, u1, ..., un), ui[k] ∈ Gi, xi[k] ∈ Xi,∀i, k, subject to(14)} (15)

JL(x[0], r, u1, ..., un) =
n∑
i=1

L−1∑
k=0

||yi[k]− ri||2Q + ||ui[k]− ui[k − 1]||2R + ||zi[k]||2P , (ui[−1] = 0),(16)

where r=̇ ( r′1 r′2 . . . r′n )′, ri is the desired value for the output yi,

x[0]=̇ (x′1[0] x′2[0] . . . x′n[0] )′

is the initial state vector, || · || is the Euclidean norm and Q = Q′ ≥ 0, R = R′ > 0 and

P = P ′ ≥ 0 are weighting matrices.

Remark 4.1: As the optimal control problem (15) is a constrained problem and the horizon

length L is long, the receding horizon idea must be used to solve this problem. That is, at each

time instant k the following associated optimal control problem with the cost functional (17)

with the horizon length N << L must be solved.

min
(u1,u2,...,un)

{J(x[k], r, u1, ..., un), ui[j] ∈ Gi, xi[j] ∈ Xi,∀i, j = k, ..., k +N − 1, subject to(14)}

J(x[k], r, u1, u2, ..., un) =
n∑
i=1

k+N−1∑
j=k

||yi[j]− ri||2Q + ||ui[j]− ui[j − 1]||2R + ||zi[j]||2P . (17)

The solution to this optimal control problem is the vectors

u∗i = (u∗
′
i [k] u∗

′
i [k + 1] . . . u∗

′
i [k +N − 1] )′ , i = 1, 2, ..., n,

in which only the first components, i.e., u∗i [k]s, are applied by distributed decision makers and

this procedure is repeated for the next time instant. Note that in the proposed method at each

time instant k, xi[k], i = 1, 2, ..., n, are measured and shared between all decision makers so

that at each receding horizon xi[k]s are known to each decision maker.

By expanding the dynamic model (14) in terms of x[k]=̇ (x′1[k] x′2[k] . . . x′n[k] )′ and

the decision variables ui[j]s, j = k, k + 1, ..., k + N − 1, and substituting xi[j], yi[j] and zi[j]

rewritten in terms of x[k] and decision variables ui[j] in the cost functional (17), it is written as

a quadratic function of decision variables. Furthermore, as Xi, i = 1, 2, ..., n, are closed convex

sets, their Cartesian product X1×X2×...×Xn is a closed convex set [17]. Consequently, as affine

functions preserves closeness and convexity of sets [17], the closed convex state constraint set Xi

January 15, 2016 DRAFT



15

on the time invariant dynamics (14) imposes additional constraint on decision variables. That is,

ui ∈ Hi(x[k]). Therefore, for each i the set of control constraint for the associated LQ problem

with the cost functional (17) is (ui ∈)Gi ∩Hi(x[k]), where Gi ∩Hi(x[k]) is a closed convex set.

Hence, the optimization problem of the previous sections with g = (x[k], r) is applicable to the

associated LQ problem with the cost functional (17).

Having that, in the proposed distributed model predictive control method, at each receding

horizon with horizon length N , the distributed optimization method of previous sections is used

with t = {0, 1, 2, ..., t̄−1} to solve the associated LQ problem. The initialization of the distributed

optimization method at each receding horizon is based on the warm start. That is, at time instant

k + 1, the initialization is as follows

u0
i = (ut̄

′
i [k + 1] ut̄

′
i [k + 2] . . . ut̄

′
i [k +N − 1] 0′ )′ ,

where ut̄i[k+j] ∈ Rmi , j = 0, 1, 2, ..., N−1, are the solution of the distributed optimization prob-

lem at the previous time instant k. Note that at time instant k = 0, u0
i ∈ Ui, i = 1, 2, ..., n, are cho-

sen arbitrary. Then, for each time instant k the three-step optimization algorithm of the previous

sections are repeated t̄ times until the vectors ut̄i = (ut̄
′
i [k] ut̄

′
i [k + 1] . . . ut̄

′
i [k +N − 1] )′,

i = 1, 2, ..., n, are generated, in which only the first components ut̄i[k]s are applied to the

distributed dynamic system by distributed decision makers.

Remark 4.2: To guarantee the recursive feasibility, the proper terminal constraints can be

included to each associated LQ problem with horizon length N [18].

V. AUTOMATED IRRIGATION CHANNELS AND UNDESIRED UPSTREAM TRANSIENT ERROR

PROPAGATION AND AMPLIFICATION PHENOMENON

To illustrate the satisfactory performance of the above distributed model predictive control

method with two-level architecture for communication, this method is applied in this section

to an automated irrigation channel and its satisfactory performance in attenuating the undesired

upstream transient error propagation and amplification phenomenon is illustrated and compared

with the performance of the distributed model predictive control method of [1] that exploits a

single-level architecture for communication.

A. An Automated Irrigation Channel

An automated irrigation channel consists of a collection of interconnected pools (see Fig 2).

Each pool is equipped with an overshot gate, a modem for wireless communication, sensors,
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Fig. 2. An automated irrigation channel.

actuators and a processing device (decision maker). Open irrigation channels have been tradi-

tionally modeled by the St. Venant equations which are nonlinear hyperbolic partial differential

equations [19]. However, as shown in [20], [21] around desired set points open irrigation channels

can be modeled with high accuracy by linear dynamics using mass-balance principle and system

identification techniques. Because in this section the objective is to maintain the downstream

water levels of open irrigation channels pools around desired set points with small variation,

linear model is used for open irrigation channels.

The dynamics of each sub-system (pool) in an automated irrigation channel in continuous

time domain is described, as follows (see Fig. 2)[22].

ẏi(t) = Cin
i zi(t− τi) + Cout

i zi+1(t) + Cout
i di(t), i = 1, 2, ..., n,

zi =̇ h
3
2
i , hi = yi−1 − pi, zi+1=̇h

3
2
i+1, hi+1 = yi − pi+1,

di =
d̄i
γi+1

, dn =
d̄n
γn
, (18)

where αi > 0 (measured in meter square - m2) is a constant which depends on the pool surface

area, yi ≥ 0 (measured in meter Above Height Datum - mAHD) is the downstream water level

at the ith pool, hi ≥ 0 (measured in meter) is the head over upstream gate (the ith gate), hi+1

is the head over downstream gate (the i+ 1th gate), pi ≥ 0 (measured in meter) is the position
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of the ith gate, τi (measured in minutes) is the fixed transport delay, d̄i ≥ 0 (measured in meter

cube per minutes - m3/min) is the off-take flow rate disturbance taken at the end of pool i

by user, and γi as well as Cin
i (measured in m

−1
2 /min) and Cout

i (measured in m−
1
2/min) are

constant.

The equation (18) can be written in terms of the storage (integrator) equation (19) and transport

(delay) equation (20), as follows.

ẏi(t) = Cin
i z̃i(t) + Cout

i zi+1(t) + Cout
i di(t). (19)

z̃i(t) = zi(t− τi). (20)

The storage equation (19) can be directly converted to discrete time model using the zero

order hold technique, while the transport equation (20) is converted to discrete time model

by introducing τi
T

states as follows xi,2(kT ) = zi(kT − τi
T

), ... , xi, τi
T

+1(kT ) = zi(kT − T ),

where the sampling period T is the biggest common factor of pools transport delays (note that

xi,1(kT ) = yi(kT ), k ∈ {1, 2, 3, ...}). Following the above conversions, the equivalent discrete

time model describing the dynamics of the ith sub-system/pool is given by the following discrete

time state space model with the state variable bi[k]. bi[k + 1] = Ǎibi[k] + B̌izi[k] + Ďizi+1[k] + F̌idi[k],

yi[k] = Čibi[k] i = 1, 2, ..., n

In an automated irrigation channel, PI controllers zi(s) = Ci(s)ei(s), Ci(s) = KiTis+Ki
TiFis2+Tis

,

ei = ui − yi are designed to stabilize an automated irrigation channel around the pre-defined

reference signals uis by attenuating the effects of off-take flow disturbances. Now, by finding

the corresponding discrete time transfer function Ci(z) and then the corresponding state space

representation, we have the following discrete time representation for the PI controllers ξi[k + 1] = Āiξi[k] + B̄iei[k], ξi[0] = 0,

zi[k] = C̄iξi[k].

Consequently, by defining the augmented state variable xi[k] =

(
bi[k]

ξi[k]

)
, the dynamics of the

automated irrigation network is given by (21).

Si :


xi[k + 1] = Aixi[k] +Biui[k] + Fidi[k] + vi[k],

yi[k] = Cixi[k],

zi[k] = Dixi[k],

(21)
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Pool Cini (m
−1/2

min
) Couti (m

−1/2

min
) τi(min) γi(

m3

min
) Ki Ti Fi

1 (pool 2 of the East Goulburn) 0.01072 -0.01034 36 2330 0.585 539 47.2

2 (pool 5 of the East Goulburn) 0.01169 -0.00833 28 1210 0.679 366 43.4

3 (pool 8 of the East Goulburn) 0.01065 -0.01599 15 351 0.892 355 31.2

4 (pool 9 of the East Goulburn) 0.08457 -0.0853 1 527 1.31 26.1 3.1

TABLE I

NUMERICAL VALUES FOR PARAMETERS DESCRIBING AUTOMATED POOLS 2,5, 8 AND 9 OF THE EAST GOULBURN MAIN

IRRIGATION CHANNEL [18].
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Fig. 3. The upstream transient error propagation and amplification phenomenon.

for i = 1, 2, ..., n and k ∈ {0, 1, 2, ..., }. In the above dynamic model vi[k] = Mixi+1[k] represents

the cascade interconnection, xi ∈ Rni is the state variable of dimension ni ∈ N=̇{1, 2, 3, ...},

ui ∈ R is the reference set point, yi ∈ R and zi ∈ R are variables to be controlled, and di ∈ R

is a known off-take disturbance for the ith sub-system.

For the purpose of illustration, in this section we consider an automated irrigation channel

consisting of pools 2,5,8 and 9 of the East Goulburn main irrigation channel located in Victoria,

Australia. Numerical values for parameters describing these automated pools are given in Table

I [18].

Fig. 3 illustrates the response of this automated irrigation channel to an off-take disturbance

with the value of d̄4 = 8 m3

min
applied to the last pool (pool 9 of the East Goulburn irrigation
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channel) for the first 135 minute (note that for simulations, the desired steady state values for

water levels are set to be 1m above datum in Fig. 2 and for simulations the datum for the water

levels are moved to the desired steady state water levels).

Fig. 3 illustrates the upstream transient error propagation and amplification phenomenon due to

interplay between off-take flow disturbance and transport delay in automated irrigation channels.

At their worst, the undesirable transient characteristics can result in instability and performance

degradation due to actuator limitations. One way to mitigate such effect is to equip automated

irrigation channels with a supervisory controller that properly manages reference set points

uis of local PI controllers by solving a quadratic constrained optimal control problem [18].

To formulate this problem, we use the following augmented state space representation for the

distributed dynamic model (21).
x[k + 1] = Ax[k] +Bu[k] + Fd[k],

y[k] = Cx[k],

z[k] = Dx[k],

(22)

where

x[k] = ( x′1[k] x′2[k] ... x′n[k] )′ , u[k] = (u1[k] u2[k] ... un[k] )′ ,

d[k] = ( d1[k] d2[k] ... dn[k] )′ , y[k] = ( y1[k] y2[k] ... yn[k] )′ ,

z[k] = ( z1[k] z2[k] ... zn[k] )′ .

As the supervisory controller can have a larger time step than the time step of local PI controllers,

which is set to be T = 1 minute for simulation study, the time step for supervisory controller is

set to be ST , S ∈ N. Hence, the dynamic model for supervisory controller is obtained by taking

the model re-sampling approach, which involves holding the inputs to the system constant for

the whole new sample period, and aggregating the dynamic (22) across the new sample period,

as follows:
x[k + 1] = ASx[k] + (

∑S−1
j=0 A

S−j−1B)u[k] + (
∑S−1

j=0 A
S−j−1Fd[Sk + j]),

y[k] = Cx[k],

z[k] = Dx[k],

k = {0, 1, 2, 3, ...}.

(23)

After obtaining the re-sampled model, the number of states in the re-sampled model (23) is re-

duced while maintaining the input-output behavior using balanced truncation [23]. Consequently,
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the obtained reduced model for the supervisory controller has the following representation
x̂[k + 1] = Âx̂[k] + B̂u[k] + d̂[k],

y[k] = Ĉx̂[k],

z[k] = D̂x̂[k],

k = {0, 1, 2, 3, ...},

(24)

where d̂[k] represents the effect of known off-take disturbances on the reduced model. Now, the

supervisory controller manages reference set points uis of local PI controllers by solving the

following quadratic constrained optimal control problem [18].

min
u=(u1,...,un)

JL(x̂[0], d̂L−1
0 , r, u)

subject to (24) and

 yi[k] ∈ [Wi, Hi], ui[k] ∈ [Wi, Hi]

zi[k] ∈ [Ei, Zi]

∀i ∈ [1, n], k ∈ [0, L− 1],

(25)

where L is a measure of irrigation season length, the interval [Wi, Hi] is the admissible region

for water-levels yis and also decision variables uis, the interval [Ei, Zi] is the admissible region

for variable zi which is a measure of water flow rate, and

JL(x̂[0], d̂L−1
0 , r, u)=

n∑
i=1

L−1∑
k=0

||yi[k]− ri||2Q + ||ui[k]− ui[k − 1]||2R + ||zi[k]||2P (ui[−1] = 0).(26)

Here ||.|| denotes the Euclidean norm (i.e., ||z||2P =̇z′Pz), x̂[0] is the vector of known initial states,

d̂L−1
0 =̇{d̂[k]}k=0,1,...,L−1, where d̂[k] = ( d̂

′
1[k] . . . d̂

′
n[k] )′ is a collection of known vectors

which represent the effects of off-take disturbances, r = ( r1 . . . rn )′ is the vector of desired

steady state values for yis, and Q,P ≥ 0, R > 0 are weighting matrices. The first norm in the

cost functional (26) penalizes deviation of water levels from the corresponding desired values,

and the second norm penalizes large changes in the input vector for the local PI controllers; and

therefore, it tries to provide a smooth input trajectory. The last norm tries to minimize the input

flow rates as zis are measures of input flow rates; and therefore, it is desirable to make them as

small as possible to keep water in reservoir as much as possible.

Remark 5.1: In automated irrigation channels, uis produced by the optimization problem (25)

are the set points for the distributed PI controllers. PI controllers are tuned so that water levels

yis follow these set points. Since the ith water level yi must be within the bound yi ∈ [Wi, Hi]

and is supposed to follow the set point ui, the set point ui must be limited in the same bound

ui ∈ [Wi, Hi].
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Remark 5.2: As the optimal control problem (25) is a constrained problem and the season

length L is long, the receding horizon idea must be used to solve the constrained optimal control

problem (25). For large-scale automated irrigation channels (i.e., when n is large) the computation

overhead for solving the optimal control problem at each receding horizon using centralized

techniques is very large. As shown in [24] the computation overhead using centralized technique

is of the order of O(n4); while the overhead using the distributed method with either single-

level or two-level architecture for communication is O(n). Hence, for large-scale automated

irrigation channels, a practical way to solve the constrained optimal control problem (25) using

full computational capacity of existing local decision makers is to implement the distributed

model predictive controller with either two-level or single-level architecture for communication.

Using these controllers at each time instant k by solving a constrained optimization problem

with horizon length N << L, the set points uis for the time instant k are obtained and they are

applied to automated irrigation channels by distributed decision makers.

Remark 5.3: In automated irrigation channels, for a given vector x̂[k] of measured states at

time instant k, collection of known vectors d̂k+N−1
k =̇{d̂[j]}j=k,...,k+N−1, (N = min(N̄ , L − k))

and vector of desired steady state values for references r, the following cost functional

J(x̂[k], d̂k+N−1
k , r, u)=̇

n∑
i=1

k+N−1∑
j=k

||yi[j]− ri||2Q + ||ui[j]− ui[j − 1]||2R + ||zi[j]||2P (27)

subject to the dynamic model (24) is a quadratic function of inputs ui, i ∈ {1, 2, ..., n}, as the

dynamic model (24) for automated irrigation channels are linear. Moreover, as [Wi, Hi], [Ei, Zi]

⊂ R are closed convex sets, and linear transformations preserve closeness and convexity [17],

the inputs (i.e. decision variables) in the following constrained optimization problem, belong

to closed convex constraint sets. Hence, with g = (x̂[k], d̂k+N−1
k , r) the following optimization

problem

min
u=(u1,...,un)

J(x̂[k], d̂k+N−1
k , r, u)

subject to (24) and

 yi[j] ∈ [Wi, Hi], ui[j] ∈ [Wi, Hi]

zi[j] ∈ [Ei, Zi]

∀i ∈ [1, n], j ∈ [k, k +N − 1],

is of the form of the general optimization problem (1). Hence, the proposed distributed model

predictive control method can be used to solve the optimal control problem (25).

January 15, 2016 DRAFT



22

B. Simulation Results

To illustrate the satisfactory performance of the distributed model predictive controller with

two-level architecture for communication in attenuation of the undesired upstream transient error

propagation and amplification phenomenon, this controller is applied to the automated irrigation

channel with four pools with numerical values as given in Table I. The performance of this

controller is also compared with the performance of the distributed model predictive controller

with single-level architecture for communication [1].

In this section it is assumed that the above automated irrigation channel is subject to an

off-take disturbance with the value of d̄4 = 8 m3

min
for the first 135 minute (the first 15 time

steps of the supervisory controller). It is also assumed that x[0] = 0, r = 0, S = 9, L = 240,

N̄ = 10, [Wi, Hi] = [−0.2m, 0.2m] and [Ei, Zi] = [0, 0.753/2]. Note that by applying balanced

truncation, the reduced model has only 22 states instead of 92 states. Also, a similar method as

used in [18] is used to guarantee the recursive feasibility of DMPCs. To apply DMPC with two-

level architecture for communication, two neighborhoods are considered. The first neighborhood

includes the first and the second decision makers and the second neighborhood includes the third

and fourth decision makers.

Decision makers in different neighborhood broadcast their updated decision variables si-

multaneously without collision, e.g., using Orthogonal Frequency Division Multiple Access

(OFDMA) scheme[14]. And, within a neighborhood, decision makers exchange their updated

decision variables without collision using TDMA scheme, which allocates 2.5 second to each

decision maker to broadcast its data to all other decision makers in its neighborhood. Hence,

the communication load for each inner iterate communication is 5 second. However, for outer

iterate communication multi-hopping is required that induces communication delay such that

the outer iterate communication load is 50 second. For the simulation study, p̄ is set to be 10

and t̄ = 1. Hence, the communication overhead of the DMPC with two-level architecture for

communication is p̄ × 5 + t̄ × 50 = 10 × 5 + 1 × 50 = 100 second., and the overhead of the

DMPC with single-level architecture for communication is p̄× 50 = 500 second.

To compare the performance of DMPCs with single-level and two-level communication ar-

chitectures for communication in water level regulations, we compare their responses with com-

putational latency with their responses without computational latency for water level regulation;

because the responses of both methods for water level regulation without computational latency

are almost identical.

For simulation purposes, MATLAB quadprog.m solver is used, which is interfaced via YALMIP
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Fig. 4. The DMPC with two-level architecture for communication with computational latency of 113 second. Solid line: without

computational latency, dotted line: with latency. As is clear from this figure there is no mismatch between these two responses;

and the magnitude of transient errors between water levels and the desired values decreases as we move towards upstream pools.

This indicates that the DMPC with two-level architecture for communication attenuates the upstream transient error propagation

and amplification phenomenon.

[25] to compute the optimal controls numerically. The computer hardware is a Dell Inspiron

laptop computer, processor: Intel(R) Core (TM) i5 CPU M450 at 2.40GHz, with 32Bits operating

system. Note that the computation overhead calculation in the following simulation study captures

what calculation will be done in parallel by calculating the computation time of each decision

maker of a neighborhood in a given inner iterate update; and then choosing the computation time

of the decision maker with the largest computation time as the computation time of neighborhood

in that inner iterate.

Fig. 4 illustrates the responses of the DMPC with two-level architecture for communication

without and with considering the computational latency. As the computation overhead in average

is 13second, its computational latency in average is 113second, which is almost 2/9th of the time

step of 9minute. As is clear from Fig. 4, the response with the computational latency is the same

as the response without latency. This result is expected because the computational latency here

is almost 4 times smaller than the time step. As is clear from Fig. 4, the magnitude of transient

errors between water levels and the desired values decreases as we move towards upstream
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Fig. 5. Set-point trajectories delivered by the DMPC with two-level architecture for communication. Solid line: without

computational latency, dotted line: with latency. As is clear from this figure there is no mismatch between these two trajectories.
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Fig. 6. zis (measures of flows between pools delivered by the DMPC with two-level architecture for communication). Solid

line: without computational latency, dotted line: with latency. As is clear from this figure there is no mismatch between zis for

these two cases.
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Fig. 7. The DMPC with single-level architecture for communication with computational latency of 515 second. Solid line:

without computational latency, dotted line: with latency. This figure illustrates that the performance of the case with computational

latency (dotted line) in disturbance rejection is worst than the performance of the case without latency (solid line).

pools. This indicates that the DMPC with two-level architecture for communication attenuates

the upstream transient error propagation and amplification phenomenon. Fig. 5 illustrates the set-

point trajectories delivered by the DMPC with two-level architecture for communication; and Fig.

6 illustrates zis trajectories, which are measures of input flows (input flow = Cin
i zi) for this case.

Fig. 7 illustrates the responses of the DMPC with single-level architecture for communication

without and with considering the computational latency. Here, the average computation overhead

is 15second, and hence the computational latency in average is 515second. Fig. 7 clearly

illustrates that the performance of the case with the computational latency in disturbance rejection

is worst than the performance of the case without the computational latency. For the first pool,

the deviation of the response with computational latency from the response without latency is

up to 0.25 cm, for the second pool is up to 0.75cm, for the third pool is up to 1cm and for the

last pool is up to 1.2 cm. This results is expected because of large computational latency here.

Fig. 8 illustrates the set-point trajectories delivered by the DMPC with single-level architecture;

and Fig. 9 illustrates zis for this case. Fig. 4 and Fig. 7 illustrate that the DMPC with two-

level architecture has a performance better than the performance of the DMPC with single-

level architecture by better managing communication overhead. Fig. 10 illustrates the response
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Fig. 8. The set-point trajectories delivered by the DMPC with single-level architecture for communication. Solid line: without

computational latency, dotted line: with latency.
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Fig. 9. zis (measures of flows between pools delivered by the DMPC with single-level architecture for communication). Solid

line: without computational latency, dotted line: with latency.
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of DMPC with single-level architecture for communication without computational latency and

with computational latency of 113 second. From this figure and Fig. 4 it follows that for the

same computational latency, the response with computational latency of the DMPC with two-

level architecture for communication is better than the response of the DMPC with single-level

architecture for communication in disturbance rejection. This perhaps is due to the extra flexibility

introduced by parameter λi in the DMPC with two-level architecture for communication.

Now, for the sensitivity analysis of communication overhead and to quantify the deviation of

the response with computational latency from the ideal response without computational latency,

we introduce the sum absolute error criterion as follows: SAE =
∑4

i=1

∑SL
t=0 |ywoi (t) − ywi (t)|,

where ywoi denotes the response without computational latency and ywi the response with compu-

tational latency. For DMPC with single-level architecture and outer iterate communication load

of 1, 5, 10, 30, 50 second, the sum absolute error is 0.000091657, 14.9757, 14.6678, 13.5228,

8.1418, respectively. For DMPC with two-level architecture for communication and outer iterate

communication load of 50 second and different values for inner iterate communication, the

sum absolute error is shown in Table II. As is clear from this table, even with inner iterate

communication load of 50 second (that is, when the ratio of inner iterate communication load

versus outer iterate communication load is one) the SAE of the DMPC with two-level architecture

is much smaller than that of the DMPC with single-level architecture. Note that for this case

the communication overhead of the DMPC with two-level architecture is bigger than that of the

DMPC with single-level architecture. This indicates that in the presence of computational latency,

the response of the DMPC with two-level architecture is much closer to the ideal response

without computational latency. Fig. 11 illustrates the response of the DMPC with two-level

architecture for communication without and with computational latency (due to communication

overhead and computation overhead) when the inner iterate communication load is 50 second.

As is clear from this figure, although the communication overhead for this case is 550 second;

and hence, the computational latency is high (563 second), the response with latency is very

close to the ideal response without latency. The above analysis illustrates that for the simulated

conditions, the DMPC with two-level architecture for communication has a better performance in

disturbance rejection over whole communication overhead except in very small overhead where

the performance of two methods are almost identical.
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Fig. 10. The DMPC with single-level architecture for communication with computational latency of 113 second. Solid line:

without computational latency, dotted line: with latency.
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Fig. 11. The DMPC with two-level architecture for communication with computational latency of 563 second. Solid line:

without computational latency, dotted line: with latency.
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Inner iterate communication load (second) Communication overhead (second) SAE

1 60 0.0097

5 100 0.1955

10 150 0.2950

30 350 0.59

50 550 0.8777

TABLE II

SAE FOR DMPC WITH TWO-LEVEL ARCHITECTURE FOR COMMUNICATION WITH OUTER ITERATE COMMUNICATION LOAD

OF 50 SECOND, p̄ = 10 AND DIFFERENT VALUES FOR INNER ITERATE COMMUNICATION LOAD.

VI. CONCLUSION AND DIRECTION FOR FUTURE RESEARCH

Feasibility, convergence and optimality of the distributed optimization method of [2] that

exploits a two-level architecture for communication were mathematically proved. For an auto-

mated irrigation channel, the satisfactory performance of the distributed model predictive control

method that is based on this distributed optimization method, was illustrated and compared with

the performance of the distributed model predictive control of [1] that exploits a single-level

architecture for communication. It was illustrated that the former method has a better performance

by better managing communication overhead. For future it is interesting to address the problem

of identifying disjoint neighborhoods for a given distributed system with arbitrary topology so

that the fastest convergence rate to the optimal solution is achieved. Also, it is interesting to

compute the communication overhead for a given system and develop techniques for exchanging

information between sub-systems and neighborhoods with minimum communication overhead.

It is also interesting to study the effects of parameters πjs and λis in the quality of response.

These problems are left for future investigation.
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