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a b s t r a c t

This paper is concerned with control of stochastic systems subject to finite communication channel
capacity. Necessary conditions for reconstruction and stability of system outputs are derived using the
Information Transmission theorem and the Shannon lower bound. These conditions are expressed in
terms of the Shannon entropy rate and the distortion measure employed to describe reconstruction
and stability. The methodology is general, and hence it is applicable to a variety of systems. The results
are applied to linear partially observed stochastic Gaussian controlled systems, when the channel is an
AdditiveWhite Gaussian Noise (AWGN) channel. For such systems and channels, sufficient conditions are
also derived by first showing that the Shannon lower bound is exactly equal to the rate distortion function,
and then designing the encoder, decoder and controller which achieve the capacity of the channel. The
conditions imposed are the standard detectability and stabilizability of Linear Quadratic Gaussian (LQG)
theory, while a separation principle is shown between the design of the control and communication
systems, without assuming knowledge of the control sequence at the encoder/decoder.

Crown Copyright© 2008 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Control of dynamical systems subject to finite communication
channel capacity are often represented by the block diagram of
Fig. 1. Due to finite rate constraint of the communication channel,
the main underlying assumption is that the plant (dynamical
system) output is reproduced at the communication channel
output via quantization, hence the input to the controller is a
distorted version of the plant output.
Systems described by Fig. 1 are investigated in the literature

via a variety of methods. The analysis includes necessary and
sufficient conditions for stability and reconstruction (also known
as observability in the literature) of unstable control systems
subject to limited channel capacity (Elia, 2004; Li & Baillieul,
2004; Liberzon & Hespanha, 2005; Malyavej & Savkin, 2005;
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Nair, Dey, & Evans, 2003; Nair, Evans, Mareels, & Moran, 2004;
Savkin & Petersen, 2003; Tatikonda & Mitter, 2004a,b; Tatikonda,
Sahai, & Mitter, 2004; Tsumura & Maciejowski, 2003). Necessary
conditions are often described via the relation between the
capacity of the channel and the information rate of the output
of the dynamical system. This is reminiscent of the Information
Transmission theorem (converse) of information theory, which
states that the information capacity should be at least equal to
the rate at which the information is generated by the source
(subject to a distortion when continuous sources are invoked),
for reliable data reconstruction. On the other hand, sufficient
conditions are concerned with the existence and construction of
the encoder, decoder and controller for a specific communication
channel (e.g., direct part of the Information Transmission theorem).
The objective of this paper is twofold. (1) To derive necessary

conditions for reconstruction and stability of sequences in r-
mean and probability for general systems, which depend on
the entropy rate of the input to the encoder and the type of
reconstruction and stability criteria employed. Using these general
necessary conditions, some of the necessary conditions found
in the literature (Elia, 2004; Li & Baillieul, 2004; Liberzon &
Hespanha, 2005; Nair et al., 2004; Tatikonda & Mitter, 2004a,b;
Tatikonda et al., 2004; Tsumura &Maciejowski, 2003) are obtained
as a special case. (2) To show that under certain conditions,
the necessary conditions are also sufficient, when applied to
a linear stochastic partially observed controlled systems, and
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Fig. 1. Control/communication system.

Additive White Gaussian Noise (AWGN) channels. Here, we
derive an encoder, decoder, and controller for mean-square
stability and reconstruction, using the standard assumptions
of detectability and stabilizability of Linear Quadratic Gaussian
(LQG) theory (Caines, 1988), without assuming knowledge of
the control sequence at the encoder/decoder. Thus, a separation
principle is shown to hold between the design of the control and
communication systems. This implies that reconstruction of the
encoder input at the output of the decoder for a given distortion
can be done by assuming the control is zero, while system stability
and optimality of the control with respect to Quadratic cost can
be achieved using the decoder output, without compromising the
optimality of the overall system.
The methodology put forward is information theoretic, while

stability and reconstruction are defined for sequenceswith respect
to probability and r-mean. Thematerial discussed under (1) and (2)
are new and to the best of our knowledge they have not appeared
elsewhere.
The paper is structured as follows. In Section 2, the definitions

of various system components are described. In Section 3
some preliminary material on entropy rate and its relations
to Kalman filter are introduced, which are used in subsequent
sections. In Section 4, the main mathematical tools which are the
Information Transmission theorem and the Shannon lower bound
are given. Subsequently, general necessary conditions are derived
for reconstruction and stability of the control/communication
system of Fig. 1. Furthermore, sufficient conditions are derived
for linear partially observed controlled Gaussian systems and
AWGN channels, subject to the standard LQG assumptions. The
importance of the Shannon lower bound is also discussed.

2. Problem formulation

Consider the control/communication system of Fig. 1, where
Yt ∈ Yt , Zt ∈ Zt , Z̃t ∈ Z̃t , Ỹt ∈ Ỹt , Ut ∈ Ut are
Random Variables (R.V.’s) denoting the source message, channel
input, channel output, reconstruction of the source message, and
the control input to the source, respectively, at time t ∈ N+

4
=

{0, 1, 2, . . .}. It is assumed that Yt , Zt , Z̃t , Z̃t , Ỹt , Ũt are finite-
dimensional metric spaces. Throughout the paper, for T ∈ N+
sequences of R.V.’s are denoted byΘT

4
= (Θ0,Θ1, . . . ,ΘT ), while

specific realizations by θ T . log(.) and loge(.) denote logarithm of
base 2 and natural logarithm, respectively. Given the measurable
spaces (Ā, Ā), (Â, Â), a stochastic kernel denoted by P(dF; x) is a
mapping P : Â× Ā→ [0, 1]which satisfies (i) for every x ∈ Ā, the
set function P(.; x) is a probability measure on Â, and (ii) for every

F ∈ Â, the function P(dF; .) is a Ā-measurable. Iq denotes the
identitymatrixwith dimension q×q, and Atr denotes the transpose
of the vector/matrix A, while Cov(·) is used for the covariance.
The different blocks of Fig. 1 are described below.

Information source: The information source is the plant output,
defined by the probabilitymeasure P(Y T ∈ dyT ) on×Tk=0 Yk, which
depends on the control sequence as shown in Fig. 1. When this
measure is absolutely continuous with respect to the Lebesgue
measure then P(Y T ∈ dyT ) = f (yT )dyT , where f (·) is the
probability density function of Y T .
Communication channel: The communication channels with
input Zn and output Z̃n is modeled by a stochastic kernel
{P(dz̃t; zt , z̃t−1); t ∈ N+}, that is, P(dz̃t; zt , z̃t−1) = P(Z̃t ∈
dz̃t |Z t = zt , Z̃ t−1 = z̃t−1) are conditional probability measures
on Z̃t given Z t = zt and Z̃ t−1 = z̃t−1.
A communication channel is called memoryless if the channel

stochastic kernel satisfies P(dz̃t; zt , z̃t−1) = P(dz̃t; zt).
A communication channel is used without feedback if the

input symbol does not depend on the previous output symbols;
probabilistically, it implies P(dzt; zt−1, z̃t−1) = P(dzt; zt−1).
A communication channel in which the channel input/output

are restricted to finite alphabet sets and the channel ismemoryless,
is called a Discrete Memoryless Channel (DMC).
AnAdditiveWhiteGaussianNoise (AWGN) channel is described

by Z̃t = Zt + W̃t , where the orthogonal process {W̃t}t∈N+ is a zero
mean Gaussian process.
Encoder: For any time t ∈ N+, Class A, Class B, and Class C encoders
aremodeled by stochastic kernels, P(dzt; yt), P(dzt; yt , ut−1, z̃t−1),
and P(dzt; yt , z̃t−1), respectively.
Decoder: For any time t ∈ N+, Class A and Class B decoders
are modeled by stochastic kernels P(dỹt; z̃t) and P(dỹt; z̃t , ut−1),
respectively.
Controller: For any time t ∈ N+, Class A and Class B control
laws are modeled by a stochastic kernels P(dut; z̃t−1, ut−1) and
P(dut; z̃t−1), respectively.
Reconstruction and stability of sequences associated with the

system of Fig. 1 are defined next.

Definition 2.1. Consider the system of Fig. 1.
A (Reconstruction in Probability and r-Mean). (i) A sequenceΘT−1
related to the plant is said to be reconstructed in probability
with another sequence Θ̃T−1, if for a given δ ≥ 0, there exist
(a control sequence and) an encoder and a decoder such that
limT→∞ 1

T

∑T−1
t=0 Eρ(Θt , Θ̃t) ≤ Dv , where ρ(Θ, Θ̃) = 1if ‖Θ −

Θ̃‖ > δ and ρ(Θ, Θ̃) = 0 if ‖Θ− Θ̃‖ ≤ δ. (‖.‖ is the norm on the
product space) and Dv ∈ [0, 1).
(ii) A sequenceΘT−1 related to the plant is said to be reconstructed
in r-meanwith another sequence Θ̃T−1, if limT→∞ 1

T

∑T−1
t=0 E‖Θt−

Θ̃t‖
r
≤ Dv , r > 0, for a finite Dv ≥ 0.

B (Stability in Probability and r-Mean). (i) A sequence HT−1 related
to the plant is said to be stable in probability if for a given
δ ≥ 0, there exist a controller, encoder, and decoder such that
limT→∞ 1

T

∑T−1
t=0 Eρ(Ht , 0) ≤ Dv , where ρ(., .) is defined as above

and Dv ∈ [0, 1).
(ii) A sequence HT−1 related to the plant is said to be stable in r-
mean if limT→∞ 1

T

∑T−1
t=0 E‖Ht − 0‖

r
≤ Dv , r > 0, for a finite

Dv ≥ 0.

By Fig. 1, source reconstruction at the output of the decoder
corresponds to ΘT−1 = Y T−1, Θ̃T−1 = Ỹ T−1. Note that
reconstruction in a communication system is analogous to state
estimation in a control system.



Author's personal copy

C.D. Charalambous, A. Farhadi / Automatica 44 (2008) 3181–3188 3183

The main results of the paper are applied throughout the paper
to the following system.
Stochastic control system: The system dynamics which are
defined on a complete probability space (Ω,F (Ω), P; {Ft}t≥0) are
described by{
Xt+1 = AXt + NUt + BWt , X0 = X,

Yt = Ht + DGt , Ht = CXt ,
(1)

where X : Ω × N+ → Rq is the unobserved (state) process,
Y : Ω × N+ → Rd is the observed (measurement) process,
U : Ω × N+ → Ro is the control signal, H : Ω × N+ → Rd is the
signal to be controlled,W : Ω × N+ → Rm, G : Ω × N+ → Rl in
which {Wt; t ∈ N+} is Independent Identically Distributed (i.i.d.)
∼ N(0, Im) and {Gt; t ∈ N+} is i.i.d. ∼ N(0, Il). Moreover, X0 ∼
N(x̄0, V̄0) and {Wt ,Gt , X0; t ∈ N+} are mutually independent.

3. Shannon entropy rate, Kalman filtering and innovations
process

In this section, we introduce Shannon’s entropy (Cover &
Thomas, 1991) and we discuss its implications in controlling a
dynamical system over limited capacity communication channels.
Suppose the source sequence Y T produces messages at a rate of
one message every τs seconds (e.g., the time between subsequent
sampling times Yj and Yj+1 is τs seconds). If the information source
has joint density P(dyT ) = f (yT )dyT , then its Shannon entropy
is defined by HS(Y T )

4
= −

∫
f (yT ) log f (yT )dyT bits (Cover &

Thomas, 1991). Subsequently, the Shannon entropy rate is given by
HS(Y)

4
= limT→∞ 1

T HS(Y
T−1) bits per source message, provided

the limit exists; or the source generates HS(Y)/τs information
bits per second. In Section 4, it will be shown that the Shannon
entropy rate is related to the minimum bit rate for reliable
data reconstruction and stability of a sequence associated with a
controlled source. Here, we discuss connections between the error
covariance of the Kalman filter, the innovations process of the
source, Shannon entropy rate, and unstable eigenvalues of linear
dynamical systems.

Lemma 3.1 (See, Caines (1988, pp. 44)). Let {Yt; t ∈ N+}, Y :
Ω × N+ → Rd be a Gaussian process and define ΓY T−1

4
=

Cov[(Y tr0 , Y
tr
1 , . . . , Y

tr
T−1)

tr
] and Kt

4
= Yt − E[Yt |σ {Y t−1}], Λt

4
=

Cov(Kt), where σ {Y t−1}− denotes the σ -algebra of events generated
by the sequence Y t−1. Assume Λ∞

4
= limT→∞ΛT exists. Then, the

Shannon entropy rate of {Yt; t ∈ N+} in bits per source message is

HS(Y)
4
= lim
T→∞

1
T
HS(Y T−1) =

d
2
log(2πe)+ lim

T→∞

1
2T
log detΓY T−1

=
d
2
log(2πe)+

1
2
log detΛ∞. (2)

Moreover, if {Yt; t ∈ N+} is an asymptotic stationary Gaussian
process with power spectral density SY (ejw) then HS(Y) =
d
2 log(2πe)+

1
4π

∫ π
−π
log det SY (ejw)dw.

The application of the above lemma to partially observed
systems establishes a relation between the entropy rate and the
unstable eigenvalues rate.

3.1. Uncontrolled stochastic dynamical systems

Sufficient conditions for existence of the limit, Λ∞ =

limT→∞ΛT are given next.

Lemma 3.2. Consider the uncontrolled version of system (1) corre-
sponding to {Ut = 0; t ∈ N+}, and assume (C, A) is detectable,
(A, (BBtr)

1
2 ) is stabilizable, and D 6= 0.

Then, Λ∞ = CV∞C tr + DDtr , where Vt
4
= E[X̃t X̃ trt ], X̃t

4
=

Xt − E[Xt |σ {Y t−1}], t ∈ N+, and V∞
4
= limT→∞ VT is the unique

solution of the following Algebraic Riccati-equation

V∞ = AV∞Atr − AV∞C tr(CV∞C tr + DDtr)−1CV∞Atr + BBtr ,
V∞ ≥ 0. (3)

Moreover, HS(K) = HS(Y) =
d
2 log(2πe) +

1
2 log det(CV∞C

tr
+

DDtr), whereHS(K) is the entropy rate of the innovations process.

Proof. Follows from Caines (1988, pp. 156–158) and Lemma 3.1.
�

In the following remark we relate Shannon entropy rate to
unstable eigenvalues, e.g., λi(A)’s such that λi(A) ≥ 1, where
λi(A)’s denote the eigenvalues of the matrix A.

Remark 3.3. (i) Consider the scalar version of the uncontrolled
system (1) with q = 1 and d = 1. Then, (3) can be solved
explicitly to obtain

HS(Y) =
1
2
log(2πe)+

1
2
logΛ∞ ≥

1
2
log(2πeD2)

+ max{0, log |A|}. (4)

Moreover, the inequality in (4) holds with equality when B =
0.

(ii) Consider the uncontrolled version of system (1) with scalar
observation and measurement noise (i.e., d = l = 1)
under detectability and stabilizability conditions of Lemma 3.2
when D 6= 0. Then, HS(Y) = HS(K) =

1
2 log(2πe) +

1
4π

∫ π
−π
log SK (ejw)dw, where SK (ejw) is the power spectral

density of the asymptotic stationary innovations process {Kt =
Yt − E[Yt |σ {Y t−1}]; t ∈ N+}. From standard Kalman filtering
equations (Caines, 1988, pp. 156–158) it follows that K(z) =
M(z)W (z) + S(z)DG(z), where M(z) = C(zIq − Ã)−1B, Ã =
A − ∆∞C (it has eigenvalues inside the unit circle), ∆∞ =
AV∞C tr(CV∞C tr + DDtr)−1, S(z) = 1 − C(zIq − Ã)−1∆∞ and
K(z), W (z), G(z) are the z-transformation of the innovations,
process and measurement noises, respectively. Subsequently,
SK (ejw) = M(ejw)M tr(e−jw) + |S(ejw)|2D2 ≥ |S(ejw)|2D2.
Consequently, HS(Y) = HS(K) ≥

1
2 log(2πe) +

1
2 logD

2
+

1
4π

∫ π
−π
log |S(ejw)|2dw. Next, consider S(z) as the sensitivity

transfer function of a stable unit negative feedback system.
That is, S(z) = 1 − C(zIq − Ã)−1∆∞ = 1 − T (z), where
T (z) = C(zIq − Ã)−1∆∞ is the complementary sensitivity
function (closed loop transfer function) of this stable feedback
system. In state space form, this system is represented by
Xt+1 = AXt + ∆∞Ut ,Ut = −Kt , Kt = CXt + DGt .

That is, S(z)
4
=

K(z)
DG(z) =

1
1+L(z) , where L(z) = C(zIq −

A)−1∆∞ is the transfer function of the open loop system
Xt+1 = AXt + ∆∞Ut , Kt = CXt . Using the Bode integral
formula (Wu & Jonckheere, 1992), we have

∫ π
−π
|S(ejw)|2dw =

4π
∑
{i;|λi(A)|≥1}

log |λi(A)|, and therefore HS(Y) = HS(K) ≥
1
2 log(2πeD

2) +
∑
{i;|λi(A)|≥1}

log |λi(A)|. This eigenvalue rate
is also found in many of the cited references using different
methods.

3.2. Controlled stochastic dynamical systems

Next, we will show that the Shannon entropy rate of the
controlled system is bounded below by the Shannon entropy rate
of the uncontrolled system.

Corollary 3.4. Consider the controlled system (1) and assume (C, A)
is detectable, (A, (BBtr)

1
2 ) is stabilizable, and D 6= 0. Then, the

Shannon entropy rate of the controlled system (1) is bounded below
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by that of the uncontrolled system via

HS(Y) = lim
T→∞

1
T
HS(Y T−1) = lim

T→∞

1
T

T−1∑
i=0

HS(Yi|Y i−1)

≥ lim
T→∞

1
T

T−1∑
i=0

HS(Yi|Y i−1,U i−1) =
d
2
log(2πe)

+
1
2
log detΛ∞, (5)

whereΛ∞ is given in Lemma 3.2.
Proof. The second equality follows from the chain of the Shannon
entropy (Cover & Thomas, 1991), the inequality follows from the
property that conditioning reduces entropy, and the last equality
follows from the Gaussianity of the source. �

4. Information transmission theorem, Shannon lower bound,
and conditions for reconstruction and stability

In this section, we first recall the definitions of infor-
mation channel capacity, rate distortion, and Shannon lower
bound (Berger, 1971; Linder & Zamir, 1994). Then we state general
necessary conditions for reconstruction and stability in terms of
the Shannon entropy rate and the type of fidelity criteria for recon-
struction and stability considered. Then we derive sufficient con-
ditions for mean square reconstruction of the innovations process
and stability of the controlled system, when the communication
channel is an AWGN channel. Moreover, we present an encoder
and decoder so that the source is matched to the channel capacity
for partially observed systems, and we derive a separation princi-
ple between the design of the control and the communication sys-
tems.

4.1. Information transmission theorem and the Shannon lower bound

First, we recall the definitions of Shannon information capacity
formula and rate distortion function, for feedback channels and
sources with feedback, respectively, so that these definitions
are applicable to the system of Fig. 1. Throughout we assume
that the system of Fig. 1, specifically, Y T−1 → Zn−1 →
Z̃n−1 → Ỹ T−1 → UT−1 forms a Markov chain, which is
equivalent to the conditional independence. In particular, for any
T , n ∈ N+, the Markovian property of the source output sequence
Y T−1, the channel input sequence Zn−1 and the channel output
sequence Z̃n−1 is equivalent to the conditional independence
P(dz̃t; zt , z̃t−1, yT−1) = P(dz̃t; zt , z̃t−1), P−a.s (t ∈ {0, 1, . . . , T−
1}), and similarly for the rest of the blocks.
Moreover, a degraded channel connecting Zn−1 to Z̃n−1,

denoted by Zn−1 → Z̃n−1, is defined by P(dz̃n−1; zn−1)
4
=∏n−1

i=0 P(dz̃i; z
i, z̃ i−1). This is equivalent to a causal restriction

of the conditional distribution; it is a definition and not an
assumption. Note that if it were an assumption, in view
of Bayes rule, P(dz̃n−1; zn−1) =

∏n−1
i=0 P(dz̃i; z

n, z̃ i−1) =∏n−1
i=0 P(dz̃i; z

i, z̃ i−1), which implies that Z̃i and Zi+1, . . . , Zn−1 are
conditional independent given Z i, Z̃ i−1 for all i ∈ N+. Similarly, a
degraded channel connecting Z̃n−1 to Zn−1, denoted by Zn−1 ←
Z̃n−1, is defined by P(dzn−1; z̃n−1)

4
=
∏n−1
i=0 P(dzi; z

i−1, z̃ i−1). The
motivation for introducing these definitions will become obvious
shortly.
Recall Shannon’s self-mutual information of two sequences

defined by i(zn−1; z̃n−1)
4
= log P(dz̃

n−1
;zn−1)

P(dz̃n−1)
, and its average,

Shannons mutual information defined by I(Zn−1; Z̃n−1)
4
=

EP(dzn−1,dz̃n−1)
{
i(zn−1; z̃n−1)

}
(Cover & Thomas, 1991). It can be

easily shown that

i(zn−1; z̃n−1) =
n−1∑
i=0

log
P(z̃i; z̃ i−1, z i)
P(z̃i; z̃ i−1)

+

T−1∑
i=0

log
P(zi; z i−1, z̃ i−1)
P(zi; z i−1)

and by taking expectation

I(Zn−1; Z̃n−1) = I(Zn−1 → Z̃n−1)+ I(Zn−1 ← Z̃n−1)

where

I(Zn−1 → Z̃n−1) =
n−1∑
i=0

I(Z i; Z̃i|Z̃ i−1)

=

n−1∑
i=0

∫
log
P(dz̃i; z̃ i−1, z i)
P(dz̃i; z̃ i−1)

P(dz̃ i, dz i)

I(Zn−1 ← Z̃n−1) =
n−1∑
i=0

I(Z̃ i−1; Zi|Z i−1)

=

n−1∑
i=0

∫
log
P(dzi; z i−1, z̃ i−1)
P(dzi; z i−1)

P(dz̃ i−1, dz i).

Note that the term I(Zn−1 → Z̃n−1) is the directed information
from Zn−1 to Z̃n−1 discussed in Massey (1990), and corresponds
to the Shannon mutual information restricted to the degraded
channel Zn−1 → Z̃n−1, while I(Zn−1 ← Z̃n−1) is the
directed information from Z̃n−1 to Zn−1, which corresponds to the
Shannon mutual information restricted to the degraded channel
Zn−1 ← Z̃n−1.
Note that I(Zn−1 ← Z̃n−1) = 0 if and only if P(dzi; z i−1, z̃ i−1) =

P(dzi; z i−1), P-a.s. for all i ∈ {0, . . . , n − 1}, which is equivalent
to either of the two statements (1) Zi and Z̃ i−1 are conditional
independent given Z i−1, for all i ∈ {0, . . . , n − 1}, (2) Z̃i and
Zi+1, . . . , Zn−1 are conditional independent given Z i, Z̃ i−1, for all i ∈
{0, . . . , n− 1}. A channel with feedback always satisfies I(Zn−1 ←
Z̃n−1) ≥ 0. On the other hand, if a channel has no feedback then by
definition of feedback encoding we have I(Zn−1 ← Z̃n−1) = 0,
and I(Zn−1; Z̃n−1) = I(Zn−1 → Z̃n−1). Hence, for a DMC or a
memoryless AWGN channel we have I(Zn−1; Z̃n−1) ≥ I(Zn−1 →
Z̃n−1) =

∑n−1
i=0

∫
log P(dz̃i;zi)

P(dz̃i;z̃i−1)
P(dz̃ i, dzi), with equality if and

only if Zi and Z̃ i−1 are conditional independent given Z i−1, for all
i ∈ {0, . . . , n − 1}. It can be verified that the channels with
feedback discussed in Cover and Thomas (1991) is the degraded
channel connecting Zn−1 to Z̃n−1, which does not consider the
term I(Zn−1 ← Z̃n−1). The point to be made here is that when
the channel has memory and feedback then the work found in
the literature (see Cover and Thomas (1991)) consider only the
directed information I(Zn−1 → Z̃n−1), in their general theorems of
DMC or AWGN channels with feedback. Similarly, when discussing
source reconstruction at the output of the decoder, we use the
definition of a degraded stochastic kernel connecting Y T−1 to Ỹ T−1,
that is, the reconstruction kernel is defined by P(dỹT−1; yT−1)

4
=∏T−1

i=0 P(dỹi; ỹ
i−1, yi) to account for the direction Y T−1 → Ỹ T−1.

Definition 4.1 (Information Capacity). Consider a communication
channel and let Zn−1 and Z̃n−1 be the channel input and output
sequences, respectively. LetMCI denotes the set of channel inputs
joint probability measures, P(dzn−1), which satisfy certain channel
input power constraint. The Shannon information capacity for the
time horizon n is defined by

CZ,Z̃n
4
= sup
P(dZn−1)∈MCI

I(Zn−1; Z̃n−1). (6)

The information capacity in bits per channel use is CZ,Z̃
4
=

limn→∞ 1
nC
Z,Z̃
n provided the limit exists.
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Note that for channels with memory and feedback the mutual
information in (6) should be replaced by I(Zn−1 → Z̃n−1),
which is the mutual information subject to the degraded channel
restriction connecting Zn−1 to Z̃n−1. The channel coding theorem
states that the information capacity is operational, that is, any
rate R < CZ,Z̃ is achievable, in the sense that there exist a
channel encoder and decoder so that the channel can transmit
2nR messages, in n uses of the channel, such that the probability
of the decoding error is arbitrary small as the number of channel
uses n is chosen arbitrary large. Assuming the channel has
capacity CZ,Z̃ bits per channel use and it is to be used at a rate
of one channel symbol in each τc seconds, then the channel
has capacity CZ,Z̃/τc bits per second. For DMC’s and AWGN
channels without feedback, the information channel capacity of
Definition 4.1 represents the operational capacity. Further, the
capacity of DMC’s or AWGN channels with feedback which is
described by the directed information connecting channel inputs
to channel outputs, is the same as the capacity of those channels
without feedback (Cover & Thomas, 1991).

Example 4.2. AWGN channel: Consider the following AWGN
channel without feedback Z̃t = Zt + W̃t , where W̃t ∈ R ∼
N(0,Wc) is a zero mean orthogonal Gaussian noise process. At
each time instant t ∈ N+, this channel transmits the encoded
information under transmission power constraint E[Z2t ] ≤ Pt .
The capacity of this AWGN channel for n channel uses is CZ,Z̃n =∑n−1
t=0

1
2 log(1+

Pt
Wc
) bits in n channel uses; and subsequentlywhen

limn→∞ Pn = P , CZ,Z̃ = 1
2 log(1 +

P
Wc
) bits per channel use.

Moreover, if at each time instant t ∈ N+, this channel transmits
a source message, the capacity in bits per source message is also
CZ,Z̃ = 1

2 log(1+
P
Wc
). When the channel has feedback andmutual

information is replaced by directed information I(Zn−1 → Z̃n−1),
the capacity is the same.

The next definition gives an information meaning to lossy data
reconstruction or quantization, in which the source messages can
be represented by another messages up to a given distortion.

Definition 4.3 (Information Rate Distortion). Let Y T−1 and Ỹ T−1 be
sequences of length T of the source and the reconstruction of
the source messages, respectively, and MDC

4
= {P(dỹT−1; yT−1);

EρT (Y T−1, Ỹ T−1) ≤ Dv} denote the set of distortion constraints
in which Dv ≥ 0 is the distortion level and ρT ∈ [0,∞) is
the distortion measure. The information rate distortion for time
horizon T is defined by:

RY ,ỸT (Dv)
4
= inf
P(dỹT−1;yT−1)∈MDC

I(Y T−1; Ỹ T−1). (7)

The information rate distortion in bits per source message is
RY ,Ỹ (Dv)

4
= limT→∞ 1

T R
Y ,Ỹ
T (Dv) provided the limit exists.

Similar to capacity, for sources with memory and feedback, (7)
should be replaced by RY ,ỸT ,SRD(Dv)

4
= inf

{P(dỹi;ỹi−1,yi)}
T−1
i=0 ∈MDC

I(Y T−1

→ Ỹ T−1), that is, the infimum is taken with respect to the causal
kernels, and mutual information is replaced by directed informa-
tion. The source coding theorem is concerned with the operational
meaning of information rate distortion (Cover & Thomas, 1991) (in
one direction when the source has feedback). In the rest of the pa-
per we shall assume, without loss of generality that τs = τc . For
memoryless sources the information rate distortion represents the
operational definition (Cover & Thomas, 1991).
In the next remark we identify a sufficient condition so

that the minimizing stochastic kernel in (7) gives an optimal

reconstruction kernel which is a causal operation on the source
sequence (Tatikonda et al., 2004).

Remark 4.4. Suppose the distortion measure is given by ρT
(kT−1, k̃T−1) = 1

T

∑T−1
t=0 ρ(kt , k̃t), where ρ(kt , k̃t) : Kt × K̃t →

[0,∞) is continuous and non-negative and assume the source
K T−1 is an independent process, without feedback. Theminimizing
stochastic kernel in (7) is

P∗(dk̃T−1; kT−1) =
T−1∏
t=0

P∗(dk̃t; kt)

=

T−1∏
t=0

e
1
T s(Dv)ρ(kt ,k̃t )P∗(dk̃t)∫

K̃t
e
1
T s(Dv)ρ(kt ,k̃t )P∗(dk̃t)

, s(Dv) =
dRK ,K̃T (Dv)
dDv

. (8)

Since P∗(dk̃T−1; kT−1) =
∏T−1
t=0 P

∗(dk̃t; kt) the reproduction kernel
is indeed causal for the given source. When the encoder has
feedback, the kernel which minimizes I(K T−1 → K̃ T−1) is the
same.

Next, we present a necessary condition for end to end
transmission up to distortion level Dv ≥ 0. This is the converse
of information transmission theorem.

Theorem 4.5 (Information Transmission Theorem). Consider the
control/communication system of Fig. 1 under the conditional
independence assumptions introduced earlier. Then
(i) I(Zn; Z̃n) ≥ I(Zn → Z̃n) ≥ I(Y t; Ỹ t) ≥ I(Y t → Ỹ t),
∀t, n ∈ N+.

(ii) A necessary condition for reproducing a sequence of source
messages Y T−1 up to distortion level Dv by Ỹ T−1 at the output
of the decoder (e.g., EρT (Y T−1, Ỹ T−1) ≤ Dv) using a sequence of
the channel inputs and outputs with length n (T ≤ n) is

CZ,Z̃n ≥ R
Y ,Ỹ
T (Dv). (9)

Proof. (i) This is similar to Massey (1990). (ii) Follows from the
data processing inequalities. �

Note that when feedback is assumed, then in the definition
of (9), mutual information should be replaced by directed
information and the reproduction kernel by causal kernels as
discussed earlier. Next, we present the Shannon lower bound
which is used to obtain necessary conditions for reconstruction and
stability. This lower bound, in view of data processing inequalities
of Theorem 4.5, is practical in terms of providing a tight necessary
condition.

Lemma 4.6 (Shannon Lower Bound). Let Y T−1, Yt ∈ Rd, 0 ≤
t ≤ T − 1 be a sequence with length T produced by the source
P(Y T−1 ∈ dyT−1) = f (yT−1)dyT−1. Consider the following form
of distortion measure ρT (yT−1, ỹT−1) = 1

T

∑T−1
t=0 ρ(yt , ỹt), where

ρ(yt , ỹt) = ρ(yt − ỹt) : Rd → [0,∞) is continuous. Then,

(i) A lower bound for 1T R
Y ,Ỹ
T (Dv) is given by

1
T
RY ,ỸT (Dv) ≥

1
T
HS(Y T−1)−max

h∈GD
HS(h), (10)

where GD is defined by GD
4
= {h : Rd → [0,∞);

∫
Rd h(ξ)dξ =

1,
∫

Rd ρ(ξ)h(ξ)dξ ≤ Dv, ξ ∈ Rd}. Moreover, when∫
Rd e

sρ(ξ)dξ <∞ for all s < 0, then h∗(ξ) ∈ GD that maximizes
HS(h) is

h∗(ξ) =
esρ(ξ)∫

Rd e
sρ(ξ)dξ

,

∫
Rd
ρ(ξ)h∗(ξ)dξ = Dv. (11)

Subsequently, when RY ,Ỹ (Dv) and HS(Y) exist, the Shannon
lower bound denoted by RY ,ỸS (Dv) is given by
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RY ,Ỹ (Dv) ≥ HS(Y)−max
h∈GD

HS(h)
4
= RY ,ỸS (Dv). (12)

(ii) Suppose the difference distortion measure ρ(.) satisfies the
conditions a, b, d of Linder and Zamir (1994, pp. 2029),∫

Rd e
sρ(ξ)dξ < ∞ for all s < 0,HS(Y) > −∞ and there exists

an y∗ ∈ Rd such that Eρ(y− y∗) <∞, ∀y ∈ Rd.

Then, in the limit as Dv → 0, the lower bound is asymptotically
exact. That is, for the case when RY ,Ỹ (Dv) and HS(Y) exist,
limDv→0

[
RY ,Ỹ (Dv)− (HS(Y)− HS(h∗))

]
= 0.

Proof. Follows from Linder and Zamir (1994) by considering the
method proposed in Berger (1971, pp. 140). �

Remark 4.7. Note that the above Shannon lower bound is derived
by considering rate distortion defined via mutual information,
and without assuming causal reproduction kernel. (i) A sufficient
condition for the existence of RY ,Ỹ (Dv) is stationarity of the source
(Berger, 1971).

(ii) For distortion measure ρ(y, ỹ) = ‖y − ỹ‖r , in the limit as
Dv → 0, the Shannon lower bound is equal to the rate distortion
function (Linder & Zamir, 1994). Furthermore, for this distortion
measure, maxh∈GD HS(h) = log e

d
r − log( r

dVdΓ (
d
r )
( drDv

)
d
r ) bits per

sourcemessage,whereVd is the volume of the unit sphere andΓ (.)
is the gamma function (Linder & Zamir, 1994).

4.2. Necessary conditions for reconstruction and stability of general
systems

For the general control/communication system of Fig. 1, the
main theoremwhich connects reliable communication (e.g., recon-
struction) and stability for general systems is given next.

Theorem 4.8. Consider the system of Fig. 1 under the Markov chain
assumption in which Y T−1, Yt ∈ Rd is the observed process to
be reconstructed at the output of the decoder. Assume the Shannon
entropy rate corresponding to the Y T−1 process exists and it is finite.
For the reconstruction of Y T−1 in probability, a necessary

condition on the channel capacity is

CZ,Z̃ ≥ HS(Y)−
1
2
log[(2πe)d detΓg ] = R

Y ,Ỹ
S (Dv), (13)

where HS(Y) is the Shannon entropy rate of the Y T−1 process and
Γg is the covariance matrix of the Gaussian distribution h∗(ξ) ∼
N(0,Γg), (ξ ∈ Rd) which satisfies

∫
‖ξ‖>δ

h∗(ξ)dξ = Dv . Moreover,
a necessary condition on the channel capacity for the reconstruction
of Y T−1, Yt ∈ Rd in the r-mean is

CZ,Z̃ ≥ HS(Y)− log e
d
r + log

(
r

dVdΓ ( dr )
(
d
rDv

)
d
r

)

= RY ,ỸS (Dv), (14)

where Γ (.) is the gamma function and Vd is the volume of the unit
sphere (e.g., Vd = Vol(Sd); Sd

4
= {ξ ∈ Rd; ‖ξ‖ ≤ 1}).

Furthermore, for the case when the observed process, Y T−1, Yt ∈
Rd, and the signal to be controlled, HT−1,Ht ∈ Rd, are related by
Yt = Ht+Υt , (e.g., ρ(Ht , 0) = ρ(Yt−Υt , 0)), then (13) and (14) are
also necessary conditions for stability of the sequence HT−1,Ht ∈ Rd

in probability and r-mean.

Proof. See Appendix. �

Remark 4.9. We have the following remarks regarding the results
of Theorem 4.8.
(i) First, we note that the above necessary conditions have not
appeared elsewhere.
(ii) The lower bounds (13) and (14) given in Theorem 4.8
hold for any observed process, and they depend on the type
of reconstruction and stability criteria employed. Hence, when
Theorem 4.8 is applied to the controlled system (1), then the
Shannon entropy rate is that of the controlled output of system (1).
However, under assumption that (C, A) is detectable, (A, (BBtr)

1
2 )

is stabilizable, and D 6= 0 when the encoder and decoder are of
Class A, by Corollary 3.4 we deduce that bounds (13) and (14) also
hold when the Shannon entropy rate is replaced by the Shannon
entropy rate of the output process of the uncontrolled version of
system (1). This is also true when the encoder and decoder are of
Class B.
(iii) The condition (13) and (14) are given in terms of the
Shannon entropy rate which can be easily computed. Further, by
Remark 3.3, these conditions imply the eigenvalue rate condition
which appeared in the literature.
(iv) For the case of d = 1, condition

∫
‖ξ‖>δ

h∗(ξ)dξ = Dv is reduced

to 2Φ(− δ√
Γg
) = Dv , Φ(t)

4
=
∫ t
−∞

1
√
2π
e−

u2
2 du. Using a table for

this integral, we notice that for a given δ ≥ 0, Γg ≤ δ2

16 gives a

small value for Dv . On the other hand, using a Γg smaller than δ2

16
does not yield significantly different result for reconstruction and
stability performance, so for a small quantity of Dv , Γg = δ2

16 can
be used in (13). Further, for d = 1 and r = 2, the extra term
− log e

d
r + log( r

dVdΓ (
d
r )
( drDv

)
d
r ) in (14) is given by − 12 log(2πeDv)

which implies that smaller Dv requires bigger channel capacity for
mean square reconstruction and stability.

4.3. Design of communication system for controlled systems

In this section, we design an encoder of Class B and C, and a
decoder of Class B and A for the control system (1), when Yt ∈
R (the general case is similar). Moreover, we show a separation
principle between the design of the control and communication
systems. The design of the encoder and decoder is done as follows.
First, we compute the rate distortion function. Second, we match
the feedback innovations process to the AWGN channel

Z̃t = Zt + W̃t , W̃t orthogonal ∼ N(0,Wc), (15)
by identifying a specific encoder/decoder and controller. This
leads to a joint source-channel coding theorem. First, note
that if the encoder is an innovations encoder that does not
use channel feedback (e.g, of Class A), then it is not possible
to stabilize an unstable controlled system. Thus, consider the
control/communication systemof Fig. 1 described by the stochastic
control system (1) and encoder and decoder of Class B (see
Fig. 2). The encoder consists of a pre-encoder which produces the
orthogonal Gaussian innovations process {Kt; t ∈ N+}; Kt

4
=

Yt − E[Yt |σ {K̃ t−1,U t−1}] = Yt − CE[Xt |σ {K̃ t−1,U t−1}] using the
feedback channel information K̃ t−1 of the decoder output and the
previous control sequence U t−1. We assume an encoder Zt = αtKt
and a decoder K̃t = γt Z̃t , where αt , γt are non-negative scalars
to be determined so that the link from Kt to K̃t is matched to the
minimizing stochastic kernel. Note that

K̃t = γt Z̃t = γt(Zt + W̃t)

= γtαt

(
Yt − CE[Xt |σ {K̃ t−1,U t−1}]

)
+ γtW̃t , E[Z2t ] = Pt . (16)

Define the mean square state estimator X̂t
4
= E[Xt |σ {K̃ t−1,U t−1}].

Then an application of least square estimation when the mea-
surements admit output feedback specified by (16) gives the
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Fig. 2. Control/communication system described by stochastic control system (1).

following recursive Kalman filter estimate. X̂t+1 = AX̂t +
1
αtγt
AΠtC tr(CΠtC tr + DDtr + Wc

α2t
)−1K̃t + NUt , X̂0 = x̄0 = EX0,

where the control is of the form Ut = µ(t, K̃ t−1,U t−1) (µ(·) will
be defined shortly tominimize a quadratic cost) andΠt is themean
square state estimation error given by

Πt+1 = AΠtAtr − AΠtC tr
(
CΠtC tr + DDtr +

Wc
α2t

)−1
× CΠtAtr + BBtr , Π0 = V̄0. (17)

Rate distortion computation: Consider the orthogonal Gaussian
feedback innovations process Kt

4
= Yt − E[Yt |σ {K̃ t−1,U t−1}], Kt ∼

N(0,Ψt), t ∈ N+, where Ψt
4
= CΠtC tr + DDtr in which Πt is the

solution of the Riccati equation (17), corresponding to the control
system (1) with Ut = µ(t, K̃ t−1,U t−1). Also consider a mean
square distortion measure ρT (kT−1, k̃T−1) = 1

T

∑T−1
t=0 (kt − k̃t)

2.

Theminimizing stochastic kernel of RK ,K̃T (Dv), for Dv < mint∈N+ Ψt
is given by P∗(dk̃T−1; kT−1) =

∏T−1
t=0 q

∗(k̃t |kt)dk̃t , q∗(k̃t |kt) ∼

N(ηtkt , ηtDv), ηt
4
= 1 − Dv

Ψt
. By Remark 4.4, we have RK ,K̃T (Dv) =

RK ,K̃T ,SRD(Dv) =
1
2

∑T−1
t=0 log

Ψt
Dv
, Dv < mint∈N+ Ψt . On the other hand,

from the expression of the pre-encoding scheme it follows that
Ỹt = K̃t+CX̂t is the reconstruction of Yt , at the communication end.
For this reconstruction,wehave E(Yt−Ỹt)2 = E(Kt−K̃t)2,∀t ∈ N+.
Under the assumption that (C, A) is detectable and (A, (BBtr)

1
2 ) is

stabilizable, then Π∞
4
= limT→∞ΠT exists and it is given by the

Algebraic Riccati equation

Π∞ = AΠ∞Atr − AΠ∞C tr
(
CΠ∞C tr + DDtr +

Dv
η∞

)−1
× CΠ∞Atr + BBtr , (18)

where η∞
4
= 1 − Dv

Ψ∞
and Ψ∞ = CΠ∞C tr + DDtr . Subsequently,

for Dv < mint∈N+ Ψt , then R
K ,K̃ (Dv) = limT→∞ 1

T R
K ,K̃
T (Dv) =

1
2T

∑T−1
t=0 log

Ψt
Dv
=
1
2 log

Ψ∞
Dv
.

Separation principle:Here, we shall show that the encoder/decoder
is independent of the control sequence UT−1, and hence the
encoder and decoder do not need access to the control sequence.
Let Gt,u

4
= σ {K̃ t ,U t} and Gt,0

4
= σ {K̃ t,0}, t ∈ N+, where the

superscript u denotes dependence on the control sequence U t , K̃ t,0

is the decoder output arising from K̃t = γt Z̃t , Zt = αtKt , with

Ut = 0, and K 0t
4
= Yt − CX̂t is the innovations process with Ut = 0.

First, note that Ut ∈ Gt−1,u = σ {Z̃ t−1,U t−1}, and X̂t ∈ Gt−1,u.
Following an inductionmethod as in Caines (1988, pages 688, 689),
we deduce that, Yt − CX̂t = K 0t and K̃t − E[K̃t |G

t−1,u
] = αtγt(Yt −

CX̂t) + γtW̃t − 0 = K̃ 0t , and that G
t,u
= Gt,0, X̂t ∈ Gt,0, t ∈ N+.

Hence, the encoder, decoder and feedback information provided
to the decoder is independent of the control U . Consequently, the
encoder can be of Class C, while the decoder of Class A, and thus
in Fig. 2, the link between the output of the controller and the
input to the encoder/decoder can be removed. Thus, separation
holds between the design of the communication system (encoder,
decoder) and the controller.
Furthermore, given a sequence of the mean square state

estimation X̂T−1 = (X̂0, . . . , X̂T−1) (at each instance of time, X̂t
is known to the transmitter and receiver), we have I(Y T−1 →
Ỹ T−1) =

∑T−1
t=0 HS(Ỹt |Ỹ

t−1) −
∑T−1
t=0 HS(Ỹt |Ỹ

t−1, Y t) =∑T−1
t=0 HS(K̃

0
t +CX̂t |K̃

0
−1+CX̂−1, . . . , K̃

0
t−1+CX̂t−1)−

∑T−1
t=0 HS(K̃

0
t +

CX̂t |K̃ 0−1 + CX̂−1, K
0
0 + CX̂0, . . . , K̃

0
t−1 + CX̂t−1, K

0
t + CX̂t) =∑T−1

t=0

(
HS(K̃ 0t |K̃

t−1,0)− HS(K̃ 0t |K̃
t−1,0, K t,0)

)
= I(K T−1,0 →

K̃ T−1,0) = I(K T−1 → K̃ T−1) = I(K T−1,0; K̃ T−1,0) =
I(Y T−1; Ỹ T−1),where the first equality follows from the definition,
the second equality follows by substituting the expression,
and separation principle, the third by a variant of Cover and
Thomas (1991, Theorem 9.6.3), the fourth by definition, the fifth
by separation principle, the sixth by conditional independence
P(dkt; kt−1, k̃t−1) = P(dkt; kt−1),∀t ∈ N+, P−a.s., the seventh
because P(dyt; yt−1, ỹt−1) = P(dyt; yt−1),∀t ∈ N+, P−a.s., which
implies I(Y T−1 ← Ỹ T−1) = 0 (note that K̃ 0

−1 can be taken to be
zero, and X̂−1 = X̂0).
Next, for a given sequence X̂T−1, consider the rate distortion

functions RY ,ỸT ,SRD(Dv) and R
K ,K̃
T (Dv) with a mean square distortion

measure ρT (yT−1, ỹT−1) = 1
T

∑T−1
t=0 (yt−ỹt)

2 and ρT (kT−1, k̃T−1) =
1
T

∑T−1
t=0 (kt − k̃t)

2, respectively. From above analysis, since the
distortion constraints are the same and I(Y T−1 → Ỹ T−1) =
I(K T−1; K̃ T−1), then, RY ,ỸT ,SRD(Dv) = R

K ,K̃
T (Dv).

Computation of shannon lower bound: The Shannon lower bound
is given by RK ,K̃ (Dv) ≥ R

K ,K̃
S (Dv) = HS(K) − maxh∈GD HS(h) =

limT→∞ 1
T

∑T−1
i=0 HS(Ki|K

i−1) − maxh∈GD HS(h) =
1
2 logΨ∞ −

1
2 logDv. Subsequently, for Dv < mint∈N+ Ψt , the rate distortion
function RK ,K̃ (Dv) and Shannon lower bound are the same, hence
in this case the lower bound is tight.
Realization of a communication link matched to the source: Next,
for the AWGN channel (15) a matched communication link such
that the innovations process-to-reconstruction behaves like the
rate distortion minimizing stochastic kernel is obtained if αt =√
ηtWc
Dv
, ηt

4
= 1 − Dv

Ψt
and γt =

√
Dvηt
Wc
, for Dv < mint∈N+ Ψt .

The power constraint corresponding to this encoding scheme is
E[Z2t ] = α

2
t Ψt =

ηtWc
Dv
Ψt
4
= Pt .



Author's personal copy

3188 C.D. Charalambous, A. Farhadi / Automatica 44 (2008) 3181–3188

Moreover, under the assumption that (C, A) is detectable and
(A, (BBtr)

1
2 ) is stabilizable, then Π∞

4
= limT→∞ΠT exists and

it is given by (18). Subsequently, for Dv < mint∈N+ Ψt , C
Z,Z̃
=

RK ,K̃ (Dv) = 1
2 log

Ψ∞
Dv
= RK ,K̃S (Dv). Therefore, using feedback

channel information to communicate Z̃ t−1, the encoder for the
output process Y T−1 is Kt

4
= Yt−CX̂t , and its reconstructed version

is Ỹt = K̃t+CX̂t , having distortion E(Yt− Ỹt)2 = E(Kt− K̃t)2 = Dv ,
∀t ∈ N+ by transmitting CZ,Z̃ = RY ,ỸSRD(Dv) = R

K ,K̃ (Dv) = R
K ,K̃
S (Dv)

(Dv < mint∈N+ Ψt ) bits per source message. This shows that given
control sequence, for the specific encoder/decoder and for mean
square distortion measure the lower bound in Theorem 4.8 is also
a sufficient condition for reconstructing the processes K T and Y T .
Control law: Suppose in addition to the previous assumptions for
existence of the rate distortion function, ((C trC)

1
2 , A) is detectable

and (A,N) is stabilizable. Then the control law which minimizes
the LQGcost functional (Caines, 1988) limT→∞ 1

T E
∑T−1
t=0 (‖Xt‖

2
C trC+

‖Ut‖2H) (H > 0) is given by Ut = −∆X̂t , where ∆ = (H +
N trP∞N)−1N trP∞A and P∞ is the unique positive semi-definite so-
lution of the following Algebraic Riccati equation P∞ = AtrP∞A −
AtrP∞N(H + N trP∞N)−1N trP∞A + C trC . This shows that via the
above feedback channel information the sequence HT−1 is mean-
square stable (follows from standard LQG theory).
Moreover, from the above construction it is evident that the

design of the controller (stability) is independent of the design of
the communication system (reconstruction), hence a separation
principle holds, and the control is a certainty equivalence control
law (Caines, 1988).

Remark 4.10. Notice that αtγt = ηt . In the limit, as Dv → 0,
then ηt → 1, αt → ∞. Thus the recursive estimator becomes
the standard Kalman filter and the proposed certainly equivalent
controller is reduced to the standard LQG controller (Caines, 1988).

Appendix

Proof of Theorem 4.8 (Reconstruction). Assume there exits an
encoder/decoder pair such that reconstruction in probability is
obtained. Then for a given δ ≥ 0 and Dv ∈ [0, 1), there exists
T (δ,Dv) such that ∀t ≥ T (δ,Dv), 1t

∑t−1
k=0 Pr(‖Yk − Ỹk‖ > δ) ≤

Dv . Define ρt(Y t−1; Ỹ t−1)
4
=

1
t

∑t−1
k=0 ρ(Yk, Ỹk), where ρ(., .) is

defined in Definition 2.1. Then, for t ≥ T (δ,Dv), Eρt(Y t−1, Ỹ t−1) =
1
t

∑t−1
k=0 Eρ(Yk, Ỹk) =

1
t

∑t−1
k=0 Pr(‖Yk − Ỹk‖ > δ) ≤ Dv . That

is, a rate distortion with distortion level Dv is obtained for t ≥
T (δ,Dv). Then by Theorem 4.5 the channel capacity and rate
distortion must for all t ≥ T (δ,Dv) satisfy 1t C

Z,Z̃
t ≥

1
t R
Y ,Ỹ
t (Dv) ⇔

limt→∞ 1
t C
Z,Z̃
t ≥ limt→∞ 1

t HS(Y
t−1) − maxh∈GD HS(h). Hence,

CZ,Z̃ ≥ HS(Y) − maxh∈GD HS(h). Since among all distribution
with the same covariance, theGaussian distribution has the biggest
entropy (Cover & Thomas, 1991), h∗(ξ) ∈ GD thatmaximizesHS(h)
is a Gaussian distributionwhich occurs on the boundary ofGD. That
is, h∗(ξ) ∼ N(0,Γg) in whichΓg satisfies the equation of Theorem.
Consequently, letting HS(h∗) = 1

2 log[(2πe)
d detΓg ] (Cover &

Thomas, 1991), the result is obtained. A necessary condition for
reconstruction in r-mean is obtained similarly. The only difference
is that from Linder and Zamir (1994), it follows that for this case,
maxh∈GD HS(h) = log e

d
r − log( r

dVdΓ (
d
r )
( drDv

)
d
r ) bits per source

message.
(Stability). Follows similarly by considering the rate distortion
between Y t−1 and Υ t−1. �
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