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Abstract

This paper is concerned with the stability of nonlinear Lipschitz systems subject to bounded process

and measurement noises when transmission from sensor to controller is subject to distortion due to

quantization. A stabilizing technique and a sufficient condition relating transmission rate to Lipschitz

coefficients are presented for almost sure asymptotic bounded stability of nonlinear uncertain Lipschitz

systems. In the absence of process and measurement noises, it is shown that the proposed stabilizing

technique results in almost sure asymptotic stability. Computer simulations illustrate the satisfactory

performance of the proposed technique for almost sure asymptotic bounded stability and asymptotic

stability.

Index Terms

Networked control system, Lipschitz nonlinear system, uncertain dynamic system, the digital noise-

less channel.

I. INTRODUCTION

A. Motivation and Background

Recently, stabilizing a dynamic system over a communication channel subject to imperfections

(e.g., quantization distortion) has became an important problem. Some examples of systems that

are required to be stabilized over communication channels subject to imperfections are smart

drilling system using borehole telemetry via drilling string [1],[2] and distributed monitoring sys-

tem of oil fields. In these systems, transmission between sub-components (e.g., sensor, controller,
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actuator) is subject to imperfections, such as quantization distortion. Some results addressing

basic problems in state estimation and/or stability of dynamic systems over communication

channels subject to imperfections can be found in [3]-[17]. In [15] the authors addressed the

problem of state estimation of an uncontrolled noiseless nonlinear Lipschitz system over the

digital noiseless channel with asymptotically zero mean square estimation error. [16] addressed

the problem of state estimation of distributed uncontrolled Lipschitz systems subject to bounded

process and measurement noises over the packet erasure network with bounded mean absolute

estimation error; and [12] addressed the stability problem of nonlinear noiseless systems over

the digital noiseless channel.

This paper is concerned with a basic problem in the stability of nonlinear dynamic systems

subject to uncertain transmission as described in Fig. 1. The block diagram of Fig. 1 has been

considered in several research papers addressing basic problems in networked control systems,

such as [5], [12]. In this paper, the system shown in Fig. 1 is described by a nonlinear controlled

Lipschitz system subject to bounded process and measurement noises over the digital noiseless

channel. A large class of nonlinear systems, such as systems with dead zone and saturation

nonlinearities are Lipschitz. Furthermore, important class of linear systems is a special class of

Lipschitz systems. The digital noiseless channel is also a basic digital communication channel.

B. Paper Contributions

In this paper, we address the problem of almost sure bounded stability of controlled nonlinear

Lipschitz systems subject to bounded process and measurement noises when measurements from

dynamic system sampled by sensor are transmitted via the digital noiseless channel to controller

(see Fig. 1). As the sampled measurements are real valued, to transmit them over digital links,

they must be quantized and represented as a packet of binary data with a specific length (e.g., R

bits). This results in distortion in sampled measurements when they are reconstructed at controller.

That is, another source of uncertainty considered in this paper is distortion in measurements due to

quantization. Despite of these uncertainties, a stabilizing technique (which consists of an encoder,

decoder and a controller) and a sufficient condition relating transmission rate R to Lipschitz

coefficients are presented that result in almost sure asymptotic bounded stability. In the absence

of process and measurement noises, it is shown that the proposed stabilizing technique results

in almost sure asymptotic stability despite of distortion in measurements due to quantization.

The satisfactory performance of the proposed stabilizing technique for almost sure asymptotic

bounded stability and asymptotic stability is also illustrated via computer simulations.
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Fig. 1. A control system over the digital noiseless channel.

To the best of our knowledge, only the problem of the state estimation of nonlinear uncontrolled

Lipschitz dynamic systems over communication channels subject to imperfections (known as

tracking) has been addressed in the literature; and hence, the main novelty of this paper is

the stability of nonlinear noisy controlled Lipschitz systems, in addition of tracking, over the

digital noiseless channel. The problem of the state estimation of uncontrolled nonlinear Lipschitz

systems over digital links was first considered in [15]. In [15] the authors addressed the problem

of the state estimation of a noiseless uncontrolled Lipschitz system over the digital noiseless

channel subject to quantization effect. In [16] this result was extended to distributed uncontrolled

noisy Lipschitz systems over the packet erasure network.

C. Paper Organization

The paper is organized as follows: In Section II, the problem formulation is given. Section

III is devoted to the stability result. In this section, encoder, decoder, controller and a sufficient

condition for almost sure asymptotic bounded stability are presented. Simulation results are given

in Section IV; and the paper is concluded in Section V by summarizing the main contributions

of the paper.

II. PROBLEM FORMULATION

Throughout, certain conventions are used: | · | denotes the absolute value, log2(·) denotes the

logarithm of base 2 and ‘=̇’ means ‘by definition is equivalent to’. [X]i means the i-th element

of the vector X and R denotes the set of real numbers. Cartesian product is denoted by × and



A′ denotes the transpose of the matrix A. A−1 denotes the inverse of the square matrix A.

This paper is concerned with almost sure asymptotic bounded stability of nonlinear Lipschitz

dynamic systems over the digital noiseless communication channel, as shown in the block

diagram of Fig. 1. The building blocks of Fig. 1 are described below.

Dynamic System: The dynamic system is described by the following discrete time nonlinear

Lipschitz system Xt+1 = F (Xt) +BUt +Wt, X0 = ξ,

Yt = Xt + Vt,
, t ∈ N+=̇{0, 1, 2, ...}, (1)

where Xt ∈ Rn is the state of the system, n is the number of state variables and it is given,

Yt is the observation signal, the random variable ξ is the unknown initial state value, Ut ∈ Rm

is the control vector, F (·) ∈ Rn is a nonlinear continuous function with components fi(·), and

B ∈ Rn×m is such that the matrix BB′ is invertible. Throughout, it is assumed that the probability

measure associated with the initial state X0 with components X(i)
0 , i = {1, 2, ..., n}, has bounded

support. That is, for each i = {1, 2, ..., n} there exists a compact set [−L(i)
0 , L

(i)
0 ] ∈ R such that

Pr(X
(i)
0 ∈ [−L(i)

0 , L
(i)
0 ]) = 1. Also, for each i, fi(·) is Lipschitz. That is, for each fi(·) there

exists a Ki > 0 (known as Lipschitz coefficient) such that the following inequality holds for all

X = (X(1) X(2) ... X(n) )′ ∈ Rn, Y = (Y (1) Y (2) ... Y (n) )′ ∈ Rn

|fi(X)− fi(Y )| ≤ Ki(|X(1) − Y (1)|+ |X(2) − Y (2)|+ ...+ |X(n) − Y (n)|).

In the dynamic system (1), Wt ∈ Rn with the components W (i)
t , i = {1, 2, ..., n}, is the process

noise vector and Vt ∈ Rn with the components V
(i)
t , i = {1, 2, ..., n}, is the measurement

noise vector. Throughout, it is assumed that W (i)
t and V

(i)
t are uniformly distributed random

variables with supports [−ω(i), ω(i)] and [−γ(i), γ(i)], respectively (i.e., W (i)
t ∈ [−ω(i), ω(i)] and

V
(i)
t ∈ [−γ(i), γ(i)]).

Communication Channel:Communication channel between system and controller is the digital

noiseless channel with transmission rate R bits. This channel transmits a packet of binary data

with rate R bits in each channel use.

As the sampled measurements are real valued, to transmit them over the digital noiseless

channel, they must be quantized and represented as a packet of binary data with length R bits.

This is done by the encoder in the block diagram of Fig. 1. On the other hand, the decoder

reconstructs the quantized sampled measurements at the receiver. The formal description of the

encoder and decoder is given below.



Encoder: Encoder is a causal operator denoted by Zt = E(Yt) that maps the system output Yt

to channel input Zt, which is a string of binaries with length R bits.

Decoder: Decoder is a causal operator denoted by X̂t = D(Z̃t) that maps the channel output to

X̂t (the estimate of the state variable at the decoder).

Controller: Controller has the following form Ut = −B′(BB′)−1F (X̂t).

The objective of this paper is to design an encoder, decoder and a controller that result in

almost sure asymptotic bounded stability of the system (1), as defined below.

Definition 2.1: (Almost Sure Asymptotic Bounded Stability). Consider the block diagram of

Fig. 1 described by the nonlinear dynamic system (1) over the digital noiseless channel, as

described above. It is said that the system is almost sure asymptotic bounded stabilizable if

there exist an encoder, decoder, controller and a closed bounded set ∆ ⊂ Rn such that the

following property holds:

Pr( lim
t→∞

Xt ∈ ∆) = 1.

Remark 2.2: For ∆ = {0} we have almost sure asymptotic stability.

III. STABILITY RESULT

In this section, we present a sufficient condition on the transmission rate R such that using

the controller Ut = −B′(BB′)−1F (X̂t), the dynamic system (1) in the block diagram of Fig. 1

is almost sure asymptotic bounded stable. This result is shown in Theorem 3.1. To obtain this

sufficient condition in Theorem 3.1 we construct an encoder and a decoder so that under this

condition, the controller Ut = −B′(BB′)−1F (X̂t) results in almost sure asymptotic bounded

stability.

For simplicity in understanding these encoder and decoder functions, suppose the system (1)

is scalar (i.e., n = 1). At time instant t = 0, both encoder and decoder divide the interval

[−L(1)
0 − γ(1), L

(1)
0 + γ(1)] (Y (1)

0 ∈ [−L(1)
0 − γ(1), L

(1)
0 + γ(1)]) into 2R equal size non-overlapping

sub-intervals and choose the center of each sub-interval as the index of the sub-interval. Now,

upon observing Y
(1)
0 , encoder determines the sub-interval where Y (1)

0 is located and represents

the index of this sub-interval (denoted by j) by R bits; and transmit this R bits to decoder via

the digital noiseless channel. Decoder after receiving this R bits determines the index of the

sub-interval where Y
(1)
0 is located (i.e., j) and outputs Ŷ (1)

0 (= X̂
(1)
0 )= j, where Ŷ

(1)
0 is the

estimation of Y (1)
0 and X̂(1)

0 is the estimation of X(1)
0 at the end of communication link. Hence,

the decoding error for this case is bounded above by |Y (1)
0 − Ŷ (1)

0 | ≤
L
(1)
0 +γ(1)

2R
.



At time instant t = 1, encoder computes the error Y (1)
1 − Ỹ (1)

1 , where Ỹ (1)
1 = f1(X̂

(1)
0 ) + BU0

(U0 = − 1
B
f1(X̂

(1)
0 )); and both encoder and decoder divide the interval Y (1)

1 − Ỹ (1)
1 ∈ [−L(1)

1 −
γ(1), L

(1)
1 + γ(1)], where L(1)

1 = K1(
L
(1)
0 +γ(1)

2R
+ γ(1)) + ω(1) into 2R sub-intervals; and they repeat

the above procedure until decoder outputs Ŷ (1)
1 (= X̂

(1)
1 )= j + Ỹ

(1)
1 . As a result, the decoding

error is bounded above by |Y (1)
1 − Ŷ (1)

1 | ≤
L
(1)
1 +γ(1)

2R
.

By following the above procedure, X̂(1)
0 , X̂(1)

1 , X̂(1)
2 , ... are constructed; and decoding error is

bounded above by |Y (1)
t − Ŷ (1)

t | ≤
L
(1)
t +γ(1)

2R
, where

L
(1)
t =

K1

2R
L
(1)
t−1 +

K1γ
(1)

2R
+K1γ

(1) + ω(1).

Now, under the assumption of |K1

2R
| < 1, the above dynamic system for L(1)

t is stable; and hence,

L
(1)
t is asymptotically bounded. Therefore, under this assumption, using the above encoding and

decoding technique, tracking of Y (1)
t by Ŷ

(1)
t with bounded error at the end of communication

is achieved.

Now, after this instruction and simple explanation of the designed method and algorithm, we

are ready to present the main theorem of this paper.

Theorem 3.1: Consider the control system of Fig. 1 described by the nonlinear uncertain

Lipschitz system (1) over the digital noiseless channel, as described earlier. Suppose that there

exists non-negative integers R1, R2, ... , Rn that make the following matrix stable:

A=̇



K1

2R1

K1

2R2
. . . K1

2Rn

K2

2R1

K2

2R2
. . . K2

2Rn

.

.

.

Kn

2R1

Kn

2R2
. . . Kn

2Rn


. (2)

Then, using the control policy Ut = −B′(BB′)−1F (X̂t), there exists a closed bounded set

∆ ⊂ Rn such that Xt → ∆, P-a.s.; or equivalently, Pr(limt→∞Xt ∈ ∆) = 1, where ∆ =

[−L(1)
∞ , L

(1)
∞ ]× [−L(2)

∞ , L
(2)
∞ ]× · · · × [−L(n)

∞ , L
(n)
∞ ], L(i)

∞ =̇[limt→∞
∑t−1

j=0At−1−j((A+ B)γ + ω)]i.

Proof: To prove this theorem we show that the extended version of the above encoding and

decoding technique applied to the system (1) with n states along with the controller Ut =

−B′(BB′)−1F (X̂t) result in almost sure asymptotic bounded stability if the matrix (2) is stable.

Encoding and Decoding Technique: At time instant t = 0 for each i = {1, 2, ..., n} the set

[−L(i)
0 − γ(i), L

(i)
0 + γ(i)] is partitioned into 2Ri equal size, non-overlapping sub-intervals and the



center of each sub-interval is chosen as the index of that interval. For each i = {1, 2, ..., n} upon

observing Y0(= X0 + V0), the index of the sub-interval that includes Y (i)
0 is encoded into Ri

bits. Then, a packet with length R = R1 + R2 + ... + Rn bits containing information about the

initial measurement Y0 is transmitted via the channel. When the decoder receives these R bits,

for each i it identifies the index of the sub-interval where Y (i)
0 is located; and the value of this

index is chosen as Ŷ (i)
0 = X̂

(i)
0 (the estimation of Y (i)

0 and X
(i)
0 at the receiver). Therefore, the

estimation error is bounded above by |X(i)
0 − X̂

(i)
0 | ≤

L
(i)
0 +γ(i)

2Ri
+ γ(i).

At time instant t = 1, from the Lipschitz continuity assumption, for each i = {1, 2, ..., n}, an

upper bound on X(i)
1 is calculated as follows

|X(i)
1 | = |fi(X0) + [BU0]i +W

(i)
0 | = |fi(X0)− fi(X̂0) +W

(i)
0 |

≤ Ki(|X(1)
0 − X̂

(1)
0 |+ ...+ |X(n)

0 − X̂
(n)
0 |) + ω(i) = ω(i) +Ki

n∑
j=1

(
L
(j)
0 + γ(j)

2Rj
+ γ(j))=̇L

(i)
1 .

Then, similar to the previous time instant, at this time instant, for each i = {1, 2, ..., n}, the

interval [−L(i)
1 − γ(i), L

(i)
1 + γ(i)] is partitioned into 2Ri equal size, non-overlapping sub-intervals

and the center of each sub-interval is chosen as the index of that interval. Having that, for each

i, upon observing Y1(= X1 +V1), the index of the sub-interval that includes Y (i)
1 is encoded into

Ri bits. Then, R = R1 + R2 + ... + Rn bits containing information about Y1 is transmitted via

the channel. When these R bits are received, for each i the decoder identifies the index of the

sub-interval that contains Y (i)
1 ; and the value of this index is chosen as Ŷ (i)

1 = X̂
(i)
1 . Therefore,

the estimation error is bounded above by |X(i)
1 − X̂

(i)
1 | ≤

L
(i)
1 +γ(i)

2Ri
+ γ(i).

By following a similar procedure, as described above, the sequence X̂0, X̂1, X̂2, X̂3, ..., are

constructed at the decoder.

Now, we must show that using the above coding technique and controller Ut = −B′(BB′)−1F (X̂t),

there exists a closed and bounded set ∆ ⊂ Rn such that Pr(limt→∞Xt ∈ ∆) = 1 provided

the matrix (2) is stable. To achieve this goal, choose any rates R1, R2, ..., Rn that make the

matrix A stable. Now, using the above encoding and decoding technique and the controller

Ut = −B′(BB′)−1F (X̂t), we have

|X(i)
0 | ≤ L

(i)
0

|X(i)
1 | ≤ ω(i) +Ki

n∑
j=1

(
L
(j)
0 + γ(j)

2Rj
+ γ(j))=̇L

(i)
1

|X(i)
2 | ≤ ω(i) +Ki

n∑
j=1

(
L
(j)
1 + γ(j)

2Rj
+ γ(j))=̇L

(i)
2



·

·

·

|X(i)
t | ≤ ω(i) +Ki

n∑
j=1

(
L
(j)
t−1 + γ(j)

2Rj
+ γ(j))=̇L

(i)
t .

Now, let

Zt=̇



L
(1)
t

L
(2)
t

.

.

.

L
(n)
t


.

Then, from the recursive equation L(i)
t = ω(i) +Ki

∑n
j=1(

L
(j)
t−1+γ

(j)

2Rj
+γ(j)), which defines, almost

surely, an upper bound on X(i)
t , we have the following dynamic model for the vector Zt:

Zt+1 = AZt + (A+ B)γ + ω, (3)

where

Z0 =



L
(1)
0

L
(2)
0

.

.

.

L
(n)
0


, B=̇



K1 K1 . . . K1

K2 K2 . . . K2

.

.

.

Kn Kn . . . Kn


, γ=̇



γ(1)

γ(2)

.

.

.

γ(n)


, ω=̇



ω(1)

ω(2)

.

.

.

ω(n)


.

Now, from the well known stability results of linear time-invariant systems, for the linear time-

invariant dynamic system (3), it follows that all components of the vector Zt are asymptotically

bounded if and only if the matrix A is stable. Hence, as we chose the rates R1, R2, ..., Rn

such that the matrix A is stable and as Z(i)
t defines, almost surely, an upper bound on X(i)

t , the

dynamic system (1) is almost sure asymptotic bounded stable as follows: Xt → ∆, P-a.s., where

∆ = [−L(1)
∞ , L

(1)
∞ ]×[−L(2)

∞ , L
(2)
∞ ]×···×[−L(n)

∞ , L
(n)
∞ ], L(i)

∞=[limt→∞
∑t−1

j=0At−1−j((A+B)γ+ω)]i.

We have the following two propositions as a direct result of the above theorem.



Proposition 3.2: For the noiseless dynamic system, i.e., γ(i) = ω(i) = 0, we have almost sure

asymptotic stability as follows Xt → 0, P-a.s., provided the rates R1, R2, ..., Rn make the matrix

A stable.

Proof: As the rates R1, R2, ..., Rn make the matrix A stable, from the Theorem 3.1 it fol-

lows that Xt → ∆, P-a.s., where ∆ = [−L(1)
∞ , L

(1)
∞ ] × [−L(2)

∞ , L
(2)
∞ ] × · · · × [−L(n)

∞ , L
(n)
∞ ],

L
(i)
∞=[limt→∞

∑t−1
j=0At−1−j((A + B)γ + ω)]i. Now, as for each i = {1, 2, ..., n}, it is assumed

that γ(i) = ω(i) = 0, we have
∑t−1

j=0At−1−j((A+ B)γ + ω) = 0; and hence, Xt → 0, P-a.s.

Proposition 3.3: Consider the control system of Fig. 1 described by the scalar version of the

nonlinear uncertain Lipschitz system (1) over the digital noiseless channel with rate R > log2K1,

where K1 > 0 is the Lipschitz coefficient (i.e., |f1(X) − f1(Y )| ≤ K1|X − Y |, ∀X, Y ∈ R).

Then, using the proposed encoding and decoding technique and Ut = − 1
B
f1(X̂

(1)
t ), there exists

the set ∆ = [−((K1

2R
+ K1)γ

(1) + ω(1)) 1

1−K1
2R

, ((K1

2R
+ K1)γ

(1) + ω(1)) 1

1−K1
2R

] such that X(1)
t → ∆,

P-a.s.; or equivalently, Pr(limt→∞X
(1)
t ∈ ∆) = 1.

Proof: For the scalar system, the matrix A is reduced to A = ( K1

2R
), which is stable for any rate

R > log2K1. Hence, as we assumed that R > log2K1, it follows from the Theorem 3.1 that

Xt → ∆, P-a.s., where ∆ = [−L(1)
∞ , L

(1)
∞ ], L(1)

∞ = limt→∞
∑t−1

j=0At−1−j((A + B)γ(1) + ω(1)) =

((K1

2R
+K1)γ

(1) + ω(1)) 1

1−K1
2R

. This completes the proof.

Remark 3.4: i) From the specific structure of the matrix A it follows that the eigenvalues of

this matrix are: 0, 0, ..., 0, K1

2R1 + K2

2R2
+ ... + Kn

2Rn . Hence, a sufficient condition on the rates Ris

for the stability using the proposed stabilizing technique is the following condition:

Ri > max{0, log2Ki}, ∀i ∈ {1, 2, ..., n}. (4)

ii) In general, the weaker condition

R ≥
∑
i;Ki>1

log2Ki (5)

does not imply the stronger condition (4). However, for those cases that the weaker condition

(5) implies the stronger condition (4) (e.g., this is the case for K1 = 5 and K2 = 7), we can

conclude that the condition (5) is also a sufficient condition for stability.

iii) For linear time-invariant noiseless systems with eigenvalues λi(A)s (A is the system matrix)

over the packet erasure channel with rate R bits (which includes the digital noiseless channel

as a special case), it is shown in [17] that the condition (6) on rates R1, R2, ..., Rn (R =

R1 +R2 + ...+Rn) is a sufficient condition for almost sure asymptotic stability

Ri > max{0, log2 |λi(A)|}, ∀i ∈ {1, 2, ..., n}. (6)



Furthermore, independent of the choice of encoder, decoder and controller, the following condi-

tion, known as the eigenvalues rate condition, is a necessary condition for almost sure asymptotic

stability:

R ≥
∑

i;|λi(A)|>1

log2 |λi(A)|. (7)

In general, the eigenvalues rate condition does not imply the stronger condition (6). But, for

those cases that the eigenvalues rate condition implies the stronger condition (6) (e.g., this is

the case for the system matrix A =

(
11 8

−3 1

)
), in [17] it is concluded that the eigenvalues

rate condition (7) is a necessary and sufficient condition (a tight bound on transmission rate R)

for almost sure asymptotic stability of linear time-invariant noiseless systems over the packet

erasure channel.

iv) From the above remarks it follows that for linear time-invariant noiseless systems over the

digital noiseless channel, the condition (5) is a necessary and sufficient condition (a tight bound

on transmission rate) for almost sure asymptotic stability if Ki = |λi(A)| and the eigenvalues

rate condition implies the stronger condition (6).

To the best of our knowledge, similar works to this work were previously reported in [15] and

[16], where they addressed only the problem of tracking states of uncontrolled Lipschitz systems

over the digital noiseless and the packet erasure channels, respectively. Note that the digital

noiseless channel is a special case of the packet erasure channel when the erasure probability

is zero. In [15] the authors considered noiseless uncontrolled Lipschitz systems and presented

a sufficient condition for mean square asymptotic tracking, in which for the scalar system this

condition is reduced to the condition found in this paper for tracking (i.e., |K1

2R
| < 1). In [16]

the authors addressed the problem of tracking of a distributed system of uncontrolled Lipschitz

distributed noisy sub-systems over the packet erasure network. For mean absolute tracking, which

is a weaker notion for tracking than almost sure notion used in this paper, they found a sufficient

condition, which for the special case of single sub-system, is reduced to the condition found in

this paper.

IV. SIMULATION RESULTS

In this section, we illustrate the satisfactory performance of the proposed encoder, decoder and

controller for almost sure asymptotic bounded stability and asymptotic stability using computer

simulations.
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Fig. 2. The state trajectories without control inputs.
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Fig. 3. The state trajectories for (R1, R2)= (4, 4). Dashed lines identify the boundaries of the interval [−44
8

, 44
8
].

Define the nonlinear Lipschitz functions sat(·) and deadz(·) as follows:

sat(x)=̇


30, x ≥ 10

3x, −10 < x < 10

−30, x ≤ −10

deadz(x)=̇


2(x− 1), x ≥ 1

0, −1 < x < 1

2(x+ 1), x ≤ −1
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Fig. 4. The control trajectories for (R1, R2)= (4, 4).

Now, suppose the control system of Fig. 1 is described by the following coupled nonlinear

system. 
X

(1)
t+1 = deadz(X

(1)
t + 3X

(2)
t ) + U

(1)
t +W

(1)
t

Y
(1)
t = X

(1)
t + V

(1)
t

X
(2)
t+1 = sat(2X

(1)
t +X

(2)
t ) + U

(2)
t +W

(2)
t

Y
(2)
t = X

(2)
t + V

(2)
t

(8)

Here, X(1)
0 , X

(2)
0 ∈ [−20, 20] are unknown initial states and W

(i)
t and V

(i)
t are uniformly dis-

tributed random variables with the support [−0.1, 0.1] (i.e., W (i)
t , V

(i)
t ∈ [−0.1, 0.1]).

Fig. 2 illustrates the state trajectories of the system (8) when U
(1)
t = U

(2)
t = 0. As is clear

from Fig. 2, without control inputs, the system is unstable.

To stabilize this system, the control vector is set to be Ut =

(
U

(1)
t

U
(2)
t

)
, U (1)

t = −deadz(X̂
(1)
t +

3X̂
(2)
t ), U (2)

t = −sat(2X̂(1)
t + X̂

(2)
t ). For this system, the Lipschitz coefficients K1, K2 are

determined as follows:

|deadz(X(1) + 3X(2))− deadz(Y (1) + 3Y (2))| ≤ 2|X(1) + 3X(2) − Y (1) − 3Y (2)|

= 2|(X(1) − Y (1)) + 3(X(2) − Y (2))|

≤ 2|X(1) − Y (1)|+ 6|X(2) − Y (2)|



≤ 6(|X(1) − Y (1)|+ |X(2) − Y (2)|).

Hence, K1 = 6. Note that the first inequality above follows from the definition of deadz(.). For

K2 similarly, we have:

|sat(2X(1) +X(2))− sat(2Y (1) + Y (2))| ≤ 3|2X(1) +X(2) − 2Y (1) − Y (2)|

= 3|2(X(1) − Y (1)) + (X(2) − Y (2))|

≤ 6|X(1) − Y (1)|+ 3|X(2) − Y (2)|

≤ 6(|X(1) − Y (1)|+ |X(2) − Y (2)|).

Hence, K2 = 6.

Consequently, from Theorem 3.1 it follows that A =

(
6

2R1

6
2R2

6
2R1

6
2R2

)
; and as the eigenvalues of

the matrix A are 0 and 6( 1
2R1

+ 1
2R2

), the rates (R1, R2) that make the matrix A stable while the

transmission rate R = R1 +R2 is minimum, are (R1, R2)= (3, 5), (5, 3), (4, 4), in which for this

system we choose (R1, R2) = (4, 4). For these rates, L(i)
∞ , i = 1, 2, are calculated as follows:

t−1∑
j=0

At−1−j((A+ B)γ + ω) = (A+ B)γ + ω +
t−2∑
j=0

At−1−j((A+ B)γ + ω)

=

(
11
8

11
8

)
+

t−2∑
j=0

(
3

8
)t−1−j

(
2t−1−j−1 2t−1−j−1

2t−1−j−1 2t−1−j−1

)(
11
8

11
8

)

=

(
Et

Et

)
,

Et=̇
11

8
+

t−2∑
j=0

(
3

8
)t−1−j

11

4
2t−1−j−1 =

11

8
+

11

8
3(1− (

3

4
)t−1),

and hence, L(i)
∞ = limt→∞Et = 44

8
.

Fig. 3 illustrates the state trajectories of the system (8) and Fig. 4 illustrates the control

trajectories when the proposed encoder, decoder and controller are used with rates (R1, R2) =

(4, 4) (R = 8 bits). As is clear from Fig. 3 by increasing time, the state trajectories of the

system enter to the interval [−44
8
, 44

8
] and stay there despite of uncertainties in dynamic model

and distortion due to quantization.

We can shrink the close bounded set ∆ ⊂ R2 by choosing larger rates. For example, for

(R1, R2) = (6, 6), L(i)
∞ = 1.6231, i = 1, 2. Fig. 5 illustrates the state trajectories for this case.

Fig. 6 illustrates the state trajectories of the system when the proposed encoder, decoder and
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Fig. 5. The state trajectories for (R1, R2)= (6, 6). Dashed lines identify the boundaries of the interval [−1.6231, 1.6231].

controller with rates (R1, R2)= (4, 3) (R = 7 bits) is used. As is clear from Fig. 6, for these

rates, the proposed stabilizing technique is not able to stabilize the system. This result is expected

as the rates (R1, R2)= (4, 3) do not make the matrix A stable.

Fig. 7 illustrates the state trajectories of the system when W
(i)
t = V

(i)
t = 0, i = {1, 2} and

(R1, R2) = (4, 4). As is clear from Fig. 7 by increasing time, the state trajectories, as expected

from the Proposition 3.2, converge to zero.

V. CONCLUSION

This paper was concerned with the stability of nonlinear Lipschitz systems subject to bounded

process and measurement noises when transmission from sensor to controller is subject to

quantization distortion. A stabilizing technique and a sufficient condition relating transmission

rate R to Lipschitz coefficients Kis were presented for almost sure asymptotic bounded stability

of nonlinear uncertain Lipschitz systems. It was shown that in the absence of process and

measurement noises, the proposed stabilizing technique results in almost sure asymptotic stability.

Furthermore, it was illustrated via computer simulations that the proposed stabilizing technique

has satisfactory performance for almost sure asymptotic bounded stability and asymptotic sta-

bility.

For future, it is interesting to also consider the effects of random packet dropout in transmission

from sensor to controller on almost sure asymptotic bounded stability of nonlinear uncertain
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Fig. 6. The state trajectories for (R1, R2)= (4, 3).
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Fig. 7. The state trajectories for (R1, R2)= (4, 4) and W
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t = V
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t = 0.

Lipschitz systems. It is also interesting to relax the assumption made on the matrix B.
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