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New Coding Scheme for the State Estimation and Reference Tracking

of Nonlinear Dynamic Systems over the Packet Erasure Channel

(IoT): Applications in Tele-operation of Autonomous Vehicles

Ali Parsa and Alireza Farhadi

Abstract

This paper presents a new technique for the state estimation and reference tracking of nonlinear dynamic systems over the

packet erasure channel, which is an abstract model for transmission via the Internet, WiFi wireless network and ZigBee modules.

A new encoder and decoder for real time state estimation of nonlinear dynamic systems at the end of communication link when

the measurements are sent through the limited capacity erasure channel, are presented. Then, using the available results from

control theory, a controller for reference tracking and hence the stability of the system is also designed. That is, for nonlinear

systems, almost sure asymptotic state estimation and reference tracking techniques including an encoder, decoder and a controller

are presented. The satisfactory performances of the proposed state estimation and control techniques are illustrated via computer

simulations by applying the proposed techniques on the unicycle model, which represents the dynamics of autonomous vehicles.

Keywords- Nonlinear dynamic system, the packet erasure channel, stability, reference tracking, IoT, the unicycle model.

I. INTRODUCTION

A. Motivation and Background

In recent years, we are witnessing the exponential growth of the Internet of Things (IoT) in different areas including

medical and health care, transportation including the tele-operation of autonomous vehicles, building and home automation,

manufacturing, agriculture, energy management, environmental monitoring, etc. This has been facilitated by inventing the

ZigBee communication modules. In IoT applications, we deal with the measurement and control of dynamic systems using

ZigBee communication modules; or we deal with the measurement and control of dynamic systems over the Internet or

WiFi wireless communication networks. This type of communications can be modeled by the packet erasure channel with
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feedback acknowledgment. IoT is a fast growing field. This has motivated us to address the problem of measurement and

control of nonlinear dynamic systems over the packet erasure channel with applications in the tele-operation of autonomous

vehicles. Thus, in this paper we focus on IoT with applications in autonomous vehicles. In recent years, the tele-operation of

autonomous vehicles (including drones, road vehicles and under water autonomous vehicles) is also in the sharp attention of

research communities due to its vast applications in aerial and under water photography, shipping and delivering, geographical

mapping, disaster management, precision agriculture, search and rescue, wildlife monitoring, etc. This has also motivated us to

illustrate an application of our theoretical development in the important area of measurement and control of nonlinear dynamic

systems over the packet erasure channel in the tele-operation of autonomous vehicles.

Research on real time state estimation at the end of communication links and stability over communication channels subject

to imperfections, e.g., limited bit rate, random packet dropout (which is the case in IoT), is concerned with situations involving

a dynamic system controlled over a communication link subject to imperfections, as shown in the block diagram of Fig. 1.

Fig. 1 illustrates a basic block diagram considered in the literature for studying the problems of state estimation and stability

subject to communication imperfections. This basic block diagram has been considered in many research papers (e.g., [1]-

[7]). In this block diagram there is a communication link subject to imperfections from sensors to remote controller; while

the communication from remote controller to system is perfect. This block diagram can correspond to the tele-operation

system of micro autonomous vehicles. As micro autonomous vehicles are subject to limited capacity on - board batteries, the

communication from vehicle to remote base station, where the remote controller is located must be performed with minimum

possible transmission power in order to increase the life time of the on - board batteries. Therefore, in the block diagram of

Fig. 1 the communication from dynamic system to remote controller is subject to communication imperfections (limited bit rate

and packet dropout). On the other hand, as the base station can be supplied with high power, the communication from remote

controller to dynamic system in the block diagram of Fig. 1 can be assumed to be without imperfections. Thus, in the block

diagram of Fig. 1, dynamic system and encoder can have access to control signal. The limitation on transmission capacity

(also refereed to as bit rate) results in distortion on measurements that must be compensated by designing proper encoder and

decoder for real time reliable data reconstruction of measurements at the end of communication link. Questions of this kind are

motivated by future generation of mobile communications, such as 5G and tactile Internet that are explicitly intended to meet

latency requirements for control applications [8],[9]. One of the main features of these applications is that the huge numbers of

communicating devices are connected through a shared media; and therefore, in these applications information transfer among

devices are subject to limited capacity constraint.

In the literature, many works on controlling dynamic systems over the packet erasure channel are concerned with the



3

state estimation and stability of linear dynamic systems over the packet erasure channel (e.g., [1], [2], [10]), in which the

transmission of information in addition of random dropout is subject to quantization error imperfection. Over the real erasure

channel, in which the transmission of information is only subject to random dropout, the state estimation and/or stability

problems of nonlinear dynamic systems have been addressed in a few papers (e.g., [11], [12], [13], [14], [15] [16]). However,

few references (e.g., [17], [18]) are concerned with the stability or state estimation of nonlinear dynamic systems over the packet

erasure channel. In [18] the problem of reference tracking, stability and state estimation of nonlinear dynamic systems over

the packet erasure channel, with applications in the tele-operation of autonomous vehicles, have been addressed by extending

the classical linearization method and using linear controllers and a coding scheme for state estimation of linearized systems.

B. Paper Contributions

This paper addresses the problems of state estimation and reference tracking (and hence stability) of nonlinear dynamic

systems over the packet erasure channel with feedback acknowledgment, as it is shown by the block diagram of Fig. 1. For

the state estimation and reference tracking of the tele-operated system of Fig. 1, which can correspond to the tele-operation

system of autonomous vehicles over WiFi or ZigBee, a new nonlinear encoder and decoder for the state estimation of nonlinear

dynamic systems by remote controller are presented when measurements are sent through the packet erasure channel subject to

random packet dropout and limited bit rate. Then, using the classical control theory tools, a nonlinear controller for reference

tracking and hence the stability of the system is designed. That is, for nonlinear dynamic systems, an almost sure asymptotic

state estimation and reference tracking techniques including an encoder, decoder and a controller are presented. It is shown

that the proposed techniques result in almost sure asymptotic state estimation and reference tracking over the packet erasure

channel. The satisfactory performances of the proposed techniques are also illustrated via computer simulations by applying

these techniques on the unicycle model, which represents the dynamics of autonomous vehicles. By presenting a new nonlinear

coding scheme and controller, this paper extends the previous results on reference tracking, stability and state estimation of

nonlinear dynamic systems over the packet erasure channel. In particular, in [18] the same authors have presented a technique for

state estimation, reference tracking and stability of nonlinear dynamic systems over the packet erasure channel with applications

in tele-operation of autonomous vehicles, where by transmitting with less bits, a better performance can be obtained. However,

the technique presented in [18] requires frequent linearization of the nonlinear system and transmission with variable bit rates,

where it may not be implementable for some dynamics (e.g., fast dynamics). That is, the proposed nonlinear coding scheme

and controller in this paper are implementable with a fixed bit rate to a larger class of nonlinear systems including systems

subject to uncertainty.
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Fig. 1. A dynamic system controlled over the packet erasure channel with feedback acknowledgment

C. Paper Organization

The paper is organized as follows. Section I was devoted to Introduction. In Section II, the problem formulation is presented.

Section III is devoted to the design of a proper encoder, decoder and a controller for state estimation and reference tracking

of nonlinear dynamic systems over the packet erasure channel. Section IV is devoted to the simulation results for the unicycle

model. Finally, the paper is concluded by summarizing the contributions of the paper and direction for future research in

Section V.

II. PROBLEM FORMULATION

Throughout, certain conventions are used: | · | denotes the absolute value, ‖ · ‖ the Euclidean norm and V ′ denotes the

transpose of vector/matrix V . A−1 and det(A) denote the inverse and determinant of a square matrix A, respectively. diag{}

denotes the diagonal matrix. ’ .=’ means ’by definition is equivalent to’ and Zt
.
= (Z1, Z2, ..., Zt). R denotes the set of real

numbers and N+
.
= {0, 1, 2, 3, ...}. Also, N(p, q) denotes the Gaussian distribution with mean p and covariance q, 0 the zero

vector/matrix and In denotes n by n identity matrix. [V ]i means the ith element of the vector V .

This paper is concerned with almost sure asymptotic state estimation and reference tracking of nonlinear systems over the

packet erasure channel, as is shown in the block diagram of Fig. 1. The building blocks of Fig. 1 are described below:

Dynamic System: The dynamic system is described by the following nonlinear discrete time system:
Xt+1 = F (Xt) +BUt

Yt = Xt

(1)

where t ∈ N+ is the time instant, F (Xt) =

[
f1(Xt) f2(Xt) ... fn(Xt)

]′
∈ Rn is a continues nonlinear function,

Xt =

[
x

(1)
t x

(2)
t ... x

(n)
t

]′
∈ Rn is the vector of states of the system, Yt ∈ Rn is the observation signal, Ut ∈ Rq is the
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control signal and B =



b1

b2

.

.

.

bn



∈ Rn×q , where bis are the row vectors with the dimension 1 by q. BB′ is either invertible

or singular. If it is singular, we use the singular value decomposition and pseudo inverse to estimate B′(BB′)−1, as follows:

BB′ = UΣV ; Σ = diag{σ1, σ2, ..., σm, 0, ..., 0}, m < n ⇒ (BB′)−1 = V −1Σ∗U−1; Σ∗ = diag{ 1
σ1
, 1
σ2
, ..., 1

σm
, 0, ..., 0}.

It is also assumed that B 6= 0 and when F (Xt) = AXt, the pair (A,B) is controllable. Throughout, it is assumed that the

probability measure associated with the initial state X0 with components x(i)
0 , i = {1, 2, ..., n}, has bounded support. That is,

for each i ∈ {1, 2, ..., n} there exists a compact set [−L(i)
0 , L

(i)
0 ] ∈ R such that Pr(x

(i)
0 ∈ [−L(i)

0 , L
(i)
0 ]) = 1. Note that X0 is

unknown for decoder and controller ; but it is known for the encoder as the dynamic system is fully observed and the encoder

is co-located with the dynamic system and hence it has access to the sensor outputs.

Communication Channel: Communication channel between system and controller is the packet erasure channel with

feedback acknowledgment. It is a digital channel that transmits a packet of binary data with the limited R bits length at each

channel use. The channel input and output alphabets are denoted by Z and Z̃ , respectively. Let Zt denote the channel input

at time instant t ∈ N+, which is a packet of binary data with length R bits containing information bits, also Z̃t denote the

corresponding channel output. Let also e denote the erasure symbol. Then,

Z̃t =


Zt with probability 1− α

e with probability α

(2)

That is, this channel erases a transmitted packet with the probability α. Throughout, it is assumed that the erasure probability

α is known a priori. In the channel considered in this paper, there are feedback acknowledgments from receiver to encoder.

That is, if a transmission is successful, an acknowledgment bit is sent from receiver to encoder indicating that the transmission

was successful. The packet erasure channel with feedback acknowledgment is an abstract model for the commonly used data

transmission technologies, such as the Internet, WiFi and ZigBee. The capacity of this channel is (1 − α)R bits/time step

provided this channel transmits the information about each measurement at each channel use.

To compensate the imperfections on the received measurements which are due to random packet dropout and distortion

caused by the limitation on channel capacity, we need to use a proper encoder and decoder. Encoder and decoder considered



6

in this paper have the following general description.

Encoder: Encoder is a causal operator denoted by Zt = E(Yt, Z̃
t−1, U t−1) that maps the system output Yt (by the knowledge

of the past channel outputs and control signal) to the channel input Zt, which is a string of binaries with length R.

Decoder: Decoder is a causal operator denoted by X̂t = D(Z̃t, U t−1) that maps the channel outputs to X̂t, which is the

estimate of the state variables at decoder.

Controller: Controller has the following structure Ut = −B′(BB′)−1(F (X̂t)−Rt+1) where Rt+1 is the reference signal.

Note that for the stability purposes, we set Rt+1 = 0.

The objective of this paper is to design an encoder, decoder and a controller that result in almost sure asymptotic state

estimation and reference tracking (and hence stability) of the system (1), as defined below:

Definition 2.1: (Almost Sure Asymptotic State Estimation): Consider the block diagram of Fig. 1 described by the nonlinear

dynamic system (1) over the packet erasure channel, as described above. It is said that the states are almost sure asymptotically

estimated if there exist an encoder and a decoder such that the following property holds: Pr(limt→∞ ‖Xt − X̂t‖ = 0) = 1.

Definition 2.2: (Almost Sure Asymptotic Reference Tracking): Consider the block diagram of Fig. 1 described by the

nonlinear dynamic system (1) over the packet erasure channel, as described above. It is said that the system is almost sure

asymptotically track the reference signal Rt ∈ Rn if there exist an encoder, decoder and a controller such that the following

property holds: Pr(limt→∞ ‖Xt −Rt‖ = 0) = 1.

Note that almost sure asymptotic stability is a special case of the reference tracking with Rt = 0. That is,

Definition 2.3: (Almost Sure Asymptotic Stability): Consider the block diagram of Fig. 1 described by the nonlinear dynamic

system (1) over the packet erasure channel, as described above. It is said that the system is almost sure asymptotically stable

if there exist an encoder, decoder and a controller such that the following property holds: Pr(limt→∞ ‖Xt‖ = 0) = 1 for

Rt = 0.

III. ENCODER, DECODER AND CONTROLLER

In this section, we are concerned with the dynamic system (1). We first present an encoder, decoder and a sufficient condition

on the length of transmitted packets R, under which the states of the system almost sure asymptotically are estimated at the end

of communication link. To achieve this goal and for the simplicity of presentation, we first suppose that F (X) in (1) is strictly

monotone and scalar function; then, we generalize the proposed coding scheme to more general form of F (X). Subsequently,

we show that using the proposed structure for the controller, the reference tracking and stability are also achieved.
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After observing 𝑿𝟎,the encoder identifies the sub-interval where 𝑿𝟎  lives in 

and encodes its index, 𝜸𝒋𝟎 , by 𝑹 bits and transmits it to the decoder. 

Encoder and decoder fix a rate R that satisfies the condition (5). Then, they partition the 

interval 0 0
[ ( ), ( )]F L F L  into 𝟐𝑹 equal sized, non-overlapping sub-intervals and choose the  

inverse (𝑭−𝟏()) of the center of each sub-interval as the index of the interval. 

 

 𝑋̂0 = 𝛾𝑗0 

 

𝑋̂0 = 𝐹−1(
𝐹(−𝐿0) + 𝐹(𝐿0)

2
) 

For 𝒕 ≥ 𝟏,  the encoder and decoder defines the box [−𝑳𝒕, 𝑳𝒕] where 

1 1
ˆ( )t t tX F X BU    lives in. Then, they partition the interval [𝑭(−𝑳𝒕 + 𝑭(𝑿̂𝒕−𝟏) +

𝑩𝑼𝒕−𝟏), 𝑭(𝑳𝒕 + 𝑭(𝑿̂𝒕−𝟏) + 𝑩𝑼𝒕−𝟏)] into 𝟐𝑹 equal sized, non-overlapping sub-

intervals and choose the inverse of the center of each sub-interval as the index of 

the interval. 

Up on observing 1 1
ˆ( )t t tX F X BU   the encoder identifies the sub-interval where 

1 1
ˆ( )t t tX F X BU     lives in and encodes its index, 𝜸𝒋𝒕 , by 𝑹 bits and transmits it 

to the decoder. 

 

 𝑋̂𝑡 = 𝛾𝑗𝑡 

 

𝑋̂𝑡 = 𝐹(𝑋̂𝑡−1) + 𝐵𝑈𝑡−1 

Fig. 2. The proposed coding algorithm for the scalar case

A. Encoder and Decoder: Scalar Case

First, consider the dynamic system (1) with the strictly monotone (e.g., increasing) and scalar function F (X) with continuous

first derivative; and suppose that Xt, Ut ∈ R (n, q = 1). We present in this section an encoder, a decoder and a sufficient

condition on the length of transmitted packets R, under which the states of the system almost sure asymptotically are estimated

at the end of communication link. The proposed coding algorithm for the scalar case is depicted in Fig. 2 and it works as

follows:

We fix the transmission rate R so that is satisfies the condition (5). At the time instant t = 0, we notice that X0 ∈ [−L0, L0].

The encoder and decoder then partition the interval [F (−L0), F (L0)] into 2R equal sized, non-overlapping sub-intervals. Let us

denote the center of each sub-interval by η0, η1, ..., η2R−1 (see Fig. 3). Then, the projection of ηis in the X-axes is computed and

denoted by γ0 = F−1(η0), γ1 = F−1(η1), ..., γ2R−1 = F−1(η2R−1), where F−1(.) is the inverse function of F (.) (see Fig. 3).

Subsequently, the index of the sub-interval that includes X0 (e.g., γj0 where j0 ∈ {0, 1, ..., 2R−1}) is encoded into R bits and

transmitted to the decoder through the packet erasure channel. If the decoder receives this R bits successfully, it identifies the
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Fig. 3. Equal sized, non-overlapping sub-intervals for encoding with the rate R = 2

index of the sub-interval where X0 lives in; and the value of this index is chosen as X̂0 (e.g., γj0 where j0 ∈ {0, 1, ..., 2R−1}).

But if erasure occurs, then X̂0 = F−1(F (L0)+F (−L0)
2 ). At the time instant t = 1, using feedback acknowledgment, the encoder

can compute X̂0; and therefore, it encodes X1 − F (X̂0) − BU0. To encode this signal, the interval [−L1, L1] is computed

by the encoder and decoder as follows: Let ˆ̃X1 = F (X̂0) + BU0 be the reconstruction of X1 at the encoder, then if the

packet has been received successfully at the time instant t = 0, the decoding error at the encoder is bounded above by

|X1 − ˆ̃X1| = |F (X0)− F (X̂0)| ≤
|F (L0)−F (−L0)|

2

2R ; and for the other case, |X1 − ˆ̃X1| = |F (X0)− F (X̂0)| ≤ |F (L0)−F (−L0)|
2 .

Hence, |X1− ˆ̃X1| = |X1−F (X̂0)−BU0| = |F (X0)+BU0−F (X̂0)−BU0| = |F (X0)−F (X̂0)| ≤M0
|F (L0)−F (−L0)|

2

.
= L1.

Then, similar to the previous case, encoder and decoder partition the interval [F (−L1 +F (X̂0)+BU0), F (L1 +F (X̂0)+BU0)]

into 2R equal sized, non-overlapping sub-intervals and the inverse of the center of each sub-interval is chosen as the index

of that interval. When the encoder observes the signal X1 − F (X̂0) − BU0, the index of the sub-interval that includes

X1 − F (X̂0) − BU0 (e.g., γj1 where j1 ∈ {0, 1, ..., 2R − 1}) is encoded into R bits and transmitted to the decoder through

the packet erasure channel. Then, the decoder constructs X̂1 as follows:

X̂1 =


γj1, Pr(M1 = 1

2R ) = 1− α

F (X̂0) +BU0, Pr(M1 = 1) = α

(3)

Consequently, the decoding error is bounded above by |X1 − X̂1| ≤ L1. For the time instant t = 2, the decoding error at the

encoder is bounded above by |X2− ˆ̃X2| = |X2−F (X̂1)−BU1)| = |F (X1) +BU1−F (X̂1)−BU1| = |F (X1)−F (X̂1)| ≤

M1
|F (L1+∆0)−F (−L1+∆0)|

2

.
= L2; where ∆0

.
= F (X̂0) +BU0 and M1 =


1

2R , Pr(M1 = 1
2R ) = 1− α

1, Pr(M1 = 1) = α

.

Similarly, for the rest of time instants t > 1, the encoder encodes Xt − F (X̂t−1) − BUt−1. To encode this signal, the
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interval [−Lt, Lt] is chosen as follows:|Xt− ˆ̃Xt| = |Xt−F (X̂t−1)−BUt−1)| = |F (Xt−1) +BUt−1−F (X̂t−1)−BUt−1| =

|F (Xt−1) − F (X̂t−1)| ≤ Mt−1
|F (Lt−1+∆t−2)−F (−Lt−1+∆t−2)|

2

.
= Lt;Mt−1 =


1

2R , Pr(Mt−1 = 1
2R ) = 1− α

1, Pr(Mt−1 = 1) = α

where

∆t−2
.
= F (X̂t−2) +BUt−2.

Then, the encoder and decoder partition the interval [F (−Lt + F (X̂t−1) + BUt−1), F (Lt + F (X̂t−1) + BUt−1)] into

2R equal sized, non-overlapping sub-intervals and the inverse of the center of each sub-interval is chosen as the index of

that interval. When the encoder observes the signal Xt − F (X̂t−1) − BUt−1, the index of the sub-interval that includes

Xt − F (X̂t−1)−BUt−1 (e.g., γjt) is encoded into R bits and transmitted to the decoder through the packet erasure channel.

Then the decoder constructs X̂t as below:

X̂t =


γjt, Pr(Mt−1 = 1

2R ) = 1− α

F (X̂t−1) +BUt−1, Pr(Mt−1 = 1) = α

(4)

Consequently, the decoding error is bounded above by |Xt − X̂t| ≤ Lt. By following a similar procedure, as described

above, the sequence X̂0, X̂1, X̂2, ... are constructed at the decoder.

Let ΓMax
.
= maxX,Y ∈D

|F (X)−F (Y )|
|X−Y | , whereD is the domain of the system; and Γt

.
= |F (Lt+F (X̂t−1)+BUt−1)−F (−Lt+F (X̂t−1)+BUt−1)|

2Lt
.

Now, we must show that the above coding scheme results in almost sure asymptotic state estimation. This result is shown in

the following proposition.

Proposition 3.1: Consider the control system of Fig. 1 described by the dynamic system (1) over the packet erasure channel

with erasure probability α and feedback acknowledgment, as described earlier. Suppose that the scalar function F (X) in the

dynamic system (1) is strictly monotone function with continuous first derivative. Also, suppose that the transmission rate R

satisfies the following inequality:

(1− α)R > max{0, log2 ΓMax} (5)

Then, using the proposed encoding and decoding scheme, we have almost sure asymptotic state estimation in the form of

X̂t → Xt, P-a.s.; or equivalently, Pr(limt→∞ ‖Xt − X̂t‖ = 0) = 1.

Proof: : Choose any rate R that satisfies the condition (5). For this rate, define the random variable Mt as follows:

Mt =


1

2R , Pr(Mt = 1
2R ) = 1− α

1, Pr(Mt = 1) = α

(6)

This random variable is the indicator of successful transmission or failed transmission at time instant t. Using the above encoding

and decoding scheme, we have |X0 − X̂0| ≤ L0, |X1 − X̂1| ≤ M0
|F (L0)−F (−L0)|

2 = L1 = M0Γ0L0 ≤ M0ΓMaxL0, |X2 −

X̂2| ≤M1
|F (L1+∆0)−F (−L1+∆0)|

2 = L2 = M1Γ1L1 ≤M1M0Γ2
MaxL0, ... , |Xt−X̂t| ≤Mt−1

|F (Lt−1+∆t−2)−F (−Lt−1+∆t−2)|
2 =
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Lt = Mt−1Γt−1Lt−1 ≤ ... ≤Mt−1...M1M0ΓtMaxL0. Therefore, |Xt− X̂t| ≤Mt−1...M1M0ΓtMaxL0 = L0

∏t−1
i=0 MiΓMax =

L0(2log2(
∏t−1

i=0 MiΓMax)) = 2t(
1
t

∑t−1
i=0 log2(MiΓMax)).

Since Mi is an i.i.d. sequence and E[Mi] <∞ for each i, when t→∞, from the strong law of large numbers [19] we have:

1
t

∑t−1
i=0 log2(MiΓMax)) → E[log2(MiΓMax)] = (1 − α) log2( 1

2R ΓMax) + α log2(ΓMax). Now, as the rate R was chosen

so that (1− α)R > max{0, log2 ΓMax}, the following inequality holds (1− α) log2( 1
2R ΓMax) + α log2(ΓMax) < 0. Hence,

X̂t → Xt as t→∞, P-a.s. This completes the proof for the monotone scalar case.

B. Encoder and Decoder: Vector Case

Now, consider the dynamic system (1) with the strictly monotone function fi(X), with continuous first derivatives and suppose

that Xt ∈ Rn and Ut ∈ Rm. fi(X) is a strictly monotone function of X , which means that it is strictly increasing/decreasing

with respect to each component of X whenever the others are fixed. At the time instant t = 0, we notice that the initial state is

X0 with the components x(i)
0 , i = {1, 2, ..., n} (recall that for each i ∈ {1, 2, ..., n} there exists a compact set [−L(i)

0 , L
(i)
0 ] ∈ R

such that Pr(x
(i)
0 ∈ [−L(i)

0 , L
(i)
0 ]) = 1); and the rate is R .

=
∑n
i=1R

(i). At each time instant t ∈ N+ the encoder and

decoder partition the intervals [fi(m
[i]
t ), fi(M

[i]
t )] (in fi(X) axis), where m

[i]
t

.
= arg min

x(j)∈[−L(j)
t ,L

(j)
t ] & x(i)=−L(i)

t
fi(X)

and M
[i]
t

.
= arg max

x(j)∈[−L(j)
t ,L

(j)
t ] & x(i)=L

(i)
t
fi(X); ∀t ∈ N+, i ∈ {1, 2, ..., n} and j ∈ {1, 2, ..., i − 1, i + 1, ..., n} into

2R
(i)

equal sized, non-overlapping sub-intervals and the center of each sub-interval is denoted by η(i)
0 , η

(i)
1 , ..., η

(i)

2R(i)−1
. Then,

in the corresponding x(i)
0 - axis, the corresponding index i is computed as γ(i)

0 = fi,m
−1(η

(i)
0 ),

γ
(i)
1 = fi,m

−1(η
(i)
1 ), ..., γ

(i)

(2R(i)−1)−1
= fi,m

−1(η
(i)

(2R(i)−1)−1
), γ

(i)

2(R(i)−1)
= fi,M

−1(η
(i)

2(R(i)−1)
), ..., γ

(i)

(2R(i)
)−1

= fi,M
−1(η

(i)

(2R(i)
)−1

); where fi,m
−1(gi)

.
= fi

−1(gi | xt(j) = m
[i]
t

(j)
; ∀j ∈ {1, 2, ..., i − 1, i + 1, ..., n}) (m[i]

t

(j)
is the

jth element of the vector m
[i]
t ) and fi,M

−1(gi)
.
= fi

−1(gi | xt(j) = M
[i]
t

(j)
; ∀j ∈ {1, 2, ..., i − 1, i + 1, ..., n}) (M[i]

t

(j)

is the jth element of the vector M
[i]
t ) which we call them the special inverse functions of gi = fi(Xt). Subsequently,

the index of the sub-interval that includes x(i)
0 (e.g., γ(i)

j0 where j0 ∈ {0, 1, ..., (2R(i)−1) − 1, 2R
(i)−1, ..., (2R

(i)

) − 1}) is

encoded into R(i) bits and transmitted to the decoder through the packet erasure channel. If the decoder receives this R(i) bits

successfully, it identifies the index of the sub-interval where x(i)
0 lives in; and the value of this index is chosen as x̂(i)

0 (e.g.,

γ
(i)
j0 where j0 ∈ {0, 1, ..., 2R(i) − 1}). Otherwise, x̂(i)

0 = [f−1
i (

fi(M
[i]
0 )+fi(m

[i]
0 )

2 )]i. At the time instant t = 1, using feedback

acknowledgment, the encoder can compute X̂0; and therefore, it encodes x(i)
1 − fi(X̂0) − biU0. To encode this signal, the

interval [−L(i)
1 , L

(i)
1 ] is computed by the encoder and decoder as follows: Let ˆ̃x

(i)
1 = fi(X̂0) + biU0 be the reconstruction

of x(i)
1 at the encoder. Then, if the packet has been received successfully at time instant t = 0, the decoding error at the

encoder is bounded above by |x(i)
1 − ˆ̃x

(i)
1 | = |fi(X0) − fi(X̂0)| ≤

|fi(M
[i]
0 )−fi(m

[i]
0 )|

2

2R(i) ; and for the other case is bounded above

by |x(i)
1 − ˆ̃x

(i)
1 | = |fi(X0)− fi(X̂0)| ≤ |fi(M

[i]
0 )−fi(m[i]

0 )|
2 . Hence,
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|x(i)
1 − ˆ̃x

(i)
1 | = |x

(i)
1 − fi(X̂0)− biU0| = |fi(X0) + biU0 − fi(X̂0)− biU0| = |fi(X0)− fi(X̂0)| ≤M (i)

0

|fi(M[i]
0 )− fi(m[i]

0 )|
2

.
= L

(i)
1

(7)

Then similar to the previous case, encoder and decoder partition the interval [fi(m
[i]
1 +F (X̂0)+BU0), fi(M

[i]
1 +F (X̂0)+BU0)]

into 2R
(i)

equal sized, non-overlapping sub-intervals and the special inverse function (i.e., fi,m−1(.) and fi,M
−1(.)) of the

center of each sub-interval is chosen as the index of that interval. When the encoder observes the signal x(i)
1 − fi(X̂0)− biU0,

the index of the sub-interval that includes x(i)
1 − fi(X̂0) − biU0 (e.g., γ(i)

j1 where j1 ∈ {0, 1, ..., 2R(i) − 1}) is encoded into

R(i) bits and transmitted to the decoder through the packet erasure channel. Then, the decoder constructs x̂(i)
1 as follows:

x̂
(i)
1 =


γ

(i)
j1 , Pr(M

(i)
1 = 1

2R(i) ) = 1− α

fi(X̂0) + biU0, Pr(M
(i)
1 = 1) = α

(8)

Consequently, for this case the decoding error is bounded above by |x(i)
1 − x̂

(i)
1 | ≤ L

(i)
1 . For the time instant t = 2, the decoding

error at the encoder is bounded above by

|x(i)
2 − ˆ̃x

(i)
2 | = |x

(i)
2 − fi(X̂1)− biU1)| = |fi(X1) + biU1 − fi(X̂1)− biU1| = |fi(X1)− fi(X̂1)|

≤M (i)
1

|fi(M[i]
1 + ∆0)− fi(m[i]

1 + ∆0)|
2

.
= L

(i)
2 ;M

(i)
1 =


1

2R(i) , Pr(M
(i)
1 = 1

2R(i) ) = 1− α

1, Pr(M
(i)
1 = 1) = α

(9)

where ∆0
.
= F (X̂0) +BU0.

Similarly, for the rest of time instants t > 1, the encoder encodes x(i)
t − fi(X̂t−1) − biUt−1. To encode this signal the

interval [−L(i)
t , L

(i)
t ] is chosen as follows:

|x(i)
t − ˆ̃x

(i)
t | = |x

(i)
t − fi(X̂t−1)− biUt−1)| = |fi(Xt−1) + biUt−1 − fi(X̂t−1)− biUt−1| = |fi(Xt−1)− fi(X̂t−1)|

≤M (i)
t−1

|fi(M[i]
t−1 + ∆t−2)− fi(m[i]

t−1 + ∆t−2)|
2

.
= L

(i)
t ;M

(i)
t−1 =


1

2R(i) , Pr(M
(i)
t−1 = 1

2R(i) ) = 1− α

1, Pr(M
(i)
t−1 = 1) = α

(10)

where ∆t−2
.
= F (X̂t−2) +BUt−2.

Then, the encoder and decoder partition the interval [fi(m
[i]
t + F (X̂t−1) + BUt−1), fi(M

[i]
t + F (X̂t−1) + BUt−1)] into

2R
(i)

equal sized, non-overlapping sub-intervals and the inverse of the center of each sub-interval is chosen as the index of

that interval. When the encoder observes the signal x(i)
t − fi(X̂t−1) − biUt−1, the index of the sub-interval that includes

x
(i)
t − fi(X̂t−1) − biUt−1 (e.g., γ(i)

jt ) is encoded into R(i) bits and transmitted to the decoder through the packet erasure



12

channel. Then the decoder constructs X̂t as follows:

x̂
(i)
t =


γ

(i)
jt , Pr(M

(i)
t−1 = 1

2R(i) ) = 1− α

fi(X̂t−1) + biUt−1, Pr(M
(i)
t−1 = 1) = α

(11)

Consequently, the decoding error is bounded above by |x(i)
t − x̂

(i)
t | ≤ L

(i)
t . By following a similar procedure, as described

above, the sequence X̂0, X̂1, X̂2, ... are constructed at the decoder. Let

Γ
(i)
Max

.
= max
x(i),y(i)∈D(i); ∀i∈{1,2,...,n}

|fi(X)− fi(Y )|
|x(i) − y(i)|

,

where D(i) is the domain of the ith system; and

Γ
(i)
t

.
=
|fi(M[i]

t + ∆t−1)− fi(m[i]
t + ∆t−1)|

2L
(i)
t

where Y =

[
y(1) y(2) ... y(n)

]′
and ∆t−1

.
= F (X̂t−1) +BUt−1.

Now, we must show that the above coding scheme results in almost sure asymptotic state estimation. This result is shown in

the following proposition.

Proposition 3.2: Consider the system of Fig. 1 described by the dynamic system (1) over the packet erasure channel with

erasure probability α and feedback acknowledgment, as described earlier. Suppose that the nonlinear function fi(X) is strictly

monotone function with continuous first derivatives. Also, suppose that the transmission rate R =
∑n
i=1R

(i) satisfies the

following inequality:

(1− α)R(i) > max{0, log2 Γ
(i)
Max} (12)

Then, using the proposed encoding and decoding scheme, we have almost sure asymptotic state estimation in the form of

X̂t → Xt, P-a.s.; or equivalently, Pr(limt→∞ ‖Xt − X̂t‖ = 0) = 1.

Proof: : Choose any rate R(i) that satisfies the condition (12). For this rate, define the random variable M (i)
t as follows:

M
(i)
t =


1

2R(i) , Pr(M
(i)
t = 1

2R(i) ) = 1− α

1, Pr(M
(i)
t = 1) = α

(13)

This random variable is the indicator of successful transmission or failed transmission at time instant t. Using the above

encoding and decoding scheme, we have

|x(i)
0 − x̂

(i)
0 | ≤ L

(i)
0

|x(i)
1 − x̂

(i)
1 | ≤M

(i)
0

|fi(M[i]
0 )− fi(m[i]

0 )|
2

= L
(i)
1 = M

(i)
0 Γ

(i)
0 L

(i)
0 ≤M

(i)
0 Γ

(i)
MaxL

(i)
0
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|x(i)
2 − x̂

(i)
2 | ≤M

(i)
1

|fi(M[i]
1 + ∆

(i)
0 )− fi(m[i]

1 + ∆
(i)
0 )|

2
= L

(i)
2 = M

(i)
1 Γ

(i)
1 L

(i)
1 ≤M

(i)
1 M

(i)
0 Γ

(i)
Max

2
L

(i)
0

...

|x(i)
t − x̂

(i)
t | ≤M

(i)
t−1

|fi(M[i]
t−1 + ∆t−2)− fi(m[i]

t−1 + ∆t−2)|
2

= L
(i)
t = M

(i)
t−1Γ

(i)
t−1L

(i)
t−1 ≤ ... ≤M

(i)
t−1...M

(i)
1 M

(i)
0 Γ

(i)
Max

t
L

(i)
0

... (14)

Therefore,

|x(i)
t − x̂

(i)
t | ≤M

(i)
t−1...M

(i)
1 M

(i)
0 Γ

(i)
Max

t
L

(i)
0

= L
(i)
0

t−1∏
j=0

M
(i)
j Γ

(i)
Max = L

(i)
0 (2log2(

∏t−1
j=0M

(i)
j Γ

(i)
Max)) = 2t(

1
t

∑t−1
j=0 log2(M

(i)
j Γ

(i)
Max)) (15)

Now, as M (i)
j is an i.i.d. sequence and E[M

(i)
j ] < ∞ for each i and j, as t → ∞, from the strong law of large numbers

[19] we have:

1

t

t−1∑
j=0

log2(M
(i)
j Γ

(i)
Max))→ E[log2(M

(i)
j Γ

(i)
Max)] = (1− α) log2(

1

2R(i)
Γ

(i)
Max) + α log2(Γ

(i)
Max) (16)

Now, as the rate R(i) was chosen so that

(1− α)R(i) > max{0, log2 Γ
(i)
Max}, (17)

the following inequality holds

(1− α) log2(
1

2R(i)
Γ

(i)
Max) + α log2(Γ

(i)
Max) < 0. (18)

That is, from (15) and (16), X̂t → Xt as t→∞, P-a.s. This completes the proof.

Remark 3.3: For the linear case with the distinct eigenvalues, where F (X) = AX in the system (1), the above sufficient

condition reduces to the eigenvalues rate condition, which is the tight bound for almost sure stability of linear systems [1].

Proof: Without loss of generality, suppose that the system matrix A is in the real Jordan form. This form is obtained by

implementing a proper similarity transformation; and as a result of that, the linear dynamic system is decomposed into several

decoupled sub-systems (i.e., fi(X) = λix
(i), where λi is the ith distinct eigenvalue of the system matrix A). Therefore,

Γ
(i)
Max = max

x(i),y(i)∈D(i); ∀i∈{1,2,...,n}

|fi(X)− fi(Y )|
|x(i) − y(i)|

= max
x(i),y(i)∈D(i); ∀i∈{1,2,...,n}

|λix(i) − λiy(i)|
|x(i) − y(i)|

= max
x(i),y(i)∈D(i); ∀i∈{1,2,...,n}

|λi||x(i) − y(i)|
|x(i) − y(i)|

= |λi|. (19)
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Therefore, the eigenvalues rate condition is achieved.

C. Controller

Now, in the following proposition, we show that the proposed coding scheme combined with the controller Ut = −B′(BB′)−1(F (X̂t)−

Rt+1) result in the reference tracking.

Proposition 3.4: Suppose that the aforementioned assumptions on the matrix B holds. Then, the proposed coding scheme

combined with the controller Ut = −B′(BB′)−1(F (X̂t)−Rt+1) results in almost sure reference tracking of the system.

Proof: From (1) we have Xt+1 = F (Xt) − BB′(BB′)−1(F (X̂t) − Rt+1)) = F (Xt) − F (X̂t) + Rt+1. Now, using the

proposed encoding and decoding scheme, we have X̂t → Xt for t→∞, P-a.s.; and hence, F (Xt)−F (X̂t) +Rt+1 → Rt+1,

P-a.s. That is, the reference tracking (and hence stability for the case of Rt+1 = 0) is achieved.

IV. SIMULATION RESULTS

In this section, for the purpose of illustration, we apply the proposed encoder, decoder and controller to the nonlinear

dynamics of the miniature drones, autonomous road vehicles and autonomous under water vehicles that can be modeled by

the unicycle model [11]. The dynamics of miniature drones, autonomous road vehicles and autonomous under water vehicles

are described by a 6 degrees of freedom model. However, the vehicles dynamic can be handled by local control loops, which

results in a kinematic unicycle model, as follows [11]:
ẋ(t) = v(t) cos(φ(t))

ẏ(t) = v(t) sin(φ(t))

φ̇(t) = u(t)

(20)

where x(t), y(t) are the position vector, φ(t) the heading angle, and the control inputs are the vehicle forward velocity v(t)

and the turning rate u(t). The state vector of the system is X(t) =

[
x(t) y(t) φ(t)

]′
and the input vector is U(t) = u(t),

as for the simulations study we fix v(t) = 1. The discrete time equivalent model is described by (21), where T is the sampling

period. 
xt+1 = xt + Tvt cos(φt)

yt+1 = yt + Tvt sin(φt)

φt+1 = φt + Tut

(21)

In this model xt, yt, φt, vt and ut are the discrete time equivalent signals of x(t), y(t), φ(t), v(t) and u(t), respectively. Note

that for this model, the state vector is Xt =

[
xt yt φt

]′
.
=

[
x

(1)
t x

(2)
t x

(3)
t

]′
.
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Therefore, the state space representation of the equivalent discrete time system has the following form:
xt+1

yt+1

φt+1

 =


xt + Tvt cos(φt)

yt + Tvt sin(φt)

φt

+


0

0

T

ut (22)

which is in the form of the system (1) with F (Xt) =

[
xt + Tvt cos(φt) yt + Tvt sin(φt) φt

]′
.
=

[
f1(Xt) f2(Xt) f3(Xt)

]′

and B =


0

0

T

. The autonomous vehicle must track a circle with the center located at (xr, yr) and the radius of ρ with the angular

velocity of ωr. Therefore,
[
xt yt φt

]′
must track the reference signal

[
r

[x]
t r

[y]
t r

[φ]
t

]′
, where rx(t) = xr +ρ cos(ωrTt),

r
[y]
t = yr + ρ sin(ωrTt) and r[φ]

t = arctan(
r
[y]
t −yt−1

r
[x]
t −xt−1

) (see Fig. 4). Note that for the simplicity of the design, we choose the

forward velocity constant and equals to v(t) = 1 m/s. Therefore, for tracking a circle with the center located at (2, 1) and the

radius of 2, by the autonomous vehicle, we choose

Rt(Xt)
.
=

[
r

[x]
t r

[y]
t r

[φ]
t

]′
=

[
2 + 2 cos(0.5T t) 1 + 2 sin(0.5T t) arctan(

r
[y]
t −yt−1

r
[x]
t −xt−1

)

]′
as the reference signals. For simulations, we also choose T = 0.01 sec, x0, y0 ∈ [−10, 10], φ0 ∈ [−π2 ,

π
2 ] and α = 0.9,

which indicates that 90 percent of the transmitted packets are dropped. Also, for designing the controller, we use ut =

−B′(BB′)−1(F (X̂t) − Rt+1(X̂t+1)), where Rt(X̂t)
.
=

[
2 + 2 cos(0.5T t) 1 + 2 sin(0.5T t) arctan(

r
[y]
t −ŷt−1

r
[x]
t −x̂t−1

)

]′
. By

computing the pseudo inverse of B using its singular values, we get B′(BB′)−1 = [0 0 T−1] and therefore ut =

−T−1(φ̂t− arctan(
r
[y]
t+1−ŷt
r
[x]
t+1−x̂t

)). Fig. 5 to Fig. 9 illustrate the results of the simulations. They illustrate that the desired tracking

is achieved although 90 percent of transmitted packets are dropped. Table I shows the transmission rates R(i), i = 1, 2, 3,

used in order to have a satisfactory simulation for different values for α’s: α = 0.5, α = 0.9 and α = 0.95. All of these

rates satisfy the condition (12) of the main Proposition 3.2. Note that for the conditions simulated Γ
(1)
Max = 2, Γ

(2)
Max = 2

and Γ
(3)
Max = π and for each α the corresponding rates R(i) have been chosen so that R(i) is the smallest integer greater

than 1
1−α max{0,Γ(i)

Max}. As it is clear from Table I, for α’s that are very close to one, reliable real time state estimation

and subsequently a satisfactory reference tracking performance using the proposed techniques in this paper are still possible

but by allocating very large transmission rates; and as α converges to one, the rates that result in a satisfactory performance

significantly rise.

Now, to make simulations study more interesting, we suppose that the nonlinear dynamic system (22) is subject to the
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Fig. 4. An autonomous vehicle with the positions xt−1 and yt−1 moving toward the desired positions r[x]t and r[y]t , respectively

TABLE I

THE RATES R(i)’S USED FOR A SATISFACTORY SIMULATION FOR DIFFERENT α’S.

i α = 0.5, R(i) α = 0.9, R(i) α = 0.95, R(i)

1 3 11 21

2 3 11 21

3 4 17 34

i.i.d. process noise of Wt ∼ N(0, I3); while the encoder, decoder and controller are unaware of this process noise. The

Root Sum Square Error (RSSE) computed from the sample t = 30/T to the sample t = 50/T (30 sec. to 50 sec.) for

α = 0.5, α = 0.9 and α = 0.95 for the case of without process noise and with the above process noise have been

reported in Table II. Note that the RSSE from the sample t = 30/T to the sample t = 50/T is defined as RSSE =√∑50/T
t=30/T (xt − r[x]

t )2 + (yt − r[y]
t )2 + (φt − r[φ]

t )2. Fig. 10 also illustrates the performance of the proposed technique in the

presence of the process noise for α = 0.9. From these results and figure it is clear that in the presence of small uncertainty in

the dynamic system, the proposed technique still results in a satisfactory performance which is due to the successful design

procedure for the estimator.

TABLE II

RSSES COMPUTED FOR THE CASES OF WITHOUT THE PROCESS NOISE AND WITH THE PROCESS NOISE FOR DIFFERENT α’S.

α RSSE without the process noise RSSE with the process noise

0.5 8.19 17.99

0.9 16.06 22.9

0.95 22.68 30.31

For comparison, we apply the proposed technique and the feedback linearization control technique of [20] (with the linearized
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Fig. 5. Solid line: The xt position of the autonomous vehicle. Dashed line: The desired position r[x]t for the case, where the communication is subject to

90 percent packet drop out (i.e., α = 0.9)

0 10 20 30 40 50
−1

0

1

2

3

4

time(sec)

m

 

 

y
t

r[y]
t

Fig. 6. Solid line: The yt position of the autonomous vehicle. Dashed line: The desired position r[y]t for the case, where the communication is subject to

90 percent packet dropout (i.e., α = 0.9)

system of (9) and (10) of [20]) to the block diagram of Fig. 1 with the unicycle model of (21) as the dynamic system, with

the reference signals r[x]
t = 0.05Tt and r[y]

t = 0.02Tt (T = 0.01 sec) and the following initial conditions: x0, y0 ∈ [−10, 10]

and φ0 ∈ [−2, 2]. The RSSEs computed from the sample t = 30/T to the sample t = 100/T (30 sec to 100 sec) for α = 0.5,
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Fig. 7. Solid line: The orientation of the autonomous vehicle (φt). Dashed line: The desired orientation r[φ]t for the case, where the communication is subject

to 90 percent packet dropout (α = 0.9)
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Fig. 8. xt − yt − time diagram for the case where the communication is subject to 90 percent packet dropout (α = 0.9). Solid line: xt − yt − time

diagram of the autonomous vehicle. Dashed line: The desired rxyt

α = 0.9 and α = 0.98, when the proposed technique is used have been compared with those computed when the feedback

linearization control technique of [20], is used in Table III. From these results and figures, it is clear that the proposed technique

has much better performance.
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Fig. 10. xt− yt− time diagram for the case where the communication is subject to 90 percent packet dropout (α = 0.9) and the unicycle model is subject

to process noise. Solid line: xt − yt − time diagram of the autonomous vehicle. Dashed line: The desired rxyt

Remark 4.1: In [18] the same dynamic system over the packet erasure channel with the erasure probability α = 0.5, α = 0.9

and α = 0.95 is simulated and the obtained RSSEs are 1.21, 3.42 and 8.4, respectively (see Table IV). These indicate that using

the technique of [18] by transmitting with less bits, a better performance is obtained. However, the technique of [18] requires
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TABLE III

COMPARISON OF THE RSSES COMPUTED FOR THE CASE WHEN THE PROPOSED TECHNIQUE IS USED WITH THOSE COMPUTED WHEN THE FEEDBACK

LINEARIZATION CONTROL TECHNIQUE OF [20] IS USED.

α RSSE for the proposed technique RSSE for the other technique

0.5 1.98 30.23

0.9 2.86 230.75

0.98 6.44 617.14
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Fig. 11. xt − yt − time diagram for the case of α = 0.9 when the proposed technique is used for tracking a straight line

frequent linearization of the nonlinear system and transmission with variable bit rates, in which it may not be implementable

for some dynamics (e.g., fast dynamics). That is, the proposed nonlinear coding and controller in this paper can be implemented

with a fixed bit rate to a larger class of nonlinear systems including systems with uncertainty.

TABLE IV

COMPARISON OF THE RSSES COMPUTED FOR THE CASE WHEN THE PROPOSED TECHNIQUE IS USED WITH THOSE COMPUTED WHEN THE TECHNIQUE OF

[18] IS USED.

α RSSE for the proposed technique RSSE for the technique of [18]

0.5 8.19 1.21

0.9 16.06 3.42

0.95 22.63 8.4

Up to now, we have set the sample period to be T = 0.01 seconds. Now, we study the effects of the sampling period

on the performance of the proposed technique. In order to address this question, we repeat simulations for different α’s and
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Fig. 12. xt − yt − time diagram for the case of α = 0.9 when the feedback linearization technique of [20] is used for tracking a straight line

different sampling periods. Table V summarizes the simulation results by presenting the corresponding RSSEs computed from

the sample t = 30/T to the sample t = 50/T (30 sec. to 50 sec.) for α = 0.5, α = 0.9 and α = 0.95 and T = 0.001, T = 0.01and

T = 0.1. Note that the number of sample points that are used for the computation of RSSE for the case of T = 0.001 is

10 times larger than that of used for T = 0.01. Similarly, the number of sample points that are used for the computation of

RSSE for the case of T = 0.01 is 10 times larger than that of used for T = 0.1. Therefore, in order to have a fair comparison

between RSSEs for different sampling periods, we need to normalized RSSEs for the cases of T = 0.001 and T = 0.1 by

multiplying them by
√

0.1 and
√

10, respectively. From Table V it follows that, as it is expected, by increasing the sampling

period, the control performance is deteriorated. This is expected because for very small sample period (e.g., T = 0.001 and

T = 0.01) the equivalent discrete time model that is used for designing controller, is a good approximation of the continuous

time system. As it is clear from Table V, this deterioration in performance, which is due to the large sample period, is more

obvious for larger α’s, as it is seen in Fig. 13.

TABLE V

COMPARISON OF THE RSSES COMPUTED FOR DIFFERENT SAMPLE PERIODS T AND α.

α T RSSE RSSE normalized α T RSSE α T RSSE RSSE normalized

0.5 0.001 26.6284 8.42 0.5 0.01 8.19 0.5 0.1 5.6531 17.876

0.9 0.001 27.1614 8.58 0.9 0.01 16.06 0.9 0.1 10.546 33.34

0.95 0.001 28.9275 9.14 0.95 0.01 22.68 0.95 0.1 23.843 75.39
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Remark 4.2: From Table I it follows that the proposed techniques are able to provide reliable real time estimation and a

satisfactory reference tracking performance even for those α’s that are close to one (i.e., for the cases subject to almost 100

percent packet dropout). But, in order to have this satisfactory performance, we need to allocate a very large transmission rate,

where as α converges to one, this rate significantly rises. From Table II it follows that the proposed technique also provides a

satisfactory performance in the presence of model uncertainty; and from Table V it follows that the proposed technique may

not result in a satisfactory performance for large sampling periods.

V. CONCLUSION AND DIRECTION FOR FUTURE RESEARCH

This paper presented a new technique for state estimation and reference tracking of nonlinear dynamic systems by a remote

controller over the packet erasure channel. A new encoder and decoder for the state estimation of nonlinear dynamic systems

at the end of communication link, were presented when measurements were sent through the packet erasure channel. Then,

using the classical control theory tools, a controller for reference tracking of the system was also designed. That is, for

nonlinear dynamic systems, almost sure asymptotic state estimation and reference tracking techniques including an encoder,

decoder and a controller were presented. The satisfactory performances of the proposed state estimation and reference tracking

techniques were illustrated via computer simulations by applying these techniques on the unicycle model, which represents

the dynamics of autonomous vehicles. Since we have considered the effects of communication imperfections (random packet

dropout and limited bit rate); and we compensated these imperfections in our theoretical development, a tele-operated system

that is developed based on the results of this paper will have a larger operating range with an increased on-bored battery life

time compared with the available IoT - based tele-operated systems.

For future it is interesting to extend the results of this paper to partially observed noisy nonlinear dynamic systems. For future,

it is also interesting to combine our coding scheme with the coding-decoding based protocols (e.g., [21]) and event triggering

protocols (e.g., [22]). Also, it is interesting to consider constraints on state variables and control inputs or consider prescribed

performance. The methodologies used in [23] and [24] can be used to address this important extension. The technique proposed

in this paper is perhaps applicable to the tele-operation of other robotic systems, e.g., manipulators and satellites. Addressing

this question is also left for future investigation.
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