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Abstract

The robust entropy rate is defined as the maximum of the Shannon entropy
rate, when the joint probability density function of the source is unknown. The
uncertainty of the source probability density is described via a relative entropy
constraint set between the uncertain source probability density and the nominal
source probability density. For this class of problems, the explicit solution for the
robust entropy rate is presented. Further, the results are applied to specific uncer-
tain sources. For the fully observed uncertain Gauss Markov source, a lower bound
is found for the robust entropy rate in terms of the solution of an algebraic Riccati
equation of the type arising in the H∞ estimation and control. Finally, an appli-
cation of the robust entropy rate for analyzing uniform asymptotic observability
and stabilizability of a control/communication system is given. It is shown that for
uniform asymptotic observability and stabilizability of an uncertain controlled sys-
tem over an uncertain communication link, the required robust information channel
capacity must be bounded below by the robust entropy rate.

1 Introduction

The objective of this paper is to extend the notion of entropy and subsequently entropy
rate to the case when there is uncertainty in the source distribution. Furthermore, to
present an application of this notion in analyzing a control/communication system sub-
ject to uncertainty.
The robust entropy is defined as the maximum of the Shannon entropy over a family
of sources belonging to an uncertainty set. The explicit solution to the robust entropy
is given when the uncertainty set is described by a constraint on the relative entropy
between the set of uncertain source Probability Density Functions (PDF’s) and the cor-
responding nominal source PDF. Then, specific examples are worked out to illustrate
the theory. Subsequently, an application of the robust entropy rate is presented to ad-
dress necessary conditions for uniform asymptotic observability and stabilizability of a
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control/communication system subject to uncertainty.
This paper is organized as follows. In Section 2, the robust entropy and the robust entropy
rate are defined and the explicit solution to the robust entropy is presented. Furthermore,
a lower bound is found for the robust entropy rate of the fully observed uncertain Gauss
Markov source. Finally, in Section 3, the connection between the robust entropy rate and
uniform asymptotic observability and stabilizability of a control/communication system
subject to uncertainty is presented. Previous work is found in [1]-[11].

2 Robust Entropy

Information sources and communication channels, in communication applications are
often described via probabilistic models. In the analysis and design of telecommunication
systems, entropy and channel capacity are the most important concepts when addressing
reliability and performance of communication systems. Since the general goal in this
paper is to design systems which perform well under uncertainty in the system dynamic
and the channel, our first objective is to extend the information theoretic notion of
entropy to its robust analogue. In this Section, we introduce the notion of robust entropy
and subsequently robust entropy rate, when the information source, while uncertain, it
belongs to a family of probabilistic model. Frequency domain uncertainty is described
in [9]. The robust entropy is defined as the maximum of the Shannon entropy over the
family of the sources belonging to the uncertainty set. When the uncertainty in source
is described by the relative entropy uncertainty set, an explicit solution to the robust
entropy is derived. Then, specific examples are presented to illustrate the theory. The
results of this Section is used in Section 3 to address the question of uniform observability
and stabilizability of an uncertain plant, described via relative entropy uncertainty set,
when it is controlled via an uncertain communication channel.

2.1 Robust Entropy: Definition

Let D denote the space of PDF’s. Assume the source induces a PDF which belongs to
the uncertainty set DSU ⊂ D. Then, we have the following definition for robust entropy
and robust entropy rate.

Definition 2.1 (Robust Entropy and Robust Entropy Rate)
i) Robust Entropy. Let Y be a R.V. corresponding to the uncertain source, and fY (y) ∈
DSU ⊂ D be the corresponding PDF. The robust entropy associated with the family DSU

is defined by

Hrobust(f
∗
Y )

4
= sup

fY ∈DSU

HS(fY ). (1)

ii) Robust Entropy Rate. Let Y0,T−1
4
= {Y0, Y1, ..., YT−1} be a sequences with length T

corresponding to the uncertain source outcomes. The robust entropy rate associated with
the family DSU of the joint PDF of Y0,T−1 is defined by

Hrobust(Y)
4
= lim

T→∞
1

T
Hrobust(f

∗
Y0,T−1

),

Hrobust(f
∗
Y0,T−1

) = sup
fY0,T−1

∈DSU

HS(fY0,T−1
), (2)

provided the limit exists.
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2.2 Relative Entropy Uncertainty Set

Throughout this Section, we are concerned with an uncertain set defined by

DSU(gY )
4
= {fY ∈ D; H(fY |gY ) ≤ Rc + EfY (L(y))}, (3)

where H(.|.) is the relative entropy between two PDF’s, Rc ∈ (0,∞) is fixed, gY (y) ∈ D
is the fixed nominal PDF, EfY (.) denotes expectation with respect to uncertain PDF fY

and L(y) ≥ 0.
Typical perturbations allowed under the above relative entropy constraint are perturba-
tions in the mean of the nominal PDF. Such perturbations in the mean can be generated
by uncertain dynamics [7]. One example of such a perturbations is given in Section 2.3.2.
Next, in the following theorem, the explicit solution to the robust entropy is given when
the uncertainty set is described by (3).

Theorem 2.2 Suppose for some s ∈ (0,∞), s
1+s

L(y) − 1
1+s

log gY (y) is bounded from

below, (eL(y)gY (y))
s

1+s ∈ L1(`(<d)), and sL(y)−log gY (y)
1+s

(eL(y)gY (y))
s

1+s ∈ L1(`(<d)), where

L1(`(<d)) is the space of integrable functions with respect to the Lebesgue measure `(.)
defined on (<d,B(<d)). Then
i)

Hrobust(f
∗,s∗
Y ) = min

s>0
{sRc + (1 + s) log

∫

<d
(eL(y)gY (y))

s
1+s dy}

f ∗,sY =
(eL(y)gY (y))

s
1+s

∫
<d(eL(y)gY (y))

s
1+s dy

, (4)

in which s∗ > 0 is the minimizing s ∈ (0,∞).
ii) Furthermore, if for some s ∈ (0,∞), [log(eL(y)gY (y))]2(eL(y)gY (y))

s
1+s ∈ L1(`(<d))

and [log(eL(y)gY (y))](eL(y)gY (y))
s

1+s ∈ L1(`(<d)), the minimizing s∗ > 0 is the unique
solution of

G(s)
4
= H(f ∗,sY |gY )− Ef∗,s

Y (L(y))
∣∣∣
s=s∗

= Rc. (5)

Moreover, G(s) is non-increasing function of s ∈ (0,∞), that is

0 ≤ G(s)
∣∣∣
s=s2

≤ G(s)
∣∣∣
s=s1

≤ G(s)
∣∣∣
s=s∗

= Rc 0 < s∗ ≤ s1 ≤ s2. (6)

Corollary 2.3 (Robust Entropy Rate). Let Y0,T−1
4
= {Y0, Y1, ..., YT−1}, Yi : (Ω,F(Ω)) →

(<d,B(<d)), i = 1, 2, ..., T − 1 be a sequence with length T of the source outcomes cor-
responding to the uncertain joint PDF fY0,T−1

(y0,T−1) ∈ DSU(gY0,T−1
), and Rc → TRc.

Then the robust entropy is given by

Hrobust(Y)
4
= lim

T→∞
sup

{fY0,T−1
∈D; 1

T
H(fY0,T−1

|gY0,T−1
)≤Rc+

1
T

E
fY0,T−1 (L(y0,T−1))}

1

T
HS(fY0,T−1

)

= lim
T→∞

min
s>0

{sRc +
1 + s

T
log

∫

<Td
(eL(y0,T−1)gY0,T−1

(y0,T−1))
s

1+s dy0,T−1}, (7)

(provided the limit exists), and

f ∗,sY0,T−1
(y0,T−1) =

(eL(y0,T−1)gY0,T−1
(y0,T−1))

s
1+s

∫
<Td(eL(y0,T−1)gY0,T−1

(y0,T−1))
s

1+s dy0,T−1

, (8)
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where the minimizing s∗ > 0 is the unique solution of

H(f ∗,sY0,T−1
|gY0,T−1

)− E
f∗,s

Y0,T−1 (L(y0,T−1))
∣∣∣
s=s∗

= TRc. (9)

Example 2.4 From Corollary 2.3, it follows that if the nominal source PDF, gY0,T−1
, is

Td-dimensional Gaussian distributed with mean zero, that is, gY0,T−1
∼ N(0, ΓY0,T−1

),

ΓY0,T−1
∈ <Td×Td, and L(y0,T−1) = 1

2
(yT )trM̄yT , yT 4

= (ytr
0 , ytr

1 , ..., ytr
T−1), yi ∈ <d,

M̄ = diag(M0,M1, ..., MT−1), Mi ∈ <d×d, Mi ≥ 0, Mi = M tr
i , i = 0, 1, ..., T − 1 and

ρ̄(ΓY0,T−1
M̄) < 1, where ρ̄(.) denotes the spectral radius. Then

Hrobust(Y)
4
= lim

T→∞
sup

{fY0,T−1
∈D; 1

T
H(fY0,T−1

|gY0,T−1
)≤Rc+

1
2T

E
fY0,T−1 (

∑T−1

i=0
ytr

i Miyi)}

1

T
HS(gY0,T−1

)

=
d

2
log

1 + s∗

s∗
− lim

T→∞
1

2T
log det Γ̄Y0,T−1

+HS(Y), (10)

(provided the limit exists) where Γ̄Y0,T−1

4
= I − ΓY0,T−1

M̄ (I ∈ <Td×Td is the identity
matrix), HS(Y) is the Shannon entropy rate of the nominal distribution, and s∗ > 0 is
the unique solution of the following

Rc = −d

2
log

1 + s∗

s∗
+

d

2s∗
+ lim

T→∞
1

2T
log det Γ̄Y0,T−1

(11)

Remark 2.5 i) If the observation process {Yt; t ∈ N+}, N+
4
= {0, 1, 2, ...} of the nominal

source is stationary, the limit in Example 2.4 exists.
ii) For the special case when M̄ = 0, Example 2.4 is reduced to the results reported in
[9], that is

Hrobust(Y) =
d

2
log(

1 + s∗

s∗
) +HS(Y), Rc = −d

2
log(

1 + s∗

s∗
) +

d

2s∗
. (12)

2.3 Examples

In this Section, first the robust entropy rate is calculated for an uncertain source, when the
corresponding nominal source is given by a Gauss Markov model. Then, using dynamic
programming, a lower bound is found for the robust entropy rate of the uncertain source.
The results of this Section will be used in Section 3 to derive necessary conditions for
uniform observability and stabilizability of an uncertain controlled system, when it is
controlled over an uncertain communication channel.

2.3.1 Uncertain Partially Observed Gauss Markov Source

Let fY0,T−1
(y0,T−1) ∈ D denote the true joint PDF of Y0,T−1

4
= {Y0, Y1, ..., YT−1}, Yi :

(Ω,F(Ω)) → (<d,B(<d)), i = 1, 2, ..., T − 1 and gY0,T−1
(y0,T−1) ∈ D be the nominal joint

PDF of Y0,T−1 produced by the following state space model.

(Ω,F(Ω), {Ft}t≥0, P ) :

{
Xt+1 = AXt + BWt, X0 = X,
Yt = CXt + DVt.

(13)

Here, t ∈ N+, Xt ∈ <n is the unobserved (state) process, Yt ∈ <d is the observed process,
Wt ∈ <m, Vt ∈ <l, in which {Wt; t ∈ N+} is Independent Identically Distributed (i.i.d.)∼
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N(0, Im×m), {Vt; t ∈ N+}, is i.i.d. ∼ N(0, Il×l), X0 ∼ N(0, V̄0), {Wt, Vt, X0; t ∈ N+} are

mutually independent and D 6= 0. It is assumed that (C, A) is detectable, (A, (BBtr)
1
2 )

is stabilizable and the joint PDF fY0,T−1
(y0,T−1) ∈ D of the uncertain source belongs to

the following relative entropy uncertainty set.

DSU(gY0,T−1
) = {fY0,T−1

∈ D;
1

T
H(fY0,T−1

|gY0,T−1
) ≤ Rc +

1

2T
EfY0,T−1 (

T−1∑

i=0

ytr
i Miyi)}. (14)

In order to calculate the robust entropy rate of this uncertain source, we recall the
following result of [9].

Lemma 2.6 (Shannon Entropy Rate)
i) [9] The Shannon entropy rate of the nominal source (13) is

HS(Y)
4
=

d

2
log(2πe) +

1

2
log det Λ∞, (15)

where Λ∞ is given by

Λ∞ = CV∞Ctr + DDtr,

V∞ = AV∞Atr − AV∞Ctr[CV∞Ctr + DDtr]−1CV∞Atr + BBtr. (16)

ii) Consider the scalar version of (13), with n = 1 and d = 1. Then (16) can be solved
explicitly and then substituted into (15) to obtain the following result.

HS(Y) ≥ 1

2
log(2πeD2) + max{0, log |A|}. (17)

In (17), the equality holds when B = 0.

Next, using the result of Example 2.4 and Lemma 2.6, the robust entropy rate of the
uncertain source is given in the following proposition.

Proposition 2.7 (Robust Entropy Rate) The robust entropy rate of the uncertain source
described in this Section, is given in Example 2.4 (equation (10)), in which HS(Y) is given
in Lemma 2.6.

Remark 2.8 From the chain rule of the Shannon entropy, it follows that the robust
entropy rate of a controlled uncertain source with a corresponding controlled nominal
source model (13), is bounded below by the robust entropy rate given in Proposition 2.7.

2.3.2 Uncertain Fully Observed Gauss Markov Source

In this Section, we are concerned with the following fully observed uncertain source

(Ω,F(Ω), {Ft}t≥0, P ) : Xt+1 = AXt + BWt + BΓt, X0 = X, Yt = Xt, (18)

where t ∈ N+, Xt = Yt ∈ <d, X0 ∼ N(0, V̄0), Wt ∈ <m is i.i.d. ∼ N(0, I) and Γt denotes
the uncertain random perturbation. The nominal source corresponding to the uncertain
source (18) is the source with Γt = 0. Let fY0,T−1

∈ D denotes the joint PDF of a

sequence Y0,T−1
4
= {Y0, Y1, ..., YT−1}, Yi : (Ω,F(Ω)) → (<d,B(<d)), i = 1, 2, ..., T − 1,

with length T of uncertain source outcomes (18) and gY0,T−1
(y0,T−1) ∈ D the joint

PDF of a sequence with length T of the nominal source. Here, it is assumed that
limT→∞ 1

T
EfY0,T−1 (

∑T−2
i=0 ||Γi||2) < ∞ and fY0,T−1

∈ DSU(gY0,T−1
), in which DSU(gY0,T−1

) is
given by (14), with Mi = M ∈ <d×d, Mi = M tr

i , Mi ≥ 0, i = 0, 1, ..., T−2, and MT−1 = 0.
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Lemma 2.9 Define DSU(Γ0,T−2)
4
=

{
{Γi}T−2

i=0 ; 1
2T

EfY0,T−1 (
∑T−2

i=0 ||Γi||2) ≤ Rc+
1

2T
EfY0,T−1

(
∑T−2

i=0 Y tr
i MYi)

}
. The robust entropy rate is given by

Hrobust(Y)

= lim
T→∞

1

T
sup

{Γ0,T−2∈DSU (Γ0,T−2)}

{
− 1

2T
EfY0,T−1 (

T−2∑

i=0

||Γi||2)− EfY0,T−1 (log gY0,T−1
)
}
.

(19)

Next, by applying dynamic programming, the solution to Hrobust(Y) is given in the
following proposition.

Proposition 2.10 Let Btr(BBtr)−1B < (1 + s)I, (A,B) is controllable, A is invertible,
and Ψ(η) > 0 for some η, |η| = 1, where Ψ(z) is the rational matrix function given by

Ψ(z) = Btr(BBtr)−1B
2

− 1+s
2

I + Btr(z−1 − Atr)−1 s
2
M(z − A)−1B, s > 0. Then

Hrobust(Y) = min
s>0

{sRc +
d

2
log(2πe) +

1

2
log det BBtr + Trac(BBtrΣ)}, (20)

where Σ is the steady state solution of the following Riccati equation which is of the type
arising in H∞ control.

Σt = AtrΣt+1A− AtrΣt+1B[
Btr(BBtr)−1B

2
− 1 + s

2
I + BtrΣt+1B]−1BtrΣt+1A + M̃t,

t = 0, 1, ..., T − 1, ΣT−1 = 0, (21)

where M̃0 = s
2
M0 + 1

2
V −1

0 and M̃i = s
2
M , i = 1 ≥ 1.

Remark 2.11 From the chain rule of the Shannon entropy, it can be shown that the
robust entropy rate of a controlled version of uncertain source (18) is bounded below by
Hrobust(Y), given in (20).

3 Applications in Control/Communication Systems

In this Section, general necessary conditions for uniform asymptotic observability and
stabilizability in probability and r-mean are presented for the control/communication
system given in Figure 1. Then the obtained results are applied to the controlled
version of uncertain plants (sources) described in Sections 2.3.1 and 2.3.2 to present
necessary conditions for uniform asymptotic observability and stabilizability of these
uncertain plants controlled over uncertain communication channel. Throughout this
Section, we assume that the control law at time t, Ut = µ(t, Ỹ0, . . . , Ỹt), is a non-
anticipative functional of the decoder output up to time t. The encoder law at time
t, Zt = E(t, Y0, Y1, ..., Yt, Z0, Z1, ..., Zt−1), is a non-anticipative functional of the source
output up to time t, and the previous output of the encoder up to time t − 1. Finally,
the decoder law at time t, Ỹt = A(t, Z̃0, Z̃1, ..., Z̃t, Ỹ0, Ỹ1, ..., Ỹt−1), is a non-anticipative
functional of the channel output up to time t, and the previous output of the decoder up
to time t− 1.
Next, consider the control/communication system of Figure 1. Let (Ω,F(Ω), P ) be a

complete probability space and Yt ∈ <d be the observed output of the uncertain plant
obtained by sensors at time t. The objective is to find a necessary condition for uniform
asymptotic observability and stabilizability in probability and r-mean defined as follows.
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Plant

(Information

Source)

Feedback

Channel

Decoder

tY
~

Controller

Encoder

tY

tZ

tU

tZ
~

Figure 1: Block diagram of a control/communication system

Definition 3.1 (Uniform Asymptotic Observability in Probability and r- Mean). Con-
sider the control/communication system of Figure 1. The uncertain plant is uniform
asymptotic observable in probability or r-mean over an uncertain communication chan-
nel, if there exists an encoder and decoder such that

lim
t→+∞ sup

fY0,t−1
∈DSU

1

t

t−1∑

k=0

Eρ(Yk, Ỹk) ≤ Dv, (22)

where fY0,t−1(y0,t−1) ∈ DSU is the joint PDF of Y0,t−1
4
= {Y0, Y1, ..., Yt−1} produced by the

uncertain plant; for uniform asymptotic observability in probability, Dv ≥ 0 is arbitrary
small and ρ(Yk, Ỹk) is defined by

ρ(Yk, Ỹk)
4
=





1 if ||Yk − Ỹk|| > δ,

0 if ||Yk − Ỹk|| ≤ δ,

(23)

where ||.|| is Euclidian norm and δ ≥ 0 is fixed, and for uniform asymptotic observability
in r-mean, Dv ≥ 0 is fixed and ρ(Yk, Ỹk) = ||Yk − Ỹk||r, r > 0.

Next, assume there is a linear relationship between the observed signal, Yt, and the state
variable, Xt, of the uncertain plant. That is, Yt = CXt + Υt, where Υt, in general, is
subject to uncertainty and it is a function of time, control signal and measurement noises.
Under this assumption, the uniform asymptotic stabilizability in probability and r-mean
is defined as follow.

Definition 3.2 (Uniform Asymptotic Stabilizability in Probability and r- Mean). Con-
sider the control/communication system of Figure 1. The uncertain plant is uniform
asymptotic stabilizable in probability or r-mean if there exists an encoder, decoder, and
controller such that

lim
t→∞ sup

fY0,t−1
∈DSU

1

t

t−1∑

k=0

Eρ(Xk, 0) ≤ Dv, (24)
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where for uniform asymptotic stabilizability in probability Dv ≥ 0 is arbitrary small and
ρ(Xk, 0) is defined by

ρ(Xk, 0)
4
=





1 if ||Xk − 0||CtrC > δ,

0 if ||Xk − 0||CtrC ≤ δ,
(25)

where ||x− 0||CtrC
4
=

(
xtrCtrCx

) 1
2 , and for uniform asymptotic stabilizability in r-mean,

Dv ≥ 0 is fixed and ρ(Xk, 0) = ||Xk − 0||rCtrC , r > 0.

Next, using a robust version of Information Transmission theorem given in [10, 11] and
a lower bound for the robust rate distortion (for definition of the robust rate distortion,
see [10] or [11]), the main result of this Section is presented in the following theorem.

Theorem 3.3 i) For uniform asymptotic observability and stabilizability in probability,
a necessary condition on the robust channel capacity is

Crobust ≥ Hrobust(Y)− 1

2
log[(2πe)d det Γg], (26)

where Hrobust(Y) is the robust entropy rate of the observed process (uncertain source) and
Γg is the covariance matrix of the Gaussian distribution g∗(y) ∼ N(0, Γg), (y ∈ <d) which
satisfies

∫

||y||>δ
g∗(y)dy = Dv, (27)

in which Dv ≥ 0 is arbitrary small.
ii) A necessary condition for r-mean uniform asymptotic observability and stabilizability
is

Crobust ≥ Hrobust(Y)− d

r
+ log(

r

dVdΓ(d
r
)
(

d

rDv

)
d
r ), (28)

where Γ(.) is the gamma function and Vd is the volume of the unit sphere (e.g., Vd =

V ol(Sd); Sd
4
= {y ∈ <d; ||y|| ≤ 1}).

Remark 3.4 We have the following remarks regarding the above theorem.
i) The robust entropy rate is a function of the control signal.
ii) For the case d = 1, condition (27) is reduced to

2Φ(− δ√
Γg

) = Dv, (29)

where Φ(t)
4
=

∫ t
−∞

1√
2π

e−
u2

2 du. Using a table for this integral, we notice that for an arbi-

trary small Dv, Γg = δ2

16
should be used in (26).

iii) Finally, it is pointed out that the necessary conditions derived in Theorem 3.3, are
practically important because they give flexibility to the designer to relate the observability
and stabilizability error to the minimum capacity necessary for observability and stabiliz-
ability.
iv) These necessary conditions give tighter bounds than the usual bound that involves only
HS(Y).
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Since lower bounds for (26) and (28) are also necessary conditions for observability and
stabilizability, the results of Theorem 3.3 are applicable to the controlled version of the
uncertain sources described in Sections 2.3.1 and 2.3.2 in the following corollary.

Corollary 3.5 i) A necessary condition for uniform asymptotic observability and stabi-
lizability of a controlled version of the uncertain plant (source) described in Section 2.3.1
is given by (26) and (28) respectively, in which Hrobust(Y) is given in Proposition 2.7.
ii) A necessary condition for uniform asymptotic observability of a controlled version of
uncertain plant (source) (18) is given by (26) and (28) respectively, in which Hrobust(Y)
is given in Proposition 2.10.

Next, we have the following corollary as a direct result of Example 2.4 and Theorem 3.3.

Corollary 3.6 Consider a controlled uncertain partially observed Gauss Markov plant
corresponding with the following controlled version of partially observed Gauss Markov
system (13), via the relative entropy uncertainty constraint (14),

(Ω,F(Ω), {Ft}t≥0, P ) :

{
Xt+1 = AXt + BWt + NUt, X0 = X,
Yt = CXt + DVt.

(30)

in which Xt ∈ <n, Wt ∈ <m, Ut ∈ <, Yt ∈ <, and Vt ∈ <l. Assume this system is
controlled over a linear time-invariant single-input single-output discrete time, additive
Gaussian noise stable channel. That is, in compact notation, Ỹ (z) = Hc(z)Y (z)+Wc(z),
where Hc(z) (the channel transfer function) has poles inside unit circle and Wc(z) is
the frequency response of the channel noise {Wc(t); t ∈ N+}, which is Additive White
Gaussian Noise (AWGN) process with mean zero and variance σ2

Wc
, and it is mutually in-

dependent of {X0, Wt, Vt; t ∈ N+}. Assume the controller is stable linear time-invariant.
That is, the controller transfer function Kc(z) has poles inside unit circle. Moreover,
assume the nominal system open loop transfer function L(z) = P (z)Kc(z)Hc(z), P (z) =
C(zI − A)−1N is strictly proper transfer function.
An application of Bode integral formula [12] implies that for uniform asymptotic stabi-
lizability in r-mean, the required channel capacity must satisfy

Ccap ≥ 1

2
log(

1 + s∗

s∗
)− lim

T→∞
1

2T
log det Γ̄Y0,T−1

+
∑

{i;|λi(A)|≥1}
log |λi(A)|

+
1

4π

∫ π

−π
log(F (ejw)BBtrF tr(e−jw) + DDtr + |G(ejw)|2σ2

Wc
)dw

+
1

2
log(2πe)−∆, (31)

where Ccap denote the AWGN channel capacity, s∗ > 0 is given in (11) (with d = 1),
Γ̄Y0,T−1

= I−ΓY0,T−1
M̄ , where ΓY0,T−1

is the covariance of the sequence Y T corresponding
to the nominal system (30) with Ut = 0, t = 0, 1, 2, ..., T − 1, F (ejw) = C(ejwI − A)−1,

G(ejw) = P (ejw)Kc(e
jw), |G(ejw)|2 = G(ejw)Gtr(ejw), and ∆ = 1

r
− log

(
r

2Γ( 1
r
)
( 1

rDv
)

1
r

)
.
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