
IEEE TRANSACTION ON AUTOMATION SCIENCE AND ENGINEERING, VOL. XXX, NO. XXX, FEBRUARY XXX 1

A Novel Cyber-Physical System For The Optimal
Heating-Cooling of Buildings

Mahdiyar Barzegar and Alireza Farhadi

Abstract—This paper presents a novel Cyber-Physical System
(CPS) equipped with an advanced Distributed Model Predictive
Control (DMPC) method with reduced order computational
complexity, zero steady-state error, reduced start-up energy
consumption and improved transient response for the optimal
heating-cooling of buildings. The satisfactory application of this
method for the optimal heating-cooling of a large-scale (6-story)
building with 40 rooms is illustrated. Smart Industrial Internet
of Things (IIoT) - based thermostats, a gateway and a general
Quadratic Programming (QP) solver are developed. Using this
hardware set-up, the simulation results for the 6-story building
are verified in a small scale by practical implementation.

Note to Practitioners—This paper proposes a novel cyber-
physical system for the optimal heating-cooling of large-scale
buildings. The proposed system is practical, in particular, for
large-scale buildings because for its realization, we do not need
mighty and therefore expensive computer servers to execute
required optimization problems in real-time. It also has high
reliability and resilience due to its distributed computation
nature and can be realized using available and cost-effective
On-Off electric valves. To implement this system, a general QP
solver, smart IIoT-based thermostats and a gateway are designed,
developed and implemented in a building for the optimal heating
and cooling. The satisfactory performance and superiority of the
proposed system in terms of zero steady-state error, transient
response, applicability for both heating and cooling systems and
limited start-up energy consumption over the traditional as well
as more advanced systems are illustrated by simulation and
practical implementation.

Index Terms—Distributed model predictive control, cyber-
physical system, building automation and control.

I. INTRODUCTION

A. Motivation and Backgrounds

ONE of the growing applications of the Industrial Internet
of Things (IIoT) is in the building automation and

control systems. More than 40 percent of the world’s energy
consumption is related to the heating-cooling of buildings. In
contrast, the performance of the commonly used traditional
hysteresis-based control method for the heating-cooling of
buildings is low. The structure of the multi-zone temperature
control system for buildings is depicted in Fig.1. Due to its
structure, the Model Predictive Control (MPC) is a suitable
method for designing a MIMO controller based on an inte-
grated large-scale thermal dynamic model of building for the
optimal heating and cooling [1]. This MPC controller can be
realized as centralized, decentralized, or distributed.
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One of the commonly used control structures is the central-
ized structure. The centralized structure gets all the system’s
information, then calculates the control law of all the inputs
together, and sends the control signals to the actuators via
the network. The control structure could achieve the best
dynamic performance of the closed-loop system. However,
since there are hundreds (or thousands) of input and output
variables in a large-scale system, the computational burden is
unavoidably high if all control variables are solved together by
a centralized controller hosted in a centralized computer. To
understand this computational complexity drawback, note that
the computational complexity associated with the centralized
constrained optimization problem can be of the order of O(n5)
[2]. Thus, for a large-scale system with thousands of control
inputs, it takes lots of time to calculate the control law of
all the inputs; while this calculation should be done almost
instantaneously. To overcome this drawback, the decentralized
control structure has been proposed in the literature [1]. In the
decentralized control structure, we decompose the centralized
controller into many relevant small scaled controllers. These
controllers work independently even when the corresponding
controlled subsystems are coupled with each other. These
controllers have the advantages of simple structure, less com-
putational burden, better error tolerance, good flexibility, and
accessible design and implementation. However, since there
is no communication and coordination among decentralized
controllers, the controller performance is destroyed if the
coupling among subsystems is strong enough. The traditional
hysteresis - based control method for the heating-cooling
of buildings [3] is an example of a control system with a
fully decentralized structure. To overcome the performance
degradation drawback of the decentralized control structure
and at the same time have the advantages of the decentralized
controller, the distributed control structure has been proposed
[1], [4], [5], [6]. In this control structure, the computational
load of the centralized controller is distributed to distributed
computational units. This paper is concerned with this control
structure with application in the optimal heating-cooling of
buildings.

In [7], a Jacobi interactive-based algorithm that distributes
the computational load of the convex optimization problem
with quadratic cost function to distributed optimizers has been
proposed; and its application in automated irrigation networks
has been illustrated. In [4], a DMPC method for the optimal
heating-cooling of buildings was presented. In the proposed
method in [4], the start-up energy consumption of the HVAC
system may be high; because it only includes constraints on
HVAC units temperature; and it does not consider constraints
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Fig. 1: The multi-zone building temperature control system [1]

on the rate, which HVAC units temperature, changes. Also, in
[4] there is a trade-off between steady-state error and the opti-
mal set-points for HVAC units; and hence, there is always an
steady-state error between rooms temperature and the desired
set points. It also presents an optimization problem that is only
suitable for the heating system and it does not use the weather
forecast to improve the transient response of the system. [5],
[8] and [9] suffer from the same drawbacks. [10] and [11]
propose centralized MPC for the optimal heating of buildings;
and hence, they are not suitable for large-scale buildings.
They also suffer from non-zero steady state error and do not
include the weather forecast to improve the transient response.
They may also suffer from high start-up energy consumption.
[12] and [13] use the weather forecast in their formulation;
but they suffer from high start-up energy consumption, non-
zero steady state error and a problem formulation that is
only suitable for the heating system. In [14], an advanced
optimal On-Off control method for temperature control in
a decentralized structure has been proposed. Decentralized
structure for the proposed control method of [14] may decrease
the performance of the whole HVAC building system; because
the thermal exchange between sub-systems are not considered.
Also, the proposed structure in [14] does not implement feed
forward strategy to compensate measurable disturbances, such
as outside temperature. In [15], the application of MPC in
the optimal heating-cooling of buildings in three different
structures: centralized, decentralized, and distributed has been
presented. The cost function used in the MPC method of [15]
has four terms that could impose a large computational load on
the system and need expensive computer server and processors
to guarantee real-time computation and decision making for
large-scale buildings. In addition, it may suffer from non-
zero steady-state error and high start-up energy consumption.
[16], [17] use a centralized MPC algorithm for the optimal
heating of building; and hence, the proposed structure is not
suitable for large-scale buildings. They also suffer from non-
zero steady state error and high start-up energy consumption.
[18] proposes a method for controlling a room temperature
using both the fan speed and temperature of fan-coil unit. It
uses a non-linear dynamic model and a decentralized MPC

algorithm. [19] also presents a decentralized MPC algorithm
for the temperature regulation of a room with zero steady state
error. It also uses the weather forecast for the temperature
regulation. [18] and [19] use decentralized structure and hence
they do not consider the thermal interaction between sub-
systems. Thus, generally speaking, their performance is not
as good as centralized or distributed structures considered
in this paper. [20] presents an application of IIoT for the
optimal heating-cooling of buildings. It uses weather forecast
to reduce the energy consumption for heating and cooling.
However, the proposed HVAC system suffers from large steady
- state error. [21] proposes a centralized MPC algorithm for
the optimal temperature regulation of building that uses the
weather forecast. [22] presents a centralized MPC algorithm
equipped with a filter for the estimation of the thermal
parameters of building. It suffers from non-zero steady state
error and high start up energy consumption. [21] and [22] use
centralized structure and hence they are not suitable for large-
scale buildings. [23], [24], [25] also use centralized structure.
[23] and [24] suffer from non-zero steady-state error and it
does not use weather forecast. Also, [25] does not use weather
forecast. [26] is a survey paper of MPC algorithms developed
for the optimal temperature regulation. We reviewed some of
the most important MPC algorithms presented in [26] in the
above literature review.

B. Paper Contributions

Our extensive literature review reveals that most of the
available controllers for HVAC system in the literature are
either centralized and therefore are not suitable for large-
scale buildings; or decentralized and therefore have poor
performance. This said, this paper aims to fill the gap in the
literature by proposing a novel distributed control method with
reduced computational complexity that is particularly suitable
for implementation in large – scale buildings. Comparing to
other available distributed control methods for HVAC system,
the proposed method has simple cost function, its formulation
is suitable for both seasons and it results in zero steady-state
error, with reduced start-up energy consumption and improved
transient response. Specifically, in this paper, we propose
the Embedded Integrator (EI)-MPC method by embedding an
integrator in the dynamic system. In the proposed method we
use the weather forecast to improve the transient response. In
fact, this paper proposes a novel IIoT system for the optimal
heating-cooling of buildings that is equipped with the above
distributed EI-MPC. In this system, the computational load of
the centralized MPC controller is distributed to smart IIoT-
based thermostats that are distributed in building. Geograph-
ically separated smart thermostats collaborate and communi-
cate with each other in wireless to generate proper control in-
puts in real time with reduced order computational complexity.
In the proposed IIoT system, the computation (cyber) resource
is integrated with the physical world forming a new type of
IIoT system known as Cyber-Physical System (CPS). In the
proposed CPS the computational load is distributed in the field
layer (i.e., distributed smart thermostats); and therefore, we
do not need a powerful centralized computer server to carry
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out the required computation for the optimization. Hence, the
proposed cyber-physical system is relatively cheaper than the
ordinary IIoT systems. Scalability and much higher reliability,
which are due to its distributed nature, are other advantages
of the proposed system over the IIoT systems.

C. Paper Organization

The paper is organized as follows: the introduction was
given in Section I. The EI-MPC problem is formulated for the
optimal heating-cooling buildings in Section II followed by a
short description of the Jacobi iterative-based algorithm that
distributes the computation load of this method to distributed
optimizers. The reduced order optimization problems to be
solved by distributed optimizers is presented in Section III,
followed by the QP solver. In Section IV, the structure of the
proposed cyber-physical system is presented. The simulation
results are presented in Section V; and the superiority of
the proposed cyber-physical system in the optimal heating-
cooling of buildings over the available DMPC-based methods
and the traditional hysteresis-based method is presented. The
simulation results presented in Section V are verified in a
small-scale in Section VI via practical implementation by
equipping one of the room of the 6-story building used for
simulation with two smart IIoT - based thermostats and a
gateway that we design and develop. The paper is finally
concluded in Section VII.

II. EI-MPC

In this section, we first formulate the EI-MPC method, and
then we briefly describe the Jacobi iterative method introduced
in [7] that distributes the computational load of the EI-MPC
to distributed optimizers.

A. EI-MPC Problem Formulation

Model predictive control is designed based on a mathe-
matical model for the system. The model to be used in the
control system design is the state space model. Utilizing the
state space model, the current information required for the
prediction is represented by the state variable at the current
time. In general, to design the model predictive control, we
use the state space model for a multi-input and multi-output
system as follows:

xm[k + 1] = Amxm[k] +Bmu[k] + Emd[k]

y[k] = Cmxm[k] (1)

where xm is the state variable with the size of ns, u is the
decision variable with the size of nu, d is the measurable
disturbance to the system with the size of nd and y is the
process output of the system with the size of no.

Now, we need to re-write the model to suit for our de-
sign purpose where an integrator is embedded. Taking a
difference operation on both sides of (1), we obtain that
xm[k + 1]− xm[k] = Am(xm[k]− xm[k − 1]) + Bm(u[k]−
u[k− 1]) +Em(d[k]− d[k− 1]). Let us denote the difference
of the state variable by ∆xm[k+ 1] = xm[k+ 1]−xm[k] and
∆xm[k] = xm[k] − xm[k − 1], the difference of the control

variable by ∆u[k] = u[k] − u[k − 1], and the difference
of measurable disturbance by ∆d[k] = d[k] − d[k − 1].
These are the increments of the variables xm[k], u[k], and
d[k], respectively. With this transformation, the difference state
space equation is:

∆xm[k + 1] = Am∆xm[k] +Bm∆u[k] + Em∆d[k] (2)

Note that the input to the above state space model is ∆u[k].
Now we connect ∆xm[k] to the output y[k]. To do so, a new

state variable vector is chosen to be x[k] =

[
∆xm[k]
y[k]

]
. Note

that

y[k + 1]− y[k] = Cm(xm[k + 1]− xm[k]) = Cm∆xm[k + 1]

= CmAm∆xm[k]+

CmBm∆u[k] + CmEm∆d[k] (3)

Putting together (2) and (3) leads to the following state space
model:

x[k + 1] = Ax[k] +B∆u[k] + E∆d[k]

y[k] = Cx[k][
∆xm[k + 1]
y[k + 1]

]
=

[
Am 0tr

1

CmAm 1m

] [
∆xm[k]
y[k]

]
+[

Bm
CmBm

]
∆u[k] +

[
Em

CmEm

]
∆d[k]

y[k] =
[
02 1m

] [∆xm[k]
y[k]

]
(4)

where, the augmented model matrices (A,B,E,C) can be
defined as:

A =

[
Am 0tr

1

CmAm 1m

]
, B =

[
Bm

CmBm

]
, E =

[
Em

CmEm

]
,

C =
[
02 1m

]
.

where 01 is a zero matrix with the size of ns rows and
no columns, 02 is a zero matrix with the size of no rows
and ns columns, 1m is an eye square matrix with the
size of no. Upon formulation of this mathematical model,
the next step in the design of a predictive control system
is to calculate the predicted plant output with the future
control signal as the adjustable variables. This prediction
is described within an optimization window. Here, we as-
sume that the current time is ki and the length of the
optimization window is Np. Assuming that at the sampling
instant ki > 0, the state variable vector x[ki] is available
through measurement, the state x[ki] provides the current
plant information. The future control trajectory is denoted by:
∆U =

[
∆u[ki]

tr ∆u[ki + 1]tr ... ∆u[ki +Nc − 1]tr
]tr

,
where Nc is called the control horizon dictating the number
of parameters used to capture the future control trajectory.
The future measurable disturbance trajectory is denoted by:
∆D =

[
∆d[ki]

tr ∆d[ki + 1]tr ... ∆d[ki +Np − 1]tr
]tr

,
With given information x[ki], the future state variables are
predicted for Np number of samples, where Np is called
the prediction horizon. Np is also the length of the opti-
mization window. We denote the future state variables as:
x[ki + 1|ki], x[ki + 2|ki], x[ki + m|ki], ..., x[ki + Np|ki],
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where x[ki + m|ki] is the predicted state variable at the
time instant ki + m with the given current plant information
x[ki]. Subsequently, the predicted output is y[ki + m|ki] =
Cx[ki + m|ki] and the future output trajectory is Y =[
y[ki + 1|ki]tr y[ki + 2|ki]tr ... y[ki +Np|ki]tr

]tr
. The

control horizon Nc is chosen to be less than (or equal to)
the prediction horizon Np. Based on the state-space model
(A,B,E,C), the predicted output variables are calculated
sequentially using the set of future control parameters:

y(ki +m|ki) = CAmx(ki)+
m−1∑

i=max(0,m−Nc)

CAiB∆u(ki +m− 1− i)+

m−1∑
i=0

CAiE∆d(ki +Np − 1− i)

m ∈ {1, ..., Np} (5)

Note that all predicted variables are formulated in terms of the
current state variable information x[ki] and the future control
movement ∆u[ki+ j], where j = 0, 1, . . . , Nc−1. We collect
the above equations together in a compact matrix form as:

Y = Fx[ki] + Φ∆U + Z∆D,

F =


CA
CA2

...

CANp

 ,Φ =


CB 0 ... 0
CAB CB ... 0
CA2B CAB ... 0

...

CANp−1B CANp−2B ... CANp−NcB

 ,

Z =


CE 0 ... 0
CAE CE ... 0
CA2E CAE ... 0

...

CANp−1E CANp−2E ... CANp−1E

 .
Denote the set-point signal vector by r[ki] at the sample

time ki, then the vector of the future desired set-points is:

Rtrs =
[
r[ki + 1]tr r[ki + 2]tr ... r[ki +Np]

tr
]
.

Now, we can rewrite the cost function J that reflects the
control objective as follows:

J = ||Rs − Y ||Q + ||∆U ||R
= (Rs − Y )trQ(Rs − Y ) + ∆U trR∆U,

where Q and R are the diagonal weighting matrices. To find
the optimal ∆U that minimizes J , we express J as:

J = (Rs − Fxk − Z∆D)trQ(Rs − Fxk − Z∆D)

+ 2(Fxk + Z∆D −Rs)tr(Q+Qtr)trΦ∆U

+ ∆U tr(ΦtrQΦ +R)∆U

Finally, we can define the optimization problem to be solved
in order to find the optimal ∆U as the following standard
convex quadratic optimization problem: min[ 1

2∆U trP∆U +

Ctr∆U ] subject to

∆umin ≤ ∆u[ki + q] ≤ ∆umax,

umin − u[ki + q − 1] ≤ ∆u[ki + q] ≤ umax − u[ki + q − 1],

u[ki + q] = u[ki − 1] +

q∑
j=0

∆u[ki + j],

P = 2(ΦtrQΦ +R),

C = Φtr(Q+Qtr)(Fx[ki] + Z∆D −Rs),
q ∈ {0, 1, ..., Nc − 1}

After solving this optimization problem, u[ki] is applied to the
system (1) and the above optimization problem is formulated
and solved for the next time step ki + 1.

B. The Jacobi based Iterative Algorithm
The Jacobi-based iterative algorithm proposed in [7] ap-

proximates the solution of the following convex optimization
problem with the cost function of J (which is a quadratic
function of the decision variables u1, u2, ..., un) subject to
the convex constraint sets Ui.

min
ui∈Ui

J(u1, u2, ..., un), i = {1, 2, ..., n}. (6)

Note that the optimization problem formulated in the previous
section is of the type of the above optimization problem; and
therefore, the following algorithm can be used to approximate
the solution of the optimization problem of the previous sec-
tion with the computational complexity of O(n) [2]. Note that
for large-scale buildings, the computational complexity of the
Jacobi iterative algorithm is much less than the computational
complexity of the conventional centralized methods (e.g., the
active set method, the interior point method) that are of the
order of O(n5) [2]. Here, it is assumed that an optimizer exists
for each decision variable; and optimizers form a connected
communication graph so that each optimizer can communicate
with all other optimizers. Having that, the Jacobi iterative
algorithm consists of the following two steps:
Initialization: At the first iteration, i.e., t = 0, each optimizer
chooses an arbitrary but feasible (i.e., u0

i ∈ Ui) value for its
decision variable. Then, it shares it with all other optimizers.
Therefore, in the beginning, each optimizer knows the value of
its decision variable and other optimizers decision variables.
After initialization step, we have the second step, which is the
update and all to all communication as follows:
Update and Communication: At the iteration t ≥ 1, all of
the optimizers in parallel update their decision variables as
follows by focusing only on their decision variables and fixing
the decision variables of other optimizers.

h∗i = argminhi∈UiJ(ut−1
1 , ut−1

2 , ..., ut−1
i−1, hi, u

t−1
i+1, ...)

uti = λih
∗
i + (1− λi)ut−1

i . (7)

where in the above relations, λi ∈ R are chosen a priori as
follows: 0 < λi < 1,

∑n
i=1 λi = 1. After each update, all

optimizers share their updated decision variables uti with other
optimizers, and the above procedure is repeated for the next
iteration t+1. Note that since in the above two-step algorithm,
each optimizer solves a reduced order optimization problem
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by focusing on its decision variable in parallel with other
optimizers at each update, the required time for finding the
solution using this algorithm is relatively much smaller than
that of the conventional centralized techniques, particularly for
large scale problems. It is proved in [7] that the above iterative
solution converges to the unique optimal solution of the convex
optimization problem (6).

III. THE REDUCED ORDER OPTIMIZATION PROBLEM

The main objective of this paper is to distribute the computa-
tional load of the optimization problem of the previous section
to distributed optimizers using the Jacobi iterative method. In
other words, we need to decompose the above optimization
problem with the number of Nc×nu decision variables to nu
quadratic convex optimization problems with the number of
Nc decision variables. In this section, we present this reduced-
order optimization problem. Note that in the centralized op-
timization problem of previous section if we choose ∆U as
follows: ∆U tr = [∆u1[ki + 1]tr ∆u2[ki + 1]tr ... ∆unu [ki +
1]tr ∆u1[ki+2]tr ∆u2[ki+2]tr ... ∆unu [ki+2]tr ... ∆u1[ki+
Nc]

tr ∆u2[ki+Nc]
tr ...∆un[ki+Nc]

tr], then the reduced or-
der optimization problem to be solved by the ρ ∈ {1, 2, ..., nu}
optimizer is described as follows:

min
∆Uρ

[
1

2
∆U trρ Hρ∆Uρ +Gρ

tr∆Uρ]

subject to
∆umin ≤ ∆uρ[ki + q] ≤ ∆umax,

umin − uρ[ki + q − 1] ≤ ∆uρ[ki + q] ≤ umax − uρ[ki + q − 1],

uρ[ki + q] = uρ[ki − 1] +

q∑
j=0

∆uρ[ki + j],

q ∈ {0, 1, ..., Nc − 1},

∆Uρ =


∆uρ[ki + 1]
∆uρ[ki + 2]

...

∆uρ[ki +Nc]

 ,

Hρ =


h1,1ρ h1,2ρ ... h1,Ncρ

h2,1ρ h2,2ρ ... h2,Ncρ

...

hNc,1ρ hNc,2ρ ... hNc,Ncρ

 , Gρ =


g1ρ

g2ρ

...

gNcρ

 ,
hi,jρ = [P ]ρ(i−1)nu,ρ+(j−1)nu ,

giρ = [C](i−1)nu+ρ + 1/2

Nc∑
j=1

nu∑
λ=1,λ 6=ρ

∆uλ[j − 1]

∗ ([P ]ρ+(i−1)nu,(j−1)nu+λ + [P ](j−1)nu+λ,ρ+(i−1)nu),

i, j ∈ {1, ..., Nc}.

A QP solver is developed based on the following active set
method algorithm [27], and it is hard coded in the distributed
IIoT-based smart thermostats that we design and develop for
the practical implementation. The active set method algorithm

is concerned with the solution of the following constrained
quadratic convex optimization problem:

min
u
J(u), J(u) =

1

2
utrQu+ qtru, Q > 0

subject to Au = a and Bu ≤ b.
Strategy [27]:
• Start from an arbitrary but feasible point u0

• Find the next iterate by setting ut+1 = ut + αtdt.
Note that the non-negative scalar αt is the step length and the
vector dt is the search direction. Now, the questions are how
to determine the search direction dt and the step length αt so
that ut + αtdt is feasible.
dt is chosen using the following algorithm:
Algorithm for finding dt:
• At the current iterate ut determine the index set of

active inequality constraints: Ak = {j|btrj ut − bj =
0, j = 1, 2, ...,m2}, where bj is a column of the matrix
B that corresponds to the jth active inequality constraint.

• Solve the direction finding problem using KKT method
[27] or the Newton’s method: mind(

1
2d
trQd+gtrd), g =

Qut + q subject to Ad = 0 and B̃d = 0, where B̃ is a
matrix with bjs as their columns.

Having that, the optimal solution u∗ is obtained as follows:
• Start from an arbitrary but feasible vector u0

• Identify the active index set A0

• Find d0

If dt = 0, stop. ut is the optimal solution
If dt 6= 0, update αt so that ut + αtdt is feasible and
then update ut+1 = ut + αtdt and go back and find the
active index set At+1 and repeat the above procedure
until dt = 0.

Based on the above algorithm we have developed a general
QP solver and hard coded it in the smart thermostats for solv-
ing the following quadratic convex constrained optimization
problem:

min
∆Uρ

(
1

2
∆U trρ Hρ∆Uρ +Gtrρ ∆Uρ), Hρ > 0

subject to ∆Umin ≤ ∆Uρ ≤ ∆Umax, where ∆Umin =[
∆utrmin ... ∆utrmin

]tr
and ∆Umax =

[
∆utrmax ... ∆utrmax

]tr
.

IV. THE STRUCTURE OF THE CYBER-PHYSICAL SYSTEM
FOR THE OPTIMAL HEATING-COOLING OF BUILDING

This section presents the structure of the proposed cyber-
physical system for the optimal heating-cooling of building.
In Fig. 2, the network structure of the proposed system
is shown. In this structure, each room is equipped with a
smart IIoT-based thermostat that is described with details in
Section VI. Note that each room is equipped with at least
one fan-coil unit. In winter time fan-coil unit is supplied
with hot water produced by centralized boiler and in summer
season it is supplied with cold water produced by chiller.
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Distributed MPC Network
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Fig. 2: The structure of the proposed CPS for the optimal heating-cooling of
building
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Fig. 3: The block diagram of the proposed control strategy in each room. 1:
Predicted Output, 2: Constraints, 3: Cost Functions, 4: Predicted Input, 5:

Fan-Coil Air Temperature, PM: Plant Model, OP: Optimizer

The output temperature of the fan-coil unit is controlled
by a fan and a electric valve that controls the input flow
rate of hot/cold water to fan-coil unit. Sub-MPC problems
are embedded in smart distributed thermostats forming a
distributed MPC network. Each smart thermostat solves its
sub-MPC problem in collaboration and communication with
other smart thermostats to determine the proper set-point for
its fan-coil units output temperature. In the proposed structure
there is a gateway in the network that connects the distributed
MPC network to a computer server connected to the Internet
for monitoring and intervention by high level supervisor. This
gateway receives the weather forecast data from the server
and broadcasts it to all smart thermostats for feed-forwarding.

In Fig. 3, the proposed control structure for each room
is shown. Using the proposed DMPC method, the optimal
HVAC set-points that regulate rooms’ temperature around the
desired set-point (Rs) is computed by the distributed MPC
network with the period of LTs seconds, where L is the
re-sampling period and Ts is the sample rate that we sample
the rooms temperature. Note that in the dynamic model
(1) the time period between to successive time instants, k
and k + 1 is LTs seconds. To apply the computed HVAC
set-points generated by the proposed DMPC method to the
fan-coil units, an hysteresis control structure, as shown in
Fig. 3, is used. This method enables us to equip fan-coil units
to On-Off valves for HVAC temperature regulation, which
are cost effective. The simulation results and the practical
implementation results given in Sections V and VI illustrate
that using this set-up, the satisfactory performance is achieved.

In order to guarantee the feasibility of distributed optimiz-
ers umin and umax in the problem formulation of Section
III should be dynamic depending on the season. In HVAC

systems, there are two HVAC modes: heating (winter season)
and cooling (summer season). If the HVAC system works in
heating mode, the minimum temperature of the fan-coil unit
occurred when the valve and/or fan of the fan-coil unit is off;
and hence, the minimum fan-coil unit temperature is equal to
the room temperature at that time. Similarly; when the HVAC
system works in cooling mode (summer season), the maximum
temperature of the fan-coil unit occurred when the valve and/or
fan of the fan-coil unit is off; and hence, the maximum fan-coil
unit temperature is equal to the room temperature at that time.
Thus; the inequality constraints for the optimization problem
formulated in Section III should be re-formulated as follows
to comply with the feasibility of the problem:

HVAC Heating Mode:

yρ − uρ[ki + q − 1] ≤ ∆uρ[ki + q],

∆uρ[ki + q] ≤ umax − uρ[ki + q − 1].

HVAC Cooling Mode:

umin − uρ[ki + q − 1] ≤ ∆uρ[ki + q],

∆uρ[ki + q] ≤ yρ − uρ[ki + q − 1].

V. SIMULATION RESULTS

In this section we apply the proposed cyber-physical system
equipped with the proposed EI-MPC to a 6-story building with
40 rooms to regulate its rooms temperature. We compare the
proposed EI-MPC performance with the performances of the
available DMPC (e.g., proposed in [7], [4]) for the temperature
regulation of this building, and also the performance of the
traditional hysteresis - based method [3]. We use the Design
Builder Software [28] to model the thermal behaviour of this
6-story building with 40 rooms, as shown in Fig. 4. Using this
software, the thermal model of this building has the following
linear state space representation:

xm[k + 1] = Amxm[k] +Bmu[k] + Emd[k]

y[k] = Cmxm[k] (8)

where here xm is the state vector of the system, v is the
decision vector of the system (the temperature of HVAC units),
y is the sensor measurements (rooms temperature) and d is the
measurable disturbance vector, d[k] =

[
Ta[k] Tc[k] Tf [k]

]tr
,

where Ta is the measurable outside temperature, Tc is the
unknown corridor floors temperature, and Tf is the unknown
first floor ground temperature. We extract the matrices
coefficients Am, Bm,, Cm and Em from the Design Builder
software.

Note that the measurable outside temperature Ta is feed-
forwarded to design the controller and Tc and Tf does not
considered in the design of controller and that are treated
as unknown disturbances. For simulation it is assumed that
no = 40, ni = 40, ns = 40, Ts = 60 seconds and L = 5.
The authorized static bounds for the decision variables are
umin = 16 Centigrade, umax = 50 Centigrade, ∆umax = +4
Centigrade and ∆umin = −4 Centigrade. The control horizon
should be selected based on the transient response of the
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Fig. 4: A view of the 6-story building used for simulation

thermal dynamic of the building; and we choose it to be
Np = Nc = 10. Throughout, we set R = 0.05I and Q = I
and the number of iterations for distributed optimization is
set to be 100. To simulate the fan-coil unit and On-Off valve
operation, the first order response model is used for fan-coil
air temperature modelling and the first order time constant is
chosen to be τ = 2min. In simulation, the outside temperature
variates and throughout it is assumed that the speed of the fan-
coil units is set for high and the fan-coil units temperature is
controlled by On-Off valves .

In Figs. (5, 6, 7,8), it is assumed that the fan-coil units are in
the heating mode (winter session) and the outside temperature
variates between Ta = [12, 18] Centigrade and corridor floors
and ground floor temperatures are assumed to be Tc = 25
Centigrade and Tf = 15 Centigrade, respectively. The room
initial temperature is assumed to be 18 Centigrade.
Having that, Fig. 5 illustrates the system’s response for the
temperature regulation around set-points 23 Centigrade and 26
Centigrade when the control variables are generated from the
centralized EI-MPC method. From this figure it is clear that the
temperature of each room reaches to the desired temperature
with minor fluctuations around it indicating zero steady - state
error; and the maximum temperature of the fan-coil units
reaches to 36. Fig. 6 illustrates the system’s response when
the control variables are generated from the standard DMPC
(proposed in [7], [4]). This figure illustrates a large steady
state error. Fig. 7 illustrates the response when the control
variables are generated from the proposed distributed EI-MPC
with the number of iterations equal to 100 that distributes the
computational load of the centralized EI-MPC to distributed
thermostats. This figure illustrates a response similar to cen-
tralized EI-MPC. Fig. 8 illustrates the response of the tradi-
tional hysteresis-based method. In this figure different colors
are used for different rooms. Top figure illustrates that there are
high fluctuation (±1 Centigrade) around the desired set points
of 23 Centigrade and 26 Centigrade. Bottom figure illustrates
that the temperatures of the fan-coil units are frequently
changing between 24 Centigrade and 50 Centigrade. From
these figures, it follows that the proposed EI-MPC method

Fig. 5: Temperature regulation response of the case study building for the
heating mode when the centralized EI-MPC is used. Different colors are

used for different rooms. Top figure illustrates that the temperature of each
room reaches to the desired temperature. Bottom figure illustrates control

efforts.

results in a better performance compared with the standard
DMPC method previously proposed in [7] and [4] in terms of
temperature regulation. It results in minor fluctuations around
desired temperature indicating zero steady-state error; while
the available results in the literature result in very large steady-
state error. It also results in limited start-up fan-coil units
temperature that results in the start-up energy consumption
optimization, which is beneficial in winter time for temperature
regulation. From the simulation results it also follows that the
distributed EI-MPC method results in a performance similar
to the performance of the centralized EI-MPC; but with much
less computational complexity. This is especially beneficial
for large-scale buildings, where the computational complexity
associated with the centralized EI-MPC is considerable high.
Note that as shown in [2], the computational complexity of
the centralized method is of the order of O(n5). In contrast,
the computational complexity associated with the distributed
method is of the order of O(n). Hence, the distributed EI-
MPC is especially useful in large-scale buildings with many
rooms. From Fig. 8, it follows that the performance of the
traditional hysteresis-based method is poor in terms of the
response and the control efforts. Specifically, the temperature
of the centralized boiler should be set at least 14 Centigrade
higher than that of the proposed MPC based methods. In other
words, using the proposed EI-MPC methods, we can reach the
same desired room temperature with zero steady-state error
and significantly lower centralized boiler temperature. This
means saving lots of energy for heating building. This result
is also verified in the practical implementation section.

In Figs. (9, 10, 11, 12), it is assumed that the fan-coil units
are in the cooling mode (summer session) and the outside
temperature variates between Ta = [28, 34] Centigrade and
corridor floors and ground floor temperatures are assumed
to be Tc = 25 Centigrade and Tf = 28 Centigrade,
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Fig. 6: Temperature regulation response of the case study building for the
heating mode when the distributed standard MPC of [7] and [4] is used. Top
figure illustrates large steady state error in temperature regulation around the

desired set points of 23 Centigrade and 26 Centigrade.

Fig. 7: Temperature regulation response of the case study building for the
heating mode when the proposed distributed EI-MPC is used. Top figure

illustrates that the temperature of each room reaches to the desired
temperature. Bottom figure illustrates similar control efforts as the

centralized EI-MPC.

respectively. The room initial temperature is assumed to
be 30 Centigrade. Fig. 9 illustrates the response of the
system for the temperature regulation around set-points 26
Centigrade and 23 Centigrade when the control variables are
generated from the centralized EI-MPC method. This figure
illustrates that each room reaches to the desired temperature.
Fig. 10 illustrates the response when the control variables
are generated from the distributed standard MPC method
proposed in [7], [4]. This figure illustrates large steady
state error. Fig. 11 illustrates the response when the control
variables are generated from the proposed distributed EI-MPC
with the number of iterations equal to 100 that distributes the

Fig. 8: Temperature regulation response of the case study building for the
heating mode when the traditional hysteresis - based method is used.

Different colors are used for different rooms. Top figure illustrates that there
are high fluctuation (±1 Centigrade) around the desired set points of 23

Centigrade and 26 Centigrade. Bottom figure illustrates that the temperature
of the fan-coil units are frequently changing between 24 Centigrade and 50

Centigrade.

computation load of the centralized EI-MPC to distributed
thermostats. This figure illustrates a response similar to
centralized EI-MPC. Fig. 12 illustrates the response of the
traditional hysteresis-based method. Top figure illustrates
that there are high fluctuation (±1 Centigrade) around the
desired set points of 26 Centigrade and 23 Centigrade.
Bottom figure illustrates that the temperatures of the fan-coil
units are frequently changing between 25 Centigrade and 12
Centigrade. From these figures, it follows that the proposed
EI-MPC method also results in a better performance in
summer mode compared with the performances of the
standard MPC method previously proposed in [7] and [4] and
the traditional hysteresis-based method.

In Fig. 13, the effects of using outside (air) temperature
feed forward mechanism in rooms temperature regulation is
shown. As it is clear from this simulation, the air temperature
feed forward mechanism; and in particular, air temperature
forecast feed forwarding have significant effect in improving
the transient response of the rooms temperature regulation.

VI. THE PRACTICAL IMPLEMENTATION RESULTS

To evaluate the performance of the proposed distributed
MPC method for the optimal heating-cooling of buildings,
we design and develop the smart thermostat of Fig. 14 and
a gateway. For the practical implementation we use two smart
thermostats. Each smart thermostat includes an on-board tem-
perature and humidity sensor for measuring the room temper-
ature and humidity. It also provides light and motion detection
sensors, two one-wire temperature sensors for measuring the
fan coil unit temperature, two digital outputs for activating
two electric valves, two electric relays for activating the fan-
coil unit’s fan, and an ESP32 IIoT module for data exchange
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Fig. 9: Temperature regulation response of the case study building for the
cooling mode when the centralized EI-MPC is used. Different colors are

used for different rooms. Top figure illustrates that the temperature of each
room reaches to the desired temperature. Bottom figure illustrates control

efforts for such a good temperature regulation.

Fig. 10: Temperature regulation response of the case study building for the
cooling mode when the distributed standard MPC of [7] and [4] is used. To
figure illustrates large steady state error around the desired set points of 26

Centigrade and 23 Centigrade.

between the smart thermostats and gateway. Note that each
smart thermostat can monitor and control at maximum two
fan coil units simultaneously. The ESP32 module consists of
two cores. We use one for handling data exchange and the
other one for centralized or distributed computation.

Using this set-up, we aim to regulate the temperature of
one of the rooms of the 6-story building used in Section
V for simulation. This room is equipped with two fan-coil
units as shown in Fig. 15. For the temperature regulation
of this room we need a plant model for each room. This
model is obtained by the Design Builder software used for
simulation study. This is a commercial widely used software

Fig. 11: Temperature regulation response of the case study building for the
cooling mode when the proposed distributed EI-MPC is used. Top figure

illustrates that the temperature of each room reaches to the desired
temperature. Bottom figure illustrates similar control efforts as the

centralized EI-MPC.

Fig. 12: Temperature regulation response of the case study building for the
cooling mode when the traditional hysteresis -based method is used. Top

figure illustrates that there are high fluctuation (±1 Centigrade) around the
desired set points of 26 Centigrade and 23 Centigrade. Bottom figure

illustrates that the temperature of the fan-coil units are frequently changing
between 25 Centigrade and 12 Centigrade.

for thermal modelling of buildings. This software uses the
building plan and builds thermal model. Obviously, there is
mis-match between the model and the thermal behaviour of
the room. But as we have shown in [4] using feedback this mis-
match is compensated. Using this set-up we aim to compare
the performances of the centralized EI-MPC, the distributed
standard MPC proposed in [7] and [4], the proposed distributed
EI-MPC and the traditional hysteresis - based control method
using the available thermostat of the room. In this way, we
can verify the simulation results presented in Section V for
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Fig. 13: The effects of not using/using feed-forward mechanism for the
rooms temperature regulation. Top figure: without outside (air) temperature

feed-forward mechanism. Middle figure: with air temperature feed
forwarding. Bottom figure: with air temperature forecast feed forwarding

the large-scale building of Section V in a small-scale. The
thermal dynamic of the room is as follows:

xm[k + 1] = Amxm[k] +Bmu[k] + Emd[k]

y[k] = Cmxm[k] (9)

where Am = 0.7808, Bm =
[
0.0523 0.0523

]
, Em =[

0.0507 0.0639
]
, Cm = 1 and d[k] =

[
Ta
To

]
. To is the

temperature of the other rooms, which is unknown and con-
sidered as disturbance. Throughout experiments, fan speed is
set for the high speed; the decision variable is the fan-coil
unit temperature, which is controlled by the smart thermostat
via controlling the on/off duty cycle of the electric valve
installed on the water path of the fan-coil unit. We use two
smart thermostats to implement the distributed method, each
responsible for controlling one fan-coil unit. For the other
cases, we use only one smart thermostat that controls both
fan-coil units. Each method is implemented for 24 hours from
12 PM to 11:59 AM in the next day. The smart thermostats
are set for the heating mode (as we were in the winter session
during experiments), the temperature of the centralized boiler
of the building is set to be 60 Centigrade and umin = Troom
and umax = 50 Centigrade, respectively. The room desired
temperature (set-point) is set for 25 and ∆umax = 4 Centi-
grade and ∆umin = −4 Centigrade. From 8 AM (in the
morning) to 16 (in the afternoon), the room is occupied by
2 or 3 students. They frequently open windows during these
hours for fresh air. This can be considered as disturbance to
the system. Despite this disturbance, it is shown here that a
satisfactory temperature regulation around the desired set point
is achieved; while there is mis-match between the model and
the actual thermal behaviour of the room. This is due to the
existence of feedback control for the temperature regulation.
For the MPC-based methods, the configuration coefficients are

Fig. 14: The developed smart thermostat

Fig. 15: A view of the room equipped with smart thermostats

set to be R = 0.05 and Q = 1. Then, MPC Strategy updates
the desired temperature of the fan-coil unit every 5 minutes.
Subsequently, using a closed loop control strategy as shown
in Fig. 3 by measuring the temperature of the fan-coil unit
each minute, the smart thermostat correctly open or close the
electric valve of the fan-coil unit to make sure that the fan-coil
unit temperature reaches to the desired temperature obtained
by the MPC strategy.

Having that, Figs. (16, 17, 18, 19) illustrate practical
implementation results. Fig. 16 illustrates the results of the
room temperature regulation around the desired set-point of 25
Centigrade using the centralized EI-MPC. Also, Fig. 17, Fig.
18, and Fig. 19 illustrate the results of the room temperature
regulation around the desired set-point (i.e., 25 Centigrade) us-
ing the proposed distributed EI-MPC, the distributed standard
MPC proposed in [7] and [4] and the traditional hysteresis-
based control using the available thermostat of the room.
In Table I, we compare these control strategies with each
other. As it is clear from this table and figures, all methods
could eventually regulate the room temperature around the
desired set-point of 25 Centigrade; but by looking at the
average room temperature and the variation of the room
temperature around the desired set-point of 25 Centigrade;
it is clear that the proposed distributed EI-MPC and the
centralized EI-MPC have much better performance compared
with other methods, i.e., the standard MPC method proposed
in [7] and [4] and the traditional hysteresis-based method.
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Temperature[◦C] Control Method
Centralized EI-MPC Distributed EI-MPC Standard MPC Hysteresis Control

Room (avg) 25.01 25.02 25.71 25.42
Room (Min) 23 23.5 20.25 24.25
Room (Max) 27 26.25 27.25 28.25
Room (var) 0.34 0.19 2.16 0.9825
Mean Fan-coil (avg) 28.3 28.71 28.46 28.16
Mean Fan-coil (Min) 23.37 24.4 26.59 23.09
Mean Fan-coil (Max) 36.71 37.28 30.68 39.25
Mean Fan-coil (var) 12.04 9.23 0.69 20.61
Air (avg) 13.36 13.27 12.24 12.79
Air (Min) 10 9 8 8
Air (Max) 16 18 17 18
Air (var) 2.40 11.64 9.85 9.25

TABLE I: Performance comparison between different methods. Mean
Fan-coil temperature means the average temperatures of two fan-coil units.

Fig. 16: Room temperature regulation response when the centralized
EI-MPC is used

Specifically, the proposed method results in zero steady-state
error; while the traditional method and the available method
in the literature result in a large and unacceptable steady-state
error. This result is consistent with the simulation results and
it verifies the simulation results for the 6-story building in a
small-scale. In particular, Fig. 17 illustrates that for most of
the time, the HVAC temperatures of the two fan-coil units of
the room when the distributed EI-MPC is used, is around 25
Centigrade; except for 3 hours that reaches to 40 Centigrade. In
comparison, this time is almost half of the times that the HVAC
temperature of the classical hysteresis based method (i.e., Fig.
19) reaches to 40 Centigrade. Hence; if the centralized boiler
is only responsible for these two fan-coil units, the required
time that the centralized boiler needs to be turned on for the
proposed EI-MPC method is almost half of the time for the
classical method. This means energy saving.

VII. CONCLUSION AND FUTURE RESEARCH DIRECTION

This paper proposed a novel cyber-physical system for the
optimal heating-cooling of buildings. For the future, it is
interesting to equip the whole rooms of this 6-story building
with smart IIoT-based thermostats. This research direction is
currently under way in our research team by equipping the
6-story building with the commercial version of the smart
thermostat developed in this paper, as shown in Fig. 20. In this
way, we may even have better results; because for the case of
one room, the temperature of surrounding rooms is considered

Fig. 17: Room temperature regulation response when the distributed
EI-MPC is used

Fig. 18: Room temperature regulation response when the distributed MPC
proposed in [7], [4] is used

as disturbance; while for the other case, the controllers of
surrounding rooms collaborate with the controller of the room
of Fig. 15 for the temperature regulation.
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