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Abstract—This paper is concerned with the control of one
dimensional continuous time linear Gaussian systems over
additive white noise wireless fading channels subject to capacity
constraints. Necessary and sufficient conditions are derived, for
bounded asymptotic and asymptotic observability and stabiliz-
ability in the mean square sense, for controlling such systems.
For the case of a noiseless time-invariant system controlled
over a continuous time additive white Gaussian channel, the
sufficient condition for stabilizability and observability states
that the capacity of the channel,C,,, satisfies,C, > [A]", where
Ais the system coefficient anda]™ = a, if a > 0 and [a] " = 0, if
a < 0. Moreover, the necessary condition states that the channel
capacity must satisfyC, > [A]™. It is shown that a separation
principle holds between the design of the communication and
the control sub-systems, implying that the controller that would
be optimal in the absence of the communication channel is also
optimal for the problem of the controlling the system over the
communication channel.

I. INTRODUCTION

In recent years, there has been a significant activity in
addressing issues associated with the control of systems ove
limited capacity communication channels. A typical example
is given in Fig. 1. In such control/communication system
the controlled system output is analogous to the source trlgt

. . . . n
generates information, which has to be transmitted over
communication channel, with feedback, for reliable com

munication and control. Typical examples are applicatio

capacity.

Previous work on this subject focuses on the stabilizabilit
of discrete time systems, controlled over a discrete tim
communication channel with finite capacity. Fundamenta
results for stabilizability of such systems are derived in [1]:

[8].

The objective of this paper is to extend the above line of

research to continuous time systems driven by Browni

. . . . . . n
motion. In particular, when the information is commumcate? . L
P etween the design of the control and the communication

ns
in which a single dynamical system sends information tﬁ:
a distant controller via a communication link with finite
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to the controller via a finite capacity communication chan-
nel. First, we consider the problem of stabilizability of a
control/communication system, which consists of a linear
continuous time-invariant noiseless plant, which is controlled
over a continuous time AWGN channel with memory. By
using the Bode integral formula [9], a necessary condition
for the existence of a stabilizing controller is given by the
condition

Cah = [A]+7 (1)
whereC,, is the capacity of AWGN channel with memory.
In the special case of AWGN channel (e.g., channel impulse
responseh(t) 0(t)), condition (1) is reduced to the
following condition

Co 2 [A]T, )

whereC, is the AWGN channel capacity. We then consider
a {ime—varying one dimensional linear stochastic Gaussian

Splant driven by Brownian motion, which is controlled over

a flat fading wireless channel. Here, we assume complete
<[ owledge of the channel throughout the transmission, at the
transmitter and the receiver ends [10]. Under such assump-
tion, we derive optimal encoding and decoding strategies
hich minimize the mean square decoding error, and achieve
e channel capacity. We further show that under certain
conditions, the proposed encoding and decoding strategies
ield bounded asymptotic, and asymptotic observability, in
he mean square sense. Furthermore, a sufficient condition
ﬁ)r bounded asymptotic and asymptotic stabilizability in the
mean square sense is derived. For the case of noiseless, time-
invariant systems controlled over continuous time AWGN
hannel, the sufficient condition for asymptotic observability

and stabilizability is given by conditiof, > [A]*.
this paper, it is also shown that a separation principle holds
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Il. PROBLEM FORMULATION

Consider the block diagram of Fig. 1. As in any typical
communication system, the source which corresponds to the
controlled plant output is communicated via a flat fading
wireless AWGN channel. The encoder in addition of ob-
serving the plant output and the state of the channel, also
observes the control signals. This kind of encoder has been
discussed in [1], [2]. Thus, the encoder indirectly observes
the output of the decoder. That is, the information pattern of “
the encoderF', at time ¢ is {(x(s),Z(s), 2(s,6(s)));0 <
s < t} — F(t,z,z,0)(= F(t) in compact notation),
where {z(s,6(s));0 < s < t} is the Channel State In- p—
formation (CSI) (which dependents on the random process o
{0(s), 0 < s < t}). Moreover, the decoder has access to
the output of the channel, and to the state of the channekig. 1. Control/communication system over flat fading AWGN channel
That is, the information pattern of the decodemt time ¢
is {(y(s),2(s,0(s)));0 < s < t} — Z(t,y,0)(= Z(¢t) in
compact notation). Finally, the controller at time ¢t has Throughout, we assume there exists a unique solution of
access to the output of the decoder at that time and the st@§ sych thatr ¢ X, where X 2 {x e C([0,T);R); =
of the channel up to time. T
Next, we give the precise definition of the signals, and {Fo,:}t>0 adapted ands [j |x(t)[*dt < OO} (see [11]).
blocks associated with Fig. 1. LK), F, P) be a com- Encoder. The encoderF, is a non-anticipative functional
plete probability space with a filtratiofiF; },~o and time Of the state of the plant, the deco@ergutplﬂ, and the chan-
t e [0,T], T > 0. Letz 2 {z(s);:0 < s < t < nelstate informatior. Define 75" = Fo N Fa N FS.

T}, x(t) € R denote the output of the controlled plantThe set of admissible encoders is defined By, 2

(transmitted signal),u £ {u(s);0 < s < t < T}, {F:[O,T]xC([O,T};%)xC([O,T];%)xC([O,T];%q)H

. AN -~
u(t) € R the control signaly = {y(s);0 < s <t < T]A’ R: Fis {f&’f’e}@o adapted, andE foT \F(t,z, &, 0)[2dt <
y(t) € R the output of the communication channel,= '

{2(5,0(5));0 < s sts T} 2(1,0(t)) € W the channel  Gpapnel The communication channel is an AWGN, flat
state informationy = {U(S)Aﬂ) <s<t<T}v(t) €R fading, wireless channel. The channel outpu is defined
the channel noise, and = {w(s);0 < s < ¢t < T}, by the following stochastic differential equation

w(t) € N the plant process noise. Here, it is assumed that _ -

z depends on the random proce®d) € R?. The plant dy(t) = 2(t, 0() (¢, 2,3, 0)dt + dv(t),
noisew, and the channel noise are independent standard y(0) =0, 0<t<T, (4)

Brownain motions, which are independent of the initialyherey is the Gaussian standard Brownian motion. Through-

statex(0). Let {F§ }i>0, {F§ 1 }ez0, {F 1 }e>0, {FG}e>0,  out, we shall assume that (4) has a unique solution [11], and
and {F{,}:>0 denote the complete filtration generated byor a fixed sample path

x(1)

S F(t)
2(1,0)

w0y

X()

7, 2 ofa():0 < s < 1), FE, 2 o{i(s),0 < s < t}, r
Fl, 2 o{y(s);0 < s < t}, F5y 2 o{z(s);0 < s < 1}, Prob{/o 22(t,0(t))| F(t, z, 2,0)|%dt < oo} =1
and ¢, 2 5{0(s);0 < s < t}, respectively, which and .
are sub-sigma fields of Fi}izo. Here, 75, iy 75 Ee/ 2(1,0(t))|F(t, 2, 7 60)|*dt < oo, (5)
F§ 4 and ]—"gi are the Borelos-algebras on the space of 0

continuous function€’([0, T]; ), C([0, T]; R), C([0, T};R),  where Ey[.] denote expectation with respect to sample path
C([0,T]; R), andC([0, T]; R?) respectively. Next, the blocks ¢.

of Fig. 1 are defined. Decoder. The decoder denoted by is adapted to

Plant. The state of the plant is described by an Onﬁﬁ?’f}go,where]ﬂ?{f é-f(@)/,tvfg,t'-rhe set of admissible

dimensional continuous time, controlled diffusion procesgecoders is denoted 19,4 The decoder plays the role of
given by theltd equation a state estimator.

dz(t) = A()e()dt + Bt)u(t)dt + G(t)dw(t), =(0), (3) Qqntrqller. Thg controlleru is a square integrable non-
anticipative functional of the output of the decoder and the

whereA : [0,T] - R, B:[0,T] — R, andG : [0,T] — R channel state information, e.g.,is {]—'g"f}tzo adapted. The

are Borel measurable and bounded, ar{@) is Gaussian set of admissible controller is denoted &y;.

random variabler(0) ~ N(Zg, V;), which is independent of The objective of this paper is to find necessary and suf-

w. The controk is square integrable, afd ; }+>0 adapted. ficient conditions for bounded asymptotic and asymptotic



of a stabilizing controller.
) In this Section, a controller is called stabilizable if the corre-
[ i) = Ax() + Bu(t) |——— i sponding closed loop sensitivity transfer functisfjw) =
o ;83 from n to y, is strictly stable or alternatively
limy o Ely(t)|? < 0o or lim;_o, E|z(t)|? < co.
Next, applying the Bode integral formula [9], the main result
i oft) of this Section is given in the following theorem. The Proof
P and the extension to the vector case can be found in [12] or
u() o [13].
Theorem 3.1:Consider the control/communication sys-
¥(t) tem (6), (7) given in Fig. 2. A necessary condition for the
existence of a stabilizing controller is given by

Ca,h, Z [A} +a (8)

x(
" where C,; is the capacity of the AWGN channel with
Fig. 2. Control/communication system over AWGN memory.
Remark 3.2:In the case of AWGN channel (e.gu(t) =

4(t)), the necessary condition (8) is reduced to the following
observability and stabilizability of system (3), in the meartondition
square sense, over a continuous time (flat fading) AWGN
communication channel, defined as follows.

Definition 2.1: (Bounded Asymptotic and Asymptotic whereC, is the AWGN channel capacity.

Observability in the Mean Square Sense). Defii(e) 2 Please note that the analogue of condition (9) for control-
E[(z(t) — i(t,y,0))? fé’f]- System (3), (4) is bounded Ii.ng discrete time systems over discrete time noisy channel

asymptotically (resp. asymptotically) observable, in the mea(tJ'PCIlJOIing discrete time AWGN channel) is given by [1]
square sense, if there exists an encoder and decoder such that C > [log |A]*. (10)
lim .o £(t) < 0o, P-a.s. (resplim¢ .o £(t) = 0, P-a.s.).  |n Section V, we will recover (9) by constructing an encoder,

Definition 2.2: (Bounded Asymptotic and Asymptotic decoder and controller which stabilize the plant.
Stabilizability in the Mean Square Sense). System (3), (4) is

bounded asymptotically (resp. asymptotically) stabilizable, in 1V. OPTIMAL ENCODING/DECODING SCHEME FOR

the mean square sense, if there exits a controller, encoder and OBSERVABILITY

decoder, such théitm; ., - E[|x(t)|2’}"§7t] < oo, P-a.s.,(resp.  In this Section, we design an optimal encoder/decoder

. pair for the time-varying system defined by (3), (4) that

limn, oo Efl(t)[* }—gvt] =0, P-as). guarantees the observability condition defined in the sense

I1l. NECESSARYCONDITION FOR EXISTENCE OF of Definition 2.1. The necessary and sufficient condition for
STABILIZING CONTROLLER the existence of such an encoder/decoder pair is given in

Sterms of the capacity of the channel and the time-varying

éoefficientA(t). The extension of the results of this Section

to the vector case can be found in [12] or [13].

Co 2 [A]T, 9)

In this Section, we consider the time-invariant noisele
analogue of system (3), that is the plant is given by

#(t) = Az(t) + Bu(t). ) A. Optimal Encoding/Decoding Scheme for Observability

The communication channel is a continuous time AWGN |n this Section, we first define the mutual information

channel ¢ = 1) with memory, that is the output of the petween the state of the plant and the channel output
channel is given by y, when the channel state informatianis known to the
_ _ transmitter and the receiver. Next, we introduce a power

y(t) = o(t) +n(t), oft) =h{t)x F(t), y(t) € R, (7) constraint on the admissible encoders, and we compute the
whereo is a stochastic process with power spectral densitffat fading continuous time AWGN channel capacity using
So(w), n is a Gaussian white noise process with the powea variant of the methodology found in [11]. Even in our
spectral densityS,,(w) = Ny, (o, n) are independenty(t) case, it can be shown that the capacity is attained by a white
is the channel impulse response with the correspondinmise [11]. Further, we design an encoder which minimizes
transfer functionH (jw), and “ « ” is the convolution op- the mean square decoding error, and achieves the channel
erator. Here the encoder, decoder and the controller atapacity. In particular, the mean square error is bounded if
linear time-invariant with transfer function8(jw), D(jw) G(t) is nonzero, and tends to zero asymptoticallyGift)
and C(jw), respectively (see Fig. 2). Lef,;, denote the is zero. This can be explained by the fact thaiGift) is
capacity of AWGN channel with memory. We shall shownonzero, the state equation is driven by Brownian motion
that C,, > [A]* is a necessary condition for the existencavhich has unbounded variation. Thus, wh&(t) is zero, the



mean square error is asymptotically zero, implying that thi&loreover, the channel capacity is given by
computed channel capacity represents the operational capac- p (T
ity. Finally, we state the necessary and sufficient conditions Cp= lim — [ Eg[2*(t,0(t))]dt. (15)

for bounded asymptotic and asymptotic observability in th&ollowing theTs;Oranggthodology as in [11], it is shown
mean square sense. '

that the above upper bound determines the channel capacity.

The part of the results which are concerned with constructio,q : ST
X ; . : - Namely, the signal that reaches the channel capacity is a
of optimal encoding/decoding pair for the scalar case, first

appeared in preliminary form in [14]. white Gaussian noise.

. . . 2) Optimal Encoding and Decodingin this Section,
1) Conditional Mutual Inf_ormatlon and Capaqty of Fe.Ed'we design an encoding/decoding strategy that achieves the
back SystemsUsing a variant of the mutual information

annel capacity’'s. The proposed encoding/decoding strat-
expression of signals described by stochastic differentiégy is osltriﬁallﬁiyr]; the FS); nz es th atm;mcl)ngg al(i aldr%izsri?)le

eqqaﬂons driven t_:)y Brownian mp_tlon found In [15], vYeencoding/decoding schemes that satisfy condition (12), it
derive the expression for the conditional mutual mforma’uorl]ninimizeS the mean square decoding error and at the same

given in the next theorem.- ) time achieves the channel capacity. We then employ the
Theorem_4.1:[14]. ConS|der. the mo‘,je' given by (3), (4), expression for the minimum mean square decoding error
shown in Fig. 1. The mutual information between the statg, "oain necessary and sufficient conditions for bounded
of plantz, and the channel outpyt conditional on the state 5y mntotic and asymptotic observability. In the subsequent
z is given by the following equivalent expressions development, only linear encoders are considered, because
dP, ,i0(z,y|0) along the same lines of [11] it can be shown that linear
log a } encoders achieve the channel capacity and the minimum
AP, (x]0) x dP,jo(y]6) pacty

. AN
i) Ir(z;y|0) = Eubye[
mean square decoding error.

T
”) IT(x; yw) _ EEQ / ZQ(L 9(t))E |:|F(t7 z, IE, 0)|2 Definition 4.4: The set of linear admissible encodﬂ@,
2 0 where L, C Fa4, IS the set of linear non-anticipative
—|F(t, &, 9)|2‘9] dt functionals /' with respect to(z,z,6), which have the
following form
i11) Ir(z;yl0) = /GIT(:B,yW)dPe(@) (11) F(t,z,%,0) = Fy(t, i,0) + Fi(t, i,0)z(t), (16)

where E,, 4[.] represents expectation with respect to thé which for a fixed sample path of
sample paths, y, 0, Ey[.] denote expectation with respect

T
to the sample path, and F'(t, &, 0) = E[F(t,z, &, 9)’]-‘5{}9]. Prob{ / |Fo(t, &,0)|%dt < oo} -1
Next, the definition of the channel capacity for a Géussian 0
e capacity Rty and sup |F1(¢,€,0)] < oo.
flat fading channel, when the CSl is fully known is given. {£€C([0,T);R),0<t<T}

Thereafter, an upper bound on the mutual information i¥/sing linear encoders, the received sigpas given by
introduced, and subsequently it is shown that this upper B - -

bound is the channel capacity (i.e., the upper bound is dy(t) = =(t, 0(t))Fo(t, 2,0) + F1(t, &, 0)a(t)]dt
attained by a certain transmitted signal). +dv(t), y(0)=0. (17)

Definition 4.2: Consider the model given by (3), (4). The Decoding. Because the decoded signiais a function of

channel capacity (often called information capacity), wheﬂqe received signaj, and the channel, the optimal decoder

the fading process: or ¢ is completely known 10 the pinimizing the mean square decoding error is the conditional
transmitter, and receiver, subject to the instantaneous POWS[ectation given by

constraint
~O') t’ 70 =7 ta 79 =F t Fy,ﬁ . 18
E[|F(t,x,§;,9)|2‘9] <P (12) Topt(t,y,0) = 2(t,y,0) [z( )‘ 0. (18)

The conditional error variance for the decoder defined by
is defined by (18) is

1 .
Cy 2 lim sup —Ir(x;yld). (13) V(t,y,0) = E[(z(t) — 2(t, yae))2“7_—(?)j:t9}' (19)

T—00 (2, F)EXX Fag T
Moreover, the decoderi(t,y,6) and the corresponding

Here, the supremum is taken over all state processes cqngitional error variance/(t,y, 6) satisfy the following
X which give strong solutions to (3) and over all encodingzeneralized Kalman Filtering equations.

functions F' € F,, that satisfy (12) (see [10], [11], [16]).
Lemma 4.3:[14]. Consider the model given by (3), (4). di(t,y,0) = A(t)z(t,y,0)dt + B(t)u(t)dt
Then, 2(8,0()V (L, y,0)Fy (L, 7,0)
T dy(t) — 2(t,0(t)) (Fo(t, z,0) + Fi(t, T, 0)3(t,y,0))
Firel) < 2P [ BEEeow . a8y ° 1 20



V(t,y,0) =24V (t,y,0) when 1, # 0, condition (26) is a necessary condition for
—22(t,0(t))F2(t,%,0)V3(t,y,0) + G2(t), (21) asymptotic observability in the mean square sense.
o N _ Remark 4.7:i)) When G(¢t) = 0 and the channel is the
with initial conditions(0) = Zo, andV (0) = Vo. continuous time AWGN channelz(= 1), for which the
Encoding. From the point of view of the coding theorem, - annel capacity i€, = gl it is easily shown that another

an encoder is optimal if it operates near the channel capacityyfficient condition for asymptotic observability is
while ensuring a decoding error that tends to zero exponen-

tially fast, as the codeword length tends to infinity. In our P 1 t
case, the choice of an optimal encodép, F;) is directly Co= Bl > hillbololp n ; A(s)ds. 27)
related to the expression for the conditional error variance dition ic ob bil

(21). By choosing(Fy, F1) appropriately, the conditional Moreover, a necessary condition for asymptotic observability

error variance is minimized, and the channel capacity IS

is achieved. . 1 rt

Theorem 4.5:(Coding Theorem)[14]. Suppose the re- Ca Zh?ib;lpg/ A(s)ds. (28)
ceived signal is defined by (4), and the source by (3). 0
Then the encoder, which achieves the channel capacity, ik In the case of continuous time AWGN channel &
optimal decoder, and the corresponding error variance, at® conditions (25) and (26) are reduced to the following

respectively, given by conditions respectively.
[N P A 2t v 8 - C, > [A®)]T, ae —t>0, (29)
( ?IVT ’ ) - W(I( ) - ( 7y7 )) ( ) Ca Z [A(t)]+, a.e. —t Z 0. (30)
di* (t,y,0) = A(t)2*(t,y, 0)dt while, for time-invariant plants, (29) and (30) are reduced to

Co > [A]" andC, > [A]", respectively.

+B()u(t)dt + z(t,0(t))/ PV*(t,y, 0)dy(t), (23)
. V. OPTIMAL CONTROLLER, SUFFICIENT CONDITION FOR
V*(t,y,0) = V*(0) exp{g/ A(s)ds STABILIZABILITY
t to t In this Section, we propose an output feedback controller
- 22(8,9(8))Pd3}+/ G*(s) exp{2/ A(u)du  that minimizes a quadratic pay-off. The extension of the
0 0 s results of this Section to the vector case can be found in

t
_/ ZQ(uﬁ(u))Pdu}d& (24) [12] OI’_[13].
s For a fixed sample pathz(s,0(s));0 < s < T}, the output
wherei*(0) = zo, andV*(0) = V4. feedback controller is chosen to minimize the quadratic pay-

From (24), it follows that by employing the proposed optimalOff
encoding/decoding scheme the mean square estimation error 1 T
V*(t,y,0) is independent of the control signal. Hence, under  J = TE{/ [(t)[2Q(t) + |u(t)|*R(t)]dt}, (31)
certain conditions, the decoding error can be made arbitrary 0
small, regardless of control signals. This suggests that tlve the limit asT — oo, while at the same time it stabilizes
encoder and decoder, can be design independent of tine@ control/communication system given in Fig. 1. Here, the
controller, or in other words, a separation principle holdscalarQ(¢t) > 0 and R(t) > 0, V¢t € [0,7). We assume
between the control, and the communication part of theéhat the noiseless analogue of the system (3) (e.g., when
design. w(t) = 0) is completely controllable (controllable for the
Next, in the following theorem, we present a sufficient contime-invariant analogue) or exponentially stable. According
dition for bounded asymptotic observability and asymptotito the classical separation theorem of estimation and control,
observability, as a direct result of Theorem 4.5. the optimal controller that minimizes (31) subject to a
Theorem 4.6:)) WhenG(t) # 0, a sufficient condition for flat fading AWGN communication channel and the linear
bounded asymptotic observability in the mean square sensecoder (16) is separated into a state estimator and a certainty
is equivalent controller given by
gzg(tﬁ(t)) >[AW)T, ae.—t>0, P—as. (25  u*(t) = —K(t)2(t,y,0), K(t)=R'(t)B{t)P(t), (32)

Moreover, a necessary condition for bounded asymptotighere;(t, y, ) is the solution of (20) with the corresponding
observability is given by observer Ricatti equation (21) ané(t) is the steady-state
P solution of the following regulator Riccati equation
S 00) 2 (AW ae—t20, P-as.  (26) gred a

7 _  p2 2 1
i) When G(t) = 0, (25) is a sufficient condition for P®) Q.(t) PAOB ()R (t) + 24() P(1),
asymptotic observability in the mean square sense, while, lim P(T) = 0. (33)

T—o0



For a fixed sample path of the channel, it follows that if thevhile from [3], it follows that for stabilizability of a discrete
observer and regulator Ricatti equations have steady stdi@e analogue system over a discrete time AWGN channel,
solutionV'(¢) and P(t), respectively, the averaged criterion the sufficient condition is given by

C, > [log|A|]*. (39)

Remark 5.4:As it was shown in this Section, a separation
principle holds between the design of the communication
and the control subsystems. The efficient encoding/decoding
scheme that minimizes the mean square estimation error and
achieves the channel capacity is given in Section IV, while
the optimal certainty equivalent controller that optimizes a
guadratic cost functional is given in (32). Although we de-
sign optimal encoder/decoder pair and controller separately,
the whole system is optimal since the separation principle
holds. The communication system also sends information at

7= Jim B[ leOPQ) + 0RO} (@4)

can be expressed in the alternative form

T
= Jim ([ PO + V)
RA0R(®)dt}, (35)

where for the time-invariant case, (e.G:(t) = G,Q(t) =
Q, R(t) = R), (35) is reduced to

J

J

lim 1E{/T[Ix(t)lz’Q + |u* (t)|*R]dt}
T—oo T 0
PG? + VK*R. (36)

From (24), it follows that the observer Riccati equation (21)1
has a steady-state solutidii ast — oo, if the optimal
encoding/decoding scheme proposed in Theorem 4.5 is us
and condition (25) holds. Moreover, the regulator Riccati
equation (33) has the steady state soluti(t) ast —

oo, if the noiseless analogue of system (3) is completelym
controllable or exponentially stabilizable.

Next, for a time-invariant analogue of system (3), we havel4]
the following proposition for stabilizability defined in the
sense of Definition 2.2.

Proposition 5.1:[12]. Consider the time-invariant ana-
logue of system (3). Assume that the time invariant noiseles
analogue of the system (3) is controllable or exponentiall
stabilizable, and that the sample path of the channéd
completely known. 7]
Then, for a fixed sample path of the channel, we have thé
followings.

(5]

i) AssumingG # 0 andV (¢, y,0) — V ast — oo, by using  [®

the optimal policy (32),F|x(t)]? < co and E|u(t)|? < oo,

ast — oo. o]
9

i) AssumingG = 0 andV (¢, y,60) — 0 ast — oo, by using
the optimal policy (32),E|z(t)|? = 0 and E|u(t)|?> = 0, as
t — o0.

Next, using Theorem 4.6 and Proposition 5.1 the foIIowinélO]
theorem for bounded asymptotic and asymptotic stabilizabil-
ity in the mean square sense is derived.

Theorem 5.2:Consider the time-invariant analogue of thel*!]
system (3). Assume the time-invariant noiseless analogue g%
system (3) is controllable or exponentially stabilizable. Then
i) For the caseG # 0, a sufficient condition for bounded [13]
asymptotic stabilizability in the mean square sense is given
by
(14]

gz?(t, 0(t)) > [A]T, a.e.—t >0, P—a.s. (37)

ii) For the case& = 0, (37) is also a sufficient condition for (15]
asymptotic stabilizability in the mean square sense.

Remark 5.3:In the case of continuous time AWGN chan-[16]
nel (z = 1), condition (37) is reduced to

C, > [A]T, (38)

capacity.
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