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Abstract— In this paper, the mathematical framework for
studying robust control over uncertain communication chan-
nels is introduced. The theory is developed by generalizing the
classical information theoretic measures of information and the
fundamental theory of Shannon to the robust analog, which
are subject to uncertainty in the source and the communication
channel. By invoking this mathematical framework, necessary
conditions are presented for robust stabilizability and ob-
servability of fully-observed, finite dimensional, discrete-time
invariant, noiseless uncertain linear systems over uncertain
communication channels.

I. INTRODUCTION

One of the issues that has begun to emerge in a number
of applications, such as sensor networking, large scale
teleoperation, and etc., is how to control systems by com-
municating information reliably, through limited capacity
channels, when the subsystems are subject to uncertainty.
Typical examples are applications in which a single dy-
namical system sends feedback information to a distant
controller via a communication link with finite capacity.
In the absence of uncertainty in the controlled system and
the communication channel, important results are derived
in [1]-[8]. Specially, the aim of these articles is to find
necessary and sufficient conditions for stabilizability, when
there are channel capacity and power constraints. For finite
dimensional discrete-time invariant linear systems, it is
shown that the transmission data rate (or channel capacity)
required to stabilize a controlled system must be at least
equal to the sum of the logarithms of the magnitude of the
unstable open-loop eigenvalues.
The objective of this paper is to address similar questions,
when there is uncertainty in the controlled system and com-
munication link. In particular, to find necessary conditions
on the channel capacity which ensure robust observability
and stabilizability. The necessary steps in realizing such a
study consists of the followings.
1. Give precise definitions of entropy, channel capacity, and
rate distortion, when the communication blocks are subject
to uncertainty.
2. Extend the fundamental theory of Shannon to communi-
cation systems subject to uncertainty.
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3. Derive necessary and sufficient conditions on the com-
munication blocks which are subject to uncertainty in order
to ensure robust observability and stabilizability of the
controlled system.
Clearly, the first two questions (above) are addressed by
generalizing information theory to robust information theory
which consists of the robust version of the classical source
coding, channel coding, and rate distortion to their robust
analog, which are subject to uncertainty. Then we show
that the robust channel capacity of a communication link
must be at least equal to the robust entropy of the source in
order to ensure reliable communication. Subsequently, we
find necessary condition for robust observability and stabi-
lizability of uncertain plants over uncertain communication
channels.
In Section II, the precise notion of the robust communica-
tion system, and the corresponding information theoretic
measures, which are necessary to analyze such systems
are introduced. One of the fundamental results which is
required to address issue 3 above is the derivation of a
lower bound for robust rate distortion which is found in
Section III. Furthermore, in this section a robust version
of the information transmission theorem is introduced. This
theorem provides an upper bound for robust rate distortion
in terms of the robust channel capacity. In Section IV, a
necessary condition for robust observability and stabiliz-
ability is derived for fully observed, finite dimensional,
discrete-time invariant, noiseless uncertain linear systems
over uncertain channels.

II. ROBUST COMMUNICATION SYSTEMS

A. Communication System

Let (Ω,F(Ω)) denote a measurable space in which F(Ω)
is the σ-field generated by Ω, and let M1(Ω) be the set
of countable additive probability measure on (Ω,F(Ω)). In
general Ω is assumed to be the space of function Φ(t) ∈ Ω,
where the argument t takes values within specified interval
or is identified with discrete series of values, so that the
variable Φ(t) may be treated as a continuous or discrete-
time random process.
Consider the communication diagram given in Fig. 1. Here
(X ,F(X )) is the source measurable space, and (X̃ ,F(X̃ ))
is the source reproduction measurable space. The channel
input and output measurable spaces are (Z,F(Z)) and
(Z̃,F(Z̃)), respectively.
Information Source An information source is often spec-
ified by the probability measure PX : F(X ) → [0, 1]
induced by the source on (X ,F(X ))(e.g., PX ∈ M1(X )).
In general, the source is uncertain, that is, PX is unknown
but belongs to the uncertainty set PX ∈ MSU ⊂ M1(X ).

Proceedings of the 13th
Mediterranean Conference on Control and Automation
Limassol, Cyprus, June 27-29, 2005

0-7803-8936-0/05/$20.00 ©2005 IEEE

TuA05-1

737



X

Encoder
Information

Source

Z

Information

Received
Decoder

Channel

with

Memory

Z
~

X
~

Fig. 1. Block diagram of communication system

Communication Channel. A Communication channel is a
probabilistic mapping

P
Z̃|Z(B, z)

�
= Pr(Z̃ ∈ B|Z = z), B ∈ F(Z̃), z ∈ Z,

P
Z̃|Z : F(Z̃) ×Z → [0, 1], (1)

which satisfies the following conditions:
1)For every B ∈ F(Z̃), the function P

Z̃|Z(B, .) is an
F(Z)-measurable function.
2) For every z ∈ Z , the set function P

Z̃|Z(., z) is a

probability measure on F(Z̃).
A mapping which satisfies 1, and 2 is called a stochastic
kernel, and clearly, P

Z̃|Z(., z) ∈ M1(Z̃), ∀z ∈ Z .
Since the channel in general is uncertain, the stochastic ker-
nels P

Z̃|Z belongs to the uncertainty set P
Z̃|Z ∈ MCU ⊂

M1(Z̃). Moreover, the channel could be with memory (e.g.,
the output of the channel is dependent on the past outputs
or inputs to the channel, and/ or the channel has feedback).
Encoder. An encoder is a stochastic kernel

PZ|X(A, x) = Pr(Z ∈ A|X = x), A ∈ F(Z), x ∈ X . (2)

Decoder. A decoder is a stochastic kernel

P
X̃|Z̃(C, z̃) = Pr(X̃ ∈ C|Z̃ = z̃), C ∈ F(X̃ ), z̃ ∈ Z̃. (3)

Deterministic encoders and decoders correspond to delta
measures and hence they follow from (2) and (3). The
definition of encoder, channel and decoder as stochastic
kernel implies that X → Z → Z̃ → X̃ forms a Markov
chain.
The above construction implies that the probability measure
induced by the input of the channel on (Z,F(Z)) can be
defined through the Radon-Nikodym derivative

PZ(A) =
∫

PZ|X(A, x)dPX(x),∀A ∈ F(Z), x ∈ X ,

(or in compact notation): PZ = PZ|X ⊗ PX . (4)

Often, it is necessary to impose certain limitation on the
input to the channel (such as average channel input power).
These kinds of limitation are introduced by assuming that
the probability measure corresponding to the channel input

measurable space (Z,F(Z)) belongs to a smaller class
PZ ∈ MCI ⊂ M1(Z). Finally, let P

X̃
denote the

reproduction source probability measure.

B. Robust Information Theoretic Measures

In this section, we introduce robust entropy of the source,
robust channel capacity and the robust rate distortion. We
also extend the fundamental theory of Shannon to the robust
analog which are subject to uncertainty in communication
blocks.
The robust definition of information theoretic measures are
given using relative entropy between two measures which
is defined below.

Definition 2.1: (Relative Entropy) The relative entropy
of two probability measures π and ν on (Ω,F(Ω)) is
defined by

H(π|ν)
�
= (5)

⎧⎨
⎩

∫
log dπ(x)

dν(x)dπ(x) if π << ν, log dπ(x)
dν(x) ∈ L1(π)

∞ if otherwise

where “ << ” denotes absolute continuity of measures.
Next, by invoking the relative entropy, the mutual informa-
tion is defined as follow.

Definition 2.2: (Mutual Information) The mutual infor-
mation between two random variable M and N is defined
as the relative entropy between the joint probability measure
PM,N and the product of marginal PM ⊗ PN via

I(M ; N)
�
= H(PM,N |PM ⊗ PN ). (6)

Next we define the concept of robust entropy and subse-
quently robust entropy rate for a family of sources. The
entropy of the source represents the amount of information
generated by the source symbols. The robust definition of
entropy first is appeared in [9].

Definition 2.3: (Robust Entropy and Robust Entropy
Rate) Let X be a random variable (or random process)
with probability measure PX ∈ M1(X ) representing the
uncertain source outcomes in which PX ∈ MSU . Let
QX ∈ M1(X ) be a fixed measure. Then the robust entropy
of X with respect to QX is defined by

Hrobust(P ∗
X) = sup

PX∈MSU

−H(PX |QX), (7)

where P ∗
X = argsupPX∈MSU − H(PX |QX).

Subsequently, if X = (x0, ..., xT−1) represents a sequence
with length T of source symbols produced by an uncertain
source, the robust entropy rate is defined by

Hrobust(X ) = lim
T→∞

1
T

Hrobust(P ∗
X), (8)

if the limit exist.
Remark 2.4: When QX is the Lebesgue measure and

there is no uncertainty in source distribution, (e.g., MSU =
{MX}, where MX is the nominal source distribution), the
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robust entropy and the robust entropy rate is reduced to the
classical Shannon entropy and Shannon entropy rate.
The importance of the robust definition of entropy can be
understood in terms of the so called robust Shannon first
coding theorem [10]. This theorem states the following.
Sourcewords of blocklength T produced by a discrete
memoryless source (e.g., a finite alphabet source with i.i.d.
outcomes) with unknown source distribution PX , PX ∈
MSU = MSUR

�
= {PX ∈ M1(X ); H(PX |MX) ≤ Rc}

(where MX is nominal source distribution under which the
source letters are i.i.d., and Rc ≥ 0 controls the size of un-
certainty), can be encoded into codewords of blocklength r
from a coding alphabet of size k, with decoding probability
pe arbitrary small for T -sufficiently large, regardless of the
true source distribution, if supPX∈MSUR

H(PX) ≤ r
T log k.

Theorem 2.5: [9] If MSU = MSUR = {PX ∈
M1(X ),H(PX |MX) ≤ Rc}, where MX is the nominal
source distribution and MX << QX

Hrobust(P
∗,s∗
X ) = Hrobust(Rc)

= mins≥0[sRc + (1 + s)

. ln
∫

(
dMX

dQX
)−

1
1+s dMX ], nats,

dP ∗,s
X

dMX
=

(dMX

dQX
)−

1
1+s∫

(dMX

dQX
)−

1
1+s dMX

, (9)

where the minimizing s∗ ≥ 0 in (9) is the unique solution
of H(P ∗,s

X |MX) = Rc.
Remark 2.6: If X = {x0, ..., xT−1} is a sequence with

length T of symbols produced by an uncertain source
with distribution PX , MSU = MSUR, MX (consequently
PX )<< QX ,and QX is the Lebesgue measure (conse-
quently, µX(x) = dMX

dQX
is the probability density function,

P.D.F., and also pX(x) = dPX

dQX
is P.D.F.) from Theorem 2.5

follows that

Hrobust(TRc) =

mins≥0[sTRc + (1 + s) ln
∫

µX(x)
s

1+s dx] (10)

and

p∗,s
X (x) =

µX(x)
s

1+s∫
µX(x)

s
1+s dx

, p∗,s
X (x) =

dP ∗,s
X

dQX
(P.D.F.), (11)

where the minimizing s∗ ≥ 0 in (10) and (11) is the unique
solution of H(P ∗,s∗

X |MX) = TRc.
Corollary 2.7: [9] Under assumption of Remark 2.6 if

the nominal source distribution MX has corresponding Td-
dimensional Gaussian density with mean m and variance
ΓX , ∀Rc ∈ [0,∞)

1
T

Hrobust(TRc) =
d

2
ln(

1 + s

s
) +

d

2
ln(2πe)

+
1

2T
ln det ΓX ,

(12)

where s > 0 is the unique solution of the following
nonlinear equation

Rc = −d

2
ln(

1 + s

s
) +

d

2s
. (13)

Corollary 2.8: Under assumption of Remark 2.6 when
µX(x) and pX(x) correspond to probability mass function
(P.M.F.), that is, µX(x) =

∑
i µX(xi)δ(xi) and pX(x) =∑

i pX(xi)δ(xi), where δ(.) is delta measure, (10) and (11)
are reduced to

1
T

Hrobust(TRc) = mins≥0[sRc +
1 + s

T

. ln
∑

i

µX(xi)
s

1+s ],(14)

p∗,s
X (xi) =

µX(xi)
s

1+s∑
i µX(xi)

s
1+s

, (15)

where the minimizing s∗ ≥ 0 in (14) and (15) is the unique
solution of H(P ∗,s∗

X |MX) = TRc.
Next, we define robust channel capacity for communication
channels.

Definition 2.9: (Robust Channel Capacity) In many prac-
tical applications the communication channel P

Z̃|Z :

F(Z̃) × Z → [0, 1] belongs to the set P
Z̃|Z ∈ MCU ⊂

M1(Z̃), called the channel uncertainty set. For these chan-
nels, the robust channel capacity is defined by

Crobust = sup
PZ∈MCI

inf
P

Z̃|Z
∈MCU

I(Z; Z̃). (16)

When the channel input and output measurable spaces
correspond to the sequences

(Z,F(Z)) = (Z0,n−1,FZ
0,n−1)

�
= ×n−1

k=0(Zk,F(Zk)), n = 1, 2, ...,∞.

(Z̃,F(Z̃)) = (Z̃0,n−1,F Z̃
0,n−1)

�
= ×n−1

k=0(Z̃k,F(Z̃k)), n = 1, 2, ...,∞, (17)

where (Zk,F(Zk)) and (Z̃k,F(Z̃k)) are exemplars of
measurable space (ZI ,F(ZI)) and (Z̃O,F(Z̃O)) (which
are the channel input and output measurable alphabet sets
respectively), and Z = (z0, z1, ..., zn−1) is an element in
Z0,n−1, and similarly for an element in Z̃0,n−1, we have
the following definition for robust channel capacity.

Definition 2.10: (Robust Channel Capacity for Se-
quences) When the channel is unknown but belongs to the
uncertainty set P

Z̃|Z ∈ MCU ⊂ M1(Z̃0,n−1), the robust
channel capacity is defined by

Crobust = lim
n→∞

1
n

Cn,robust,

Cn,robust = sup
PZ∈MCI

inf
P

Z̃|Z
∈MCU

I(Z; Z̃). (18)

The above definitions for robust channel capacity are so
called information definitions for channel capacity. The
importance of these definitions can be understood in terms
of the robust Shannon second coding theorem [11] which
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relates the information channel capacity to the maximum
transmission data rate for reliable transmission known as
operational channel capacity. This theorem states that for
uncertain additive white Gaussian channels a transmission
data rate is achievable (e.g., there exits a sequence of
(2nR, n) code with maximum probability of decoding error
λ(n) → 0, uniformly over all uncertain channel models) if
and only if R ≤ Crobust.
Next we proceed by defining the robust rate distortion. This
is a measure of the minimum rate under which an end to
end transmission with distortion up to distortion level D is
possible. This definition first appeared in [12].

Definition 2.11: (Robust Rate Distortion) Let MDC =
{Q

X̃|X ;
∫
X×X̃ ρ(x, x̃)dQ

X̃|XdPX ≤ D} be the set of
distortion constraints, in which D ≥ 0 is the distortion level
and ρ : X × X̃ → [0,∞) is the distortion measure. The
robust rate distortion is defined by

Rrobust(D) = inf
Q

X̃|X
∈MDC

sup
PX∈MSU

I(X; X̃)

= inf
Q

X̃|X
∈MDC

sup
PX∈MSU

H(PX ⊗ Q
X̃|X |PX ⊗ P

X̃
).

(19)
When the source and reproduction measurable spaces cor-
respond to sequences

(X ,F(X )) = (X0,T−1,FX
0,T−1)

�
= ×T−1

k=0 (Xk,F(Xk)), T = 1, 2, ...,∞.

(X̃ ,F(X̃ )) = (X̃0,T−1,F X̃
0,T−1)

�
= ×T−1

k=0 (X̃k,F(X̃k)), T = 1, 2, ...,∞, (20)

where (Xk,F(Xk)) and (X̃k,F(X̃k)) are exemplars of
measurable space (XS ,F(XS)) and (X̃R,F(X̃R)) (which
are the source and reproduction measurable alphabet sets
respectively), and X = (x0, x1, ..., xT−1) is an element in
X0,T−1, and similarly for an element in X̃0,T−1, we have
the following definition for robust rate distortion.

Definition 2.12: (Robust Rate Distortion for Sequences)
When the true probability measure of the source sequences
belongs to the uncertainty set PX ∈ MSU ⊂ M1(X0,T−1),
the robust rate distortion is defined by

Rrobust(D) = lim
T→∞

1
T

RT,robust(D), RT,robust =

inf
Q

X̃|X
∈MDC

sup
PX∈MSU

H(PX ⊗ Q
X̃|X |PX ⊗ P

X̃
).

(21)
Theorem 2.13: (Robust Rate Distortion) [12] Suppose

esρ ∈ L1(X̃ ,F(X̃ ), P
X̃

), ∀s ∈ 	. Then the solution
to the problem (19) with relative entropy constraint (e.g.,
MSU = MSUR = {PX ∈ M1(X ); H(PX |MX) ≤ Rc},
MX is the nominal source distribution) is given by

R(D) = sD + λRc

+λ log
∫
X

(
∫
X̃

esρ(x,x̃)dP
X̃

)−
1
λ dPX ,

(22)

where s ≤ 0 and λ > 0 are Lagrange multipliers.
Moreover the infimum is attained at

dP ∗
X =

e
l(x)

λ dMX∫
X e

l(x)
λ dMX

, (23)

l(x) =
∫
X̃

log(e−sρ(x,x̃)
dQ∗

X̃|X
dP

X̃

)dQ∗
X̃|X , (24)

and the supremum is attained at

dQ∗
X̃|X =

esρ(x,x̃)dP
X̃∫

X̃
esρ(x,x̃)dP

X̃

. (25)

The importance of the robust rate distortion can be under-
stood in terms of the robust Shannon third coding theorem
[12]. This theorem considers an uncertain discrete memory-
less source (X ,F(X ), PX), where the source distribution
PX belongs to the relative entropy uncertainty set PX ∈
MSUR (in this theorem, it is assumed that under the
nominal source distribution, the source letters are i.i.d.).
This theorem states that there exits a D-admissible code
of blocklength T for T sufficiently large, regardless of the
true source distribution if and only if Rrobust(D) < R. That
is, Rrobust(D) is the operational rate distortion.

III. LOWER BOUND FOR ROBUST RATE DISTORTION,
ROBUST INFORMATION TRANSMISSION THEOREM

In this section a lower bound in terms of robust entropy is
obtained for robust rate distortion. Also a robust extension
of information transmission theorem is presented. This
theorem provides a necessary condition for end to end
transmission with average distortion up to distortion level
D, when the source and communication channel are subject
to uncertainty.
Since the explicit expression for robust rate distortion is
difficult to obtain, it is desirable to have a lower bound
which is easily computed. This lower bound will be used
in the next section to relate robust channel capacity to the
parameters of the plant for stabilizability and observability
purpose.

Lemma 3.1: (Lower Bound for Robust Rate Distortion)
Assume the true unknown source distribution is absolutely
continuous with respect to the Lebesgue measure and PX ∈
MSU . Let also ρ(x, x̃) = ρ(x − x̃). Then a lower bound
for Rrobust(D) is given by

Rrobust(D) ≥
sup

PX∈MSU

−H(PX |QX) − max
G∈GD

−H(G|QX),

(26)

where QX ∈ M1(X ) is the Lebesgue measure, G << QX

(e.g., g(x) = dG
dQX

is P.D.F.), and GD is defined by

GD = {G ∈ M1(X ); g =
dG

dQX
,

∫
ρ(x)g(x)dx ≤ D}.

(27)
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Moreover, if ρ is such that
∫

esρ(x)dx < ∞ (s < 0),
the maximum over G ∈ GD is attained at distribution
with corresponding P.D.F g(x), satisfying the following two
conditions

g(x) =
esρ(x)∫
esρ(x)dx∫

ρ(x)g(x)dx = D.

(28)
Proof: The lower bound (26) follows by generalizing the
Shannon lower bound [13] to the case when the source
distribution is uncertain. The detail of the proof can be
found in [14].
Next, by invoking data processing inequality we derive
a robust analog of the information transmission theorem.
This theorem provides a necessary condition for end to end
transmission up to a distortion level D, (e.g. Eρ(X, X̃) ≤
D), when there is uncertainty on the source as well as com-
munication channel. In the next section, this theorem will
be used to relate the robust channel capacity required for
stabilizability and observability purpose to the parameters
of plant.

Theorem 3.2: (Robust Information Transmission Theo-
rem) A necessary condition for reproducing the source
output X up to distortion level D by X̃ at the output of
the decoder, when there is uncertainty on the source and
communication channel is

Crobust = sup
PZ∈MCI

inf
P

Z̃|Z
∈MCU

I(Z; Z̃)

≥ inf
Q

X̃|X
∈MDC

sup
PX∈MSU

I(X; X̃)

= Rrobust(D). (29)

Proof: [14].
In Theorem 3.2 source, reproduction, channel input and
channel output spaces can be replaced by spaces correspond
to sequences. The next Corollary shows that Theorem 3.2 is
applicable to sequence of source and channel symbols with
length T and n (T ≤ n), while the feedback encoder and
feedback decoder are employed (See Fig. 2).

Corollary 3.3: (Robust Information Transmission Theo-
rem for Sequences) [14] A necessary condition for repro-
ducing the source output X = (x0, x1, x2, ..., xT−1) up to
distortion level D by X̃ = (x̃0, x̃1, x̃2, ..., x̃T−1) at the
output of the decoder for n-times channel use (T ≤ n),
when there is uncertainty on the source and communication
channel is

Cn,robust ≥ RT,robust(D). (30)

Remark 3.4: Corollary 3.3 extends the result given in [8]
to the case when source and communication link are subject
to uncertainty.

Feedback

Encoder

Information

Source

),...,(
10 T

xx

),...,(
10 n

zz

)~,...,~(
10 T

xx

Feedback

Decoder

Information

Received

Channel

with

Memory

)~,...,~(
10 n

zz

Fig. 2. Block diagram of communication system

IV. NECESSARY CONDITION FOR OBSERVABILITY AND

STABILIZABILITY

In this section, we are concerned with the family of
uncertain systems described by the filter probability space
(Ω,F(Ω), {Ft}t≥0, {P∆A

X ;∆A ∈ S ⊂ 	n×n}), in which
P∆A

X , ∆A ∈ S, induced by the uncertain system

Xt+1 = (A + ∆A)Xt + BUt, t ≥ 0, X0 ∈ 	n, (31)

where {Xt} is 	n valued state process, {Ut} is a 	m-
valued control process, A ∈ 	n×n, and B ∈ 	n×m.
It is assumed that the initial position, X0, is distributed
according to the probability density pX0 which has finite
entropy H(pX0). Moreover, system (31) is assumed to be
detectable and stabilizable for each ∆A ∈ S.
In (31), ∆A is an unknown matrix, which belongs to the
uncertainty set S. Let P∆A

X be the probability measure
induced by (31), when ∆A ∈ S. Then P∆A

X is a function
of ∆A and it is induced by {Xt}t≥0. Since ∆A belongs to
the uncertainty set S, P∆A

X belongs to the uncertainty set
MSU = {P∆A

X ;∆A ∈ S, P∆A
X << Lebesgue measure}.

The nominal model system is described by

(Ω,F(Ω), {Ft}t≥0, PX) : Xt+1 = AXt + BUt,

t ≥ 0, X0 ∼ pX0 , X0 ∈ 	n. (32)

The family of systems (31) is cascaded with an uncertain
communication channel (See Fig. 3) and the objective
is to find necessary condition for almost surely uniform
asymptotically observability and stabilizability, which are
defined as follows.

Definition 4.1: Define the error by Et
�
= Xt−X̃t, where

X̃t is the output of decoder. The family of systems (31),
is almost surely uniform asymptotically observable over
uncertain communication channel, if there exists an encoder
and decoder such that

sup
P∆A

X
∈MSU

Pr( lim
t→∞ ||Et||2 �= 0) = 0. (33)

The family of systems (31) is almost surely uniform asymp-
totically stabilizable over uncertain communication channel
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if there exist an encoder, decoder and controller such that

sup
P∆A

X
∈MSU

Pr( lim
t→∞ ||Xt||2 �= 0) = 0. (34)

Proposition 4.2: Given the family of systems (31), a
necessary condition on robust channel capacity (Crobust =
limn→∞ 1

nCn,robust) for almost surely uniform asymptoti-
cally observability and stabilizability is

Crobust ≥
n∑

i=1

max{0, log |λi(A + ∆Amax)|}. (35)

where ∆Amax ∈ S is chosen to maximize

|det(A + ∆A)| =
n∏

i=1

|λi(A + ∆A)| (36)

Proof: The proof of observability is given by assuming the
existence of encoder/decoder pair under which the observ-
ability condition in the sense of Definition 4.1 is obtained.
This assumption implies that a robust rate distortion with
arbitrary small distortion value ε is obtained which from
robust information transmission theorem (Theorem 3.2 and
Corollary 3.3) requires that the robust channel capacity is
lower bounded by robust rate distortion and, consequently
from Lemma 3.1, it follows that it is lower bounded by the
robust entropy of the source. Therefore, by calculating the
robust entropy of the source (plant), the lower bound (35)
is obtained for the robust channel capacity.
The proof of stabilizability is given by assuming exis-
tence of controller, encoder, and decoder under which the
stabilizability condition in the sense of Definition 4.1 is
obtained. Under this assumption, it is shown that a robust
rate distortion with arbitrary small distortion value ε is
obtained, consequently as it was shown in the proof of
uniform observability, a necessary condition for obtaining

such a rate distortion is given by (35). Details of the proof
can be found in [14].

Remark 4.3: In proving the necessary condition shown
previously, we did not need to explicitly describe the
encoder, decoder and channel, consequently the condition
holds independently of the choice of these subsystems.

Remark 4.4: Proposition 4.2 extends the result derived
in [8] under Propositions 3.2 and 3.3 to the case when the
controlled system and communication links are subject to
uncertainty.
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