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a b s t r a c t

This paper is concerned with the control of a class of dynamical systems over finite capacity
communication channels. Necessary conditions for reliable data reconstruction and stability of a class
of dynamical systems are derived. The methodology is information theoretic. It introduces the notion of
entropy for a class of sources, which is defined as a maximization of the Shannon entropy over a class of
sources. It also introduces the Shannon information transmission theorem for a class of sources, which
states that channel capacity should be greater or equal to the mini-max rate distortion (maximization
is over the class of sources) for reliable communication. When the class of sources is described by a
relative entropy constraint between a class of source densities, and a given nominal source density, the
explicit solution to the maximum entropy, is given, and its connection to Rényi entropy is illustrated.
Furthermore, this solution is applied to a class of controlled dynamical systems to address necessary
conditions for reliable data reconstruction and stability of such systems.

Crown Copyright© 2008 Published by Elsevier B.V. All rights reserved.
1. Introduction

Over the last few years there has been an extensive research ac-
tivity in addressing analysis and design questions associated with
control of deterministic and stochastic systems over communica-
tion channels with limited channel capacity. This line of research is
motivated by applications in which the communication data rates
from the channel input to the controller input are limited and feed-
back is available from the output of the channel to the input of the
channel. A typical scenario of such control/communication system
is the block diagram of Fig. 1, in which the dynamical system (i.e.,
source of information) is controlled via a limited capacity commu-
nication channel. This systemcanbe viewed as a general communi-
cation system with feedback in which the output of the controlled
system is the information source which is transmitted over a feed-
back communication channel to the controller, whose output is the
input to the controlled system.
The present paper is concerned with necessary conditions

for reliable data reconstruction (known as observability in the
literature) and stability subject to limited channel capacity and
uncertainty in the source of information. Throughout, we consider
the system of Fig. 1 in which the dynamical system is controlled
via a limited capacity communication channel when the source
statistics belong to a prescribed class.
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Fig. 1. Control/communication system.

The control/communication system of Fig. 1 is defined on a
complete probability space (Ω,F (Ω), P) with filtration {Ft}t≥0;
t ∈ N+ , {0, 1, 2, . . .}, where, Yt , Zt , Z̃t , Ỹt , and Ut , t ∈ N+, are
Random Variables (R.V.’s) denoting the source message, channel
input codeword, channel output codeword, the reproduction of the
source message, and the control input to the source, respectively.
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The objective is to find general necessary conditions for
observability and stability of a class of sources, which is
independent of the information available to the encoder, decoder
and controller (i.e., the information patterns of the encoder,
decoder and controller). Here, observability means reconstruction
in the sense that Ỹt follows Yt with some distortion, while the
stability means that the state variable is bounded for all times,
when there is a limited data rate constraint.
References [1–12] are representative although not exhaustive

of the recent activity addressing necessary and sufficient condi-
tions for stability and observability of unstable control systems
subject to limited channel capacity. The necessary part is often ob-
tained through the converse of the Information Transmission Theo-
rem ([13], p. 72), which states that the information capacity should
be at least equal to the rate at which the information is generated
by the source (subject to a distortion when continuous sources are
invoked).
The materials presented in this paper compliment those

found in [5,14,15] in the problem formulation, methodology
considered and the results obtained. Specifically, we wish to
extend some of the concepts and results associated with the
control/communication systems to a class of sources or dynamical
systems, which are controlled over limited capacity channels.
Thus, instead of considering a single source generating information
which is then transmitted over the communication channel,
we consider a class of sources or dynamical systems. Since
the methodology is information theoretic, we introduce the
notion of entropy for a class of sources which represents the
amount of information generated by this class. This is defined
as a maximization of the entropy of the source over the class
of admissible sources considered, which corresponds to the
maximum amount of information generated by the class of
sources. Then, we invoke a modified version of the information
transmission theorem and the Shannon lower bound to account
for the class of sources, to link them to the definitions of
uniform observability and robust stability. Although the approach
is information theoretic, it is evident that the methodology
is reminiscent to the mini-max approach associated with the
investigation of robustness of the control systems [16].
This generalization is important in control applications since

dynamical models are often simplified representations of the true
models and hence, the robustness of the necessary conditions for
reliable communication and robust stability should be investi-
gated. This may be viewed as the first step towards introducing a
robust analysis for the system of Fig. 1, in an analogous manner as
it is done in robust control [17].
The general necessary conditions presented in this note, for

existence of an encoder, decoder and controller for uniform
observability and robust stability state that C ≥ Rr(Dv) ≥
RS,r(Dv), where C is the information capacity of the channel,
Rr(Dv) is the mini-max rate distortion in which the maximization
is with respect to the class of sources and the minimization is
over the class of reproduction kernels (between the source and its
reconstruction), and RS,r(Dv) is the maximization of the Shannon
lower bound over the class of sources. Throughout the paper,
the class of sources is described by a relative entropy constraint
between a class of source densities and a given nominal source
density. An explicit solution to the maximum entropy for such
class of sources is found; and its connection to Rényi entropy is
shown. Furthermore, themaximumentropy is calculated for a class
of partially observed Gauss Markov sources.
The paper is organized as follows. In Section 2, the robust

entropy (i.e., the entropy for a class of sources) and the robust
entropy rate are defined, and the explicit solution to the robust
entropy and its connection to Rényi entropy are given. In Section 3,
a class of partially observed Gauss Markov sources is considered,
and the robust entropy rate is calculated. Finally, in Section 4,
the notion of robust entropy rate is employed to derive necessary
conditions for uniform observability and robust stability of the
control/communication system of Fig. 1. The derivations are given
in the Appendix, while the notation employed is presented in
Table 1.

2. Robust entropy and entropy rate

In this section, the definitions of robust entropy and sub-
sequently robust entropy rate for a class of sources are given.
Subsequently, by considering a class of sources described by a
relative entropy constraint, the explicit solution to the robust en-
tropy and entropy rate are presented. These results are employed
in Section 4 to derive necessary conditions for uniform observ-
ability and robust stability of a class of controlled systems over a
limited capacity communication channel.
Robust entropy and entropy rate definition. Let D denote the
set of all Probability Density Functions (PDF’s) corresponding to
a R.V. Y : (Ω,F (Ω)) → (Rd,B(Rd)) and D0,T denote the
set of all joint PDF’s corresponding to a sequence of such R.V.’s
Y T , {Yt}Tt=0, Yt : (Ω,F (Ω)) → (Rd,B(Rd)). In the real word
applications, the source statistics are not entirely known; rather,
they are known to belong to a specific class of sources, known as
the uncertain class. This class of sources is often characterized by
the source density (resp. joint source density), with respect to a
nominal fixed source density gY ∈ D (resp. gY T ∈ D0,T ). Thus,
the nominal source corresponds to the a priori knowledge in the
absence of the true knowledge of the source. Suppose the true
source density, fY ∈ D (resp., fY T ∈ D0,T ) belongs to the class
DSU ⊂ D (resp.,D0,T

SU ⊂ D0,T ), then, the entropy associated with
a class of sources is defined as follows.

Definition 2.1 (Entropy and Entropy Rate for a Class of Sources). Sup-
pose a class of R.V.’s Y : (Ω,F ) → (Rd,B(Rd)) induces a class
of PDF’s belonging to the class fY ∈ DSU ,DSU ⊂ D . The robust
entropy associated with the family DSU of the sources is defined
by

Hr(f ∗Y ) , sup
fY∈DSU

HS(fY ), (1)

whereHS(fY ) , −
∫

Rd fY (y) log fY (y)dy is the Shannon entropy [18]
and f ∗Y ∈ argsupfY∈DSUHS(fY ). Moreover, for a class of sequences
Y T−1 of R.V’s with length T , which induces a class of joint PDF’s
belonging to the class fY T−1 ∈ D0,T−1

SU ,D0,T−1
SU ⊂ D0,T−1, the

robust entropy rate associated with the familyD0,T−1
SU ⊂ D0,T−1 is

defined by

Hr(Y) , lim
T→∞

1
T
Hr(f ∗Y T−1) = limT→∞

1
T

sup
fYT−1∈D

0,T−1
SU

HS(fY T−1), (2)

provided the limit exists.

The above extension of entropy corresponds to the maximum
amount of information generated by a class of sources. An
application to lossless source coding for a class of finite alphabet
sources is given in [19].
Class of sources described by relative entropy.Denote by gY ∈ D
the nominal source density and let the true source density fY ∈ D
belong to the class of sources which is described by the relative
entropy constraintDSU(gY ) , {fY ∈ D;H(fY ‖ gY ) ≤ Rc, gY ∈ D},
where H(fY ‖ gY ) ,

∫
log( fY (y)gY (y)

)fY (y)dy (when log(
fY (y)
gY (y)

)fY (y) is
integrable and gY (y) = 0 implies fY (y) = 0 for all such y’s), log(.)
is the natural logarithm and Rc ∈ [0,∞) is fixed.
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Table 1
Summary of Notation

Notation Description Notation Description

Y T (Y0, Y1, . . . , YT ) D Set of all PDF’s
D0,T Set of all PDF’s associated with Y T DSU ,D

0,T
SU Set of admissible density functions

N+ {0, 1, 2, . . .} Rd Set of d-dimensional real vectors
log(.) Natural logarithm L1(Rd,R+) Lebesgue measurable integrable

functions
‖.‖ Euclidian norm gY , gY T Nominal density functions
fY , fY T True source density function HS(gY ) Shannon entropy
HS(Y) Shannon entropy rate HR(gY ) Rényi entropy
RSRDr (Dv) Robust sequential rate distortion Hr (fY ) Robust entropy
Hr (Y) Robust entropy rate H(fY ‖ gY ) Relative entropy
Cn Capacity of n channel uses C Capacity
I(.; .) Mutual information Rr (Dv) Robust rate distortion
RS,r (Dv) Robust Shannon lower bound Var[.] Variance
Cov(.) Covariance o(.) Residue
E[.] Expected value Pr(A) Probability of the event A
N(m,Γ ) Gaussian distribution A−1 Matrix inverse
Im×m (m×m) identity matrix ′ Matrix transpose
det(.) Determinate of a square matrix σ {.} Sigma algebra
DSU (gY ) {fY ∈ D;H(fY ‖ gY ) ≤ Rc} DSU (gY T−1 ) {fY T−1 ;H(fY T−1 ‖ gY T−1 ) ≤ TRc}
Next, consider the robust entropy definition over the class of
sources described by the relative entropy constraint defined as
follows.

Hr(f ∗Y ) , sup
fY∈DSU (gY )

HS(fY ). (3)

In the following theorem, we derive the maximum information
generated by this class of sources.

Theorem 2.2. Suppose for some s ∈ [0,∞), (gY (y))
s
1+s ∈

L1(Rd,R+), where L1(Rd,R+) is the set of non-negative Lebesgue
measurable integrable functions defined on Rd. Then, we have the
following.

(i) The robust entropy associated with the classDSU(gY ) is given by

Hr(f
∗,s∗
Y ) = sup

fY∈DSU (gY )
HS(fY )

= min
s≥0

[
sRc + (1+ s) log

∫
(gY (y))

s
1+s dy

]
. (4)

Moreover, if for some s ∈ [0,∞), (gY (y))
s
1+s log(gY (y))−

1
1+s ∈

L1(Rd,R+), the supremum f
∗,s
Y is achieved by

f ∗,sY (y) =
(gY (y))

s
1+s∫

(gY (y))
s
1+s dy

. (5)

(ii) If for some s ≥ 0, (log gY (y))(gY (y))
s
1+s ∈ L1(Rd,R+) and

(log gY (y))2(gY (y))
s
1+s ∈ L1(Rd,R+), then the minimum in (4)

with respect to s ≥ 0 is the solution of H(f ∗,sY ‖ gY )|s=s∗ = Rc .
Moreover, H(f ∗,sY ‖ gY ) is a non-increasing function of s ≥ 0,

that is, for 0 ≤ s∗ ≤ s1 ≤ s2

0 ≤ H(f ∗,sY ‖ gY )
∣∣
s=s2
≤ H(f ∗,sY ‖ gY )

∣∣
s=s1

≤ H(f ∗,sY ‖ gY )
∣∣
s=s∗ = Rc . (6)

Proof. See Appendix. �

Remark 2.3. (4) has a similar form as the error exponent formula
for finite alphabet source coding problems. However, in the current
setting this formula is obtained for a class of sources, via the
relative entropy uncertainty while the alphabet is general.
(ii) An alternative expression for (4), using Taylor’s expansion,

is given byHr(f
∗,s∗
Y ) = mins≥0[sRc+HS(gY )+ 1

2(1+s)Var[log
1

gY (y)
]+
o( 11+s )]. This shows that robust entropy also includes the variance
of self information− log gY (y) around the entropy HS(gY ).
(iii) The above solution to the robust entropy is related to the

Rényi entropy defined byHR(gY ) , 1
1−α log

∫
gαY (y)dy, α > 0, α 6=

1, gαY (y) ∈ L1(R
d,R+) [20]which is obtained by relaxing themean

value property of the Shannon entropy from an arithmetic to an
exponential mean. Assume s∗ > 0 and let α = s

1+s , s > 0; then

min
α∈(0,1)

HR(gY ) ≤ Hr(f
∗,s∗
Y ) = min

α∈(0,1)

{
α

1− α
Rc + HR(gY )

}
≤

α

1− α
Rc + HR(gY ). (7)

Although, it is well known that Rényi entropy gives as a special
case the Shannon entropy [21], as discussed in [22] one special
applications of Rényi entropy is to measure the complexity of a
signal through its so called Time-Frequency Representation (TFR).
The negative values taken on bymost TFR’s prohibit the application
of the Shannon entropy. As it is shown in [22], for certain values of
α > 0, the Rényi entropy measures the signal complexity. Note
that the observation that maximization of entropy over a relative
entropy constraint yields Rényi entropy, was first investigated
in [19] in the context of lossless source coding. Note also that in
(4) the term (1 + s) log

∫
(gY (y))

s
1+s dy can be view as the Rényi

entropy with α = s
1+s , in which this entropy can be computed for

a large class of probability densities (see the anthology of densities
given in [21]).
The extension of Theorem 2.2 to a class of sequences is

presented in the following corollary which is a direct consequence
of Theorem 2.2.

Corollary 2.4. Consider a class of sequences Y T−1 of R.V.’s with
corresponding joint density function fY T−1 ∈ DSU(gY T−1) ⊂ D0,T−1,
described by

DSU(gY T−1) =
{
fY T−1 ∈ D0,T−1

;H(fY T−1 ‖ gY T−1) ≤ TRc
}
. (8)

Then, the statements of Theorem 2.2 hold for the class of sequences
Y T−1 by replacing Rc with TRc . Consequently, the robust entropy
Hr(f

∗,s
Y T−1

) corresponding to the class (8) is given by (4), in which
Rc is replaced by TRc and gY by gY T−1 . Subsequently, the robust
entropy rate corresponding to the class (8) is given by Hr(Y) =

limT→∞ 1
T Hr(f

∗,s∗

Y T−1), provided the limit exists.
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Note that if the sequence Y T−1 is generated via a stochastic
partially observed dynamical system, the class of uncertainty
described by (8) can model unknown dynamics in both the state
and the observation. The observation is affected by state dynamics.
Therefore, uncertainty in the state dynamics also affects the
observation, in which this uncertainty in the dynamics can be
described by (8).
Next, in the following Lemma, the robust entropy rate for a class

of sources described via the relative entropy constraint (8) and
a Gaussian distributed nominal source, is calculated. This Lemma
follows from the result of Corollary 2.4.

Lemma 2.5. Consider a class of sequences Y T−1 = {Yt}T−1t=0 , Yt ∈
Rd, for which the nominal source joint density gY T−1 ∈ D0,T−1

is a Td-dimensional Gaussian distributed vector (i.e., Y T−1 ∼

N(mT ,ΓT ),ΓT , Cov[(Y ′0, . . . , Y
′

T−1)
′
] with Shannon entropy rate

HS(Y) , limT→∞ 1
T HS(gY T−1). Then,

Hr(Y) =
d
2
log

(
1+ s∗

s∗

)
+HS(Y), (9)

where for a given Rc ∈ [0,∞), s∗ > 0 is the unique solution of the
following non-linear equation

Rc = −
d
2
log

(
1+ s∗

s∗

)
+
d
2s∗
, Rc ∈ [0,∞). (10)

Proof. See Appendix. �

3. Class of sources

In this section, the entropy rate is calculated for a class of
partially observed Gauss Markov sources.
Consider the following partially observed Gauss Markov

nominal source model

(Ω,F (Ω), P; {Ft}t≥0) :
{
Xt+1 = AXt + BWt , X0 = X,
Yt = CXt + DGt , t ∈ N+,

(11)

where Xt ∈ Rq denotes the unobserved (state) process, Yt ∈
Rd is the observed process, Wt ∈ Rm,Gt ∈ Rl, Wt is
Independent Identically Distributed (i.i.d.) ∼ N(0, Im×m),Gt is
i.i.d. ∼ N(0, Il×l), X0 ∼ N(x̄0, V̄0), and {X0,Gt ,Wt} are mutually
independent, ∀t ∈ N+. Here it is assumed that (C, A) is detectable,
(A, (BB′)

1
2 ) is stabilizable, and D 6= 0.

Denote by gY T−1 ∈ D0,T−1 the joint density function of the
sequence Y T−1 produced by the nominal source model (11). Then,
the class of source densities fY T−1 ∈ D0,T−1 corresponding to
the nominal source density gY T−1 is described by (8). One possible
uncertain class of densities is the one generated by letting A →
A + ∆A and C → C + ∆C in (11), while satisfying the relative
entropy constraint. This will lead to a specific constraint described
by∆A and∆C . Next, in the following theorem,we recall the results
of [15]. We shall use these results to find the robust entropy rate.

Theorem 3.1 ([15]).
(i) Let {Yt; t ∈ N+}, Yt ∈ Rd, be a Gaussian vector and define ΓT ,
Cov[(Y ′0, . . . , Y

′

T−1)
′
], Zt , Yt − E[Yt |σ {Y0, . . . , Yt−1}],Λt ,

Cov(Zt), and Λ∞ = limT→∞ΛT 6= 0, where σ - denotes the
sigma algebra generated by the sequence Y T−1.
Then, the Shannon entropy rate of {Yt; t ∈ N+} in nats per

time step is given by

HS(Y) =
d
2
log(2πe)+ lim

T→∞

1
2T
log detΓT

=
d
2
log(2πe)+

1
2
log detΛ∞. (12)
(ii) Consider the nominal source model (11). Then, Λ∞ = CV∞C ′ +
DD′, where Vt = E[X̃t X̃ ′t ], X̃t , Xt − E[Xt |σ {Y0, . . . , Yt−1}],
t ∈ N+, and V∞ = limT→∞ VT is the unique positive semi-
definite solution of the following Algebraic Riccati-equation

V∞ = AV∞A′ − AV∞C ′(CV∞C ′ + DD′)−1CV∞A′ + BB′. (13)

Subsequently, the Shannon entropy rate of the observed process
{Yt; t ∈ N+} of the nominal source model (11) is given by

HS(Y) =
d
2
log(2πe)+

1
2
log detΛ∞. (14)

Proof. The proof of the first part follows from Cholesky decompo-
sition ([23], pp. 44) and the proof of the second part follows from
([23], p. 156–158, and [23] Theorem 4.2). �

Next, in the following corollary, using the results of Lemma 2.5
and Theorem 3.1, we compute the robust entropy rate.

Corollary 3.2. The robust entropy rate of the class of sources
described via the relative entropy constraint (8) with the nominal
source model (11), is given by Hr(Y) =

d
2 log(

1+s∗
s∗ ) +

HS(Y), HS(Y) =
d
2 log(2πe) +

1
2 log detΛ∞, where s

∗ > 0 is
the unique solution of (10) andΛ∞ is given in Theorem 3.1.

Remark 3.3. From (10), it follows that the caseRc = 0 corresponds
to s∗ → ∞. Letting s∗ → ∞ in above result, we obtainHr(Y) =
HS(Y). That is, the robust entropy rate is equal to the Shannon
entropy rate of the nominal source. This is expected since Rc = 0
corresponds to a single source.

4. Application in control/communication systems

In this section, the robust entropy rate is used to establish
necessary conditions for uniform observability and robust stability
of the control/communication system of Fig. 1, described by a class
of controlled sources.
The precise definitions of uniform observability and robust

stability of the system of Fig. 1 considered in this paper are defined
as follows.

Definition 4.1 (Uniform Observability in Probability and r-Mean).
Consider the block diagram of Fig. 1 described by a class of sources.
Let fY T−1 ∈ D0,T−1

SU ⊂ D0,T−1 be the joint density function of the
sequence Y T−1 produced by the class of sources.

(i) The controlled source is called uniform observable in prob-
ability if for a given δ ≥ 0 and Dv ∈ [0, 1), there ex-
ists (a control sequence), an encoder and a decoder such
that limT→∞ 1

T supfYT−1∈D
0,T−1
SU

∑T−1
k=0 Eρ(Yk, Ỹk) ≤ Dv, where

ρ(Y , Ỹ ) is defined by ρ(Y , Ỹ ) = 1 if ‖Y − Ỹ‖ > δ and
ρ(Y , Ỹ ) = 0 if ‖Y − Ỹ‖ ≤ δ.

(ii) For a given r > 0 and a finite Dv ≥ 0, the
controlled source is called uniform observable in r-mean if
limT→∞ 1

T supfYT−1∈D
0,T−1
SU

∑T−1
k=0 E‖Yk − Ỹk‖

r
≤ Dv .

Definition 4.2 (Robust Stability in Probability and r-Mean). Con-
sider the block diagram of Fig. 1 described by a class of controlled
sources, in which Yt = Ht + Υt , where Ht is the signal to be con-
trolled and Υt is a function of perturbation and the measurement
noise. Let fY T−1 ∈ D0,T−1

SU ⊂ D0,T−1 denote the joint density func-
tion of the sequence Y T−1 produced by the class of sources.



A. Farhadi, C.D. Charalambous / Systems & Control Letters 57 (2008) 1005–1012 1009
(i) The controlled source is called robust stabilizable in prob-
ability if for a given δ ≥ 0 and Dv ∈ [0, 1), there
exists a controller, an encoder, and a decoder such that
limT→∞ 1

T supfYT−1∈D
0,T−1
SU

∑T−1
k=0 Eρ(Hk, 0) ≤ Dv,whereρ(., .)

is the one defined in Definition 4.1.
(ii) For a given r > 0 and a finite Dv ≥ 0, the
controlled source is called robust stabilizable in r-mean if
limT→∞ 1

T supfYT−1∈D
0,T−1
SU

∑T−1
k=0 E‖Hk − 0‖

r
≤ Dv .

In this section, by finding a connection between capacity, robust
rate distortion (i.e., mini-max rate distortion) and a variant of
the Shannon lower bound, necessary conditions for uniform
observability and robust stability in the form of a lower bound on
the capacity are derived. Since the derivation of these conditions
involves capacity and rate distortion, we shall recall the definition
of these measures.

Definition 4.3 (Information Capacity [18]). Consider a memoryless
channel without feedback and let Zn−1 and Z̃n−1 be the channel
input and output sequences, respectively. Let DCI denotes the set
of joint density functions fZn−1 associated with the sequence Z

n−1

which satisfy certain channel input power constraint. The Shannon
information capacity for n channel uses, is defined by

Cn , sup
fZn−1∈DCI

I(Zn−1; Z̃n−1)

I(Zn−1; Z̃n−1) =
∫
log

( fZ̃n−1|Zn−1
fZ̃n−1

)
fZ̃n−1|Zn−1 fZn−1dz

n−1dz̃n−1.

(15)

Subsequently, the information capacity, in nats per channel use, is
C , limn→∞ 1

nCn provided the limit exists.

For Discrete Memoryless Channels (DMC’s) without feed-
back and memoryless Additive White Gaussian Noise (AWGN)
channels without feedback, the information channel capacity of
Definition 4.3 represents the operational capacity [18]; or sim-
ply the channel capacity. Furthermore, when feedback is em-
ployed the mutual information in (15) is replaced by the
directed information I(Zn−1 → Z̃n−1) ,

∑n−1
i=0 I(Z

i
; Z̃i|Z̃ i−1) =∑n−1

i=0

∫
log(

fZ̃i |Z̃ i−1,Zi
fZ̃i |Z̃ i−1

)fZ̃ i|Z i fZ idz
idz̃ i [24]. Under this modification

the capacity of DMC’s and AWGN channels with and without feed-
back is the same. Please note that if Z and Z̃ represents the channel
input-output codewords, respectively, associated with the source
message Y , the capacity is given in nats per source message; and
subsequently in nats per time step.

Definition 4.4 (Robust Information Rate Distortion [25]). Let Y T−1

and Ỹ T−1 be sequences with length T of the source and
reproduction of the source messages, respectively. Let fY T−1 ∈
D0,T−1
SU ⊂ D0,T−1 denote the probability density function of
Y T−1 which belongs to the class D0,T−1

SU ⊂ D0,T−1. Denote by
fỸ T−1|Y T−1 ∈ D0,T−1 the conditional density function of Ỹ T−1 given
Y T−1 and letDDC , {fỸ T−1|Y T−1 ∈ D0,T−1

; EρT (Y T−1, Ỹ T−1) ≤ Dv}
denote the set of distortion constraint, in which Dv ≥ 0 is the
distortion value and ρT ∈ [0,∞) is the distortion measure.
Then, the robust information rate distortion for the class

D0,T−1
SU ∈ D0,T−1 is defined by

Rr(Dv) , lim
T→∞

1
T
RT ,r(Dv),

RT ,r(Dv) , inf
fỸ T−1 |YT−1∈DDC

sup
fYT−1∈D

0,T−1
SU

I(Y T−1; Ỹ T−1) (16)

provided the limit exists.
In [25] it is shown that for single letter distortion measure, i.e.,
ρT (Y T−1, Ỹ T−1) = 1

T

∑T−1
t=0 ρ(Yt , Ỹt) and a class of memoryless

sources in whichD0,T−1
SU is compact, (16) represents the minimum

rate for uniform reliable communication up to the distortion
value Dv . For sources which are part of the control loop (see
Fig. 1), it is desirable that the time ordering for encoding and
decoding to be causal (as described in [6]). For such sources
the minimum in (16) must be taken over the set DSRD

DC ,{
{fỸt |Ỹ t−1,Y t }

T−1
t=0 ;

1
T

∑T−1
t=0 E[ρ(Yt , Ỹt)] ≤ Dv

}
. That is (16) must be

replaced by the following

RSRDr (Dv) , lim
T→∞

1
T
RSRDT ,r (Dv),

RSRDT ,r (Dv) , inf
{{fỸt |Ỹ t−1,Y t

}
T−1
t=0 ∈D

SRD
DC }

sup
fYT−1∈D

0,T−1
SU

I(Y T−1 → Ỹ T−1) (17)

More elaboration on this issue is found in [15].
Next, in the following theorem, we find a connection between

capacity and robust rate distortion. This connection is valid under
the assumption that the outputs of the source, encoder, channel,
and decoder of the control/communication system of Fig. 1 are
subject to the conditional independence assumption. That is, for
any T , n ∈ {1, 2, . . .}, the conditional independence assumption
of the source output sequence Y T−1, the channel input sequence
Zn−1 and the channel output Z̃n−1 is equivalent to fZ̃t |Z t ,Z̃ t−1,Y T−1 =
fZ̃t |Z t ,Z̃ t−1 (t ∈ {0, 1, . . . , n − 1}), and similarly for the rest of the
blocks.

Theorem 4.5 (Robust Information Transmission Theorem). Consider
the block diagram of Fig. 1 subject to the conditional independence
assumption and uncertainty in the source. Then
(i) I(Zn−1; Z̃n−1) ≥ I(Zn−1 → Z̃n−1) ≥ I(Y T−1; Z̃n−1) ≥
I(Y T−1; Ỹ T−1) ≥ I(Y T−1 → Ỹ T−1),∀T , n ∈ {1, 2, 3, . . .}.

(ii) When the control/communication system of Fig. 1 is described
by DMC’s or memoryless AWGN channels, a necessary condition
for reproducing a sequence Y T−1 of the source messages, up
to the distortion value Dv by Ỹ T−1, at the decoder end (i.e.,
EρT (Y T−1, Ỹ T−1) ≤ Dv , ∀fY T−1 ∈ D0,T−1

SU ) using a sequence
of the channel inputs-outputs with length n (T ≤ n), is Cn ≥
RT ,r(Dv).

Proof. (i) The second inequality follows from ([24], Theorem 3).
The first and the last inequalities also follow from ([24], Theorem1)
and the third inequality is a direct result of data processing
inequality. (ii) See Appendix. �

Please note that under causal time-ordering, a tight necessary
condition is given by Cn ≥ RSRDT ,r (Dv) which also follows from the
data processing inequality of Theorem 4.5, (i). Next, we present a
lower bound for the robust rate distortion in terms of the robust
entropy rate of the source. We use this Lemma and Theorem 4.5
to relate the capacity to the robust entropy rate for uniform
observability and robust stability.

Lemma 4.6 (Robust Shannon Lower Bound). Let Y T−1 = {Yt}T−1t=0 ,

Yt ∈ Rd be a sequence with length T of the messages produced by
a class of sources with corresponding joint density function fY T−1 ∈
D0,T−1
SU ⊂ D0,T−1. Consider the following single letter distortion
measure ρT (Y T−1, Ỹ T−1) = 1

T

∑T−1
t=0 ρ(Yt , Ỹt), where ρ(Yt , Ỹt) =

ρ(Yt − Ỹt) : Rd → [0,∞) is continuous.
Then, a lower bound for 1T RT ,r(Dv) is given by

1
T
RT ,r(Dv) ≥

1
T
Hr(f ∗Y T−1)−maxh∈GD

HS(h), (18)

where GD is defined by GD , {h : Rd → [0,∞);
∫

Rd h(ξ)dξ =
1,
∫

Rd ρ(ξ)h(ξ)dξ ≤ Dv, ξ ∈ Rd}. Moreover, when
∫

Rd e
sρ(ξ)dξ <

∞ for all s < 0, then h∗(ξ) ∈ GD that maximizes HS(h) is
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given by h∗(ξ) = esρ(ξ)∫
Rd e

sρ(ξ)dξ
, where s < 0 satisfies the following∫

Rd ρ(ξ)h
∗(ξ)dξ = Dv . Subsequently, when Rr(Dv) andHr(Y) exist,

the robust Shannon lower bound RS,r(Dv) is given by the following

Rr(Dv) ≥ Hr(Y)−max
h∈GD

HS(h) , RS,r(Dv). (19)

Proof. See Appendix. �

Note that for distortion measure ρT (Y T−1, Ỹ T−1) = 1
T

∑T−1
t=0

‖Yt − Ỹt‖2, when RT ,r(Dv) = supfYT−1∈D
0,T−1
SU

RT (Dv) (RT (Dv) is the
rate distortion function for a single source), the robust Shannon
lower bound is exact for sufficiently small Dv .
Next, combining Theorem 4.5 and Lemma 4.6, necessary

conditions for uniform observability and robust stability of the
control/communication system of Fig. 1 are derived in the
following theorem.

Theorem 4.7. Consider the control/communication system of Fig. 1,
under conditional independence assumption, described by a class of
sources over DMC’s ormemoryless AWGNchannels. Assume the robust
entropy rate of the class of sources exists and it is finite.
Then, (i) A necessary condition for uniform observability in

probability, in nats per time step, is

C ≥ Hr(Y)−
1
2
log[(2πe)d detΓg ] = RS,r(Dv), (20)

where Hr(Y) is the robust entropy rate of the class of sources and
Γg is the covariance matrix of the Gaussian distribution h∗(ξ) ∼
N(0,Γg), (ξ ∈ Rd) which satisfies

∫
‖ξ‖>δ

h∗(ξ)dξ = Dv.
(ii)Anecessary condition for r-meanuniformobservability, in nats

per time step, is

C ≥ Hr(Y)−
d
r
+ log

(
r

dVdΓ ( dr )

(
d
rDv

) d
r
)
= RS,r(Dv), (21)

where Γ (.) is the gamma function and Vd is the volume of the unit
sphere (e.g., Vd = Vol(Sd); Sd , {ξ ∈ Rd; ‖ξ‖ < 1}).
Furthermore, when Yt = Ht+Υt , (20) and (21) are also necessary

conditions for robust stability in probability and r-mean, respectively.

Proof. See Appendix. �

In Theorem 4.7, Hr(Y) can be a function of the control signal.
Nevertheless, in the following proposition, it is shown that the
robust entropy rate of a class of controlled sources can be bounded
below by the robust entropy rate of the uncontrolled analogous
sources no matter what the information patterns for the encoder
and decoder are. Subsequently, for such uncertain controlled
sources, the robust entropy rate of the uncontrolled analogous
sources can be used in Theorem 4.7.

Proposition 4.8. Consider a class of controlled sources described via
(8), in which the nominal source model is a controlled version of the
nominal source model (11) described by the following state space
model

(Ω,F (Ω), P; {Ft}t≥0) :{
Xt+1 = AXt + BWt + NUt , X0 = X,
Yt = Ht + DGt , Ht = CXt , t ∈ N+,

(22)

where Ut ∈ Ro,N ∈ Rq×o, (C, A) is detectable, (A, (BB′)
1
2 ) is

stabilizable and D 6= 0.
Then, the robust entropy rate of this class of controlled sources
is bounded below by Hr(Y) ≥

d
2 log(

1+s∗
s∗ ) +

d
2 log(2πe) +

1
2 log detΛ∞, where s

∗ > 0 is the unique solution of (10) andΛ∞ is
given in Theorem 3.1.

Proof. Follows from standard chain rule inequality of the Shannon
entropy ([18], p. 239) and from the property that the conditioning
reduces entropy ([18], p. 232) as well as by Gaussianity. �

We have the following remarks regarding the results of
Theorem 4.7.

Remark 4.9. (i) The lower bounds (20) and (21) given in Theo-
rem 4.7 hold for any observed process, no matter what the infor-
mation patterns for the encoder, decoder and controller are.
(ii)When Theorem 4.7 is applied to controlled sources, then the

entropy rate of the outputs of such sources which depends on the
control sequencemust be used. Nevertheless, from Proposition 4.8
we deduce that the bounds (20) and (21) also holdwhen the robust
entropy rate is replaced by the robust entropy rate of the output
process of the uncontrolled analogous sources.
(iii) Uniform observability and robust stability can be defined

using single letter criteria as done in [5] rather than for sequences.
For single letter criteria the definition of rate distortion should
be also replaced by its single letter analogous (i.e., T = 1).
Subsequently, in (Lemma 4.6, (18)) and Theorem 4.7, the robust
entropy of the sequences will be replaced by the robust entropy
of the single letter density fY over the family DSU(gY ) defined in
Theorem 2.2, which is related to Rényi entropy of a R.V. Thus,
the lower bounds given in Lemma 4.6 and Theorem 4.7 can be
computed for a large classes of sources from [21].
(iv) For a class of controlled sources described via (8)

with the nominal source model (22) over memoryless AWGN
channels, a sufficient condition for reliable communication and
control can be defined (by proposing an encoder/decoder and
controller) via generalizations of [15], which is done for a single
source. The method is based on implementing a source-channel
matching technique [26] which results in a joint source channel
encoding/decoding scheme, and controller designed.

5. Conclusion

In this paper, for the class of sources described by a constraint
on the relative entropy, the explicit solution to robust entropy
was found and its connection to Rényi entropy was illustrated.
Subsequently, an application of robust entropy rate for uniform
observability and robust stability of a control/communication
system subject to limited capacity constraint was presented. For
future direction, it would be interesting to establish the sufficiency
of the conditions found in this paper by constructing actual
encoder, decoder and controller that can achieve the obtained
lower bounds.
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Appendix

Proof of Theorem 2.2. Using ([27], p. 224) it can be shown
that the constraint problem (3) is equivalent to the following
unconstrained problem

Hr(f
∗,s∗
Y ) = sup

fY∈DSU (gY )
HS(fY ) = min

s≥0
sup
fY∈D

L(s, fY )

L(s, fY ) , HS(fY )− s(H(fY ‖ gY )− Rc)

= sRc + (1+ s)
[∫
log(gY (y))−

1
1+s fY (y)dy− H(fY ‖ gY )

]
. (23)

Applying calculus of variation to L(s, fY ) yields

sup
fY∈D

(∫
log(gY (y))−

1
1+s fY (y)dy− H(fY ‖ gY )

)
= log

∫
(gY (y))

s
1+s dy, (24)

where supremum in (24) is attained at f ∗,sY (y) = (gY (y))
s
1+s∫

(gY (y))
s
1+s dy

. This

completes the proof of part i.
(ii) It can be easily shown that

d
ds
L(s, f ∗,sY ) = Rc − H(f

∗,s
Y ‖ gY )

d2

ds2
L(s, f ∗,sY ) =

1
(1+ s)3

(∫
f ∗,sY (y) log2 gY (y)dy

−

(∫
f ∗,sY (y) log gY (y)dy

)2)
,

1
(1+ s)3

Varf ∗,sY [log gY (y)] ≥ 0 ∀s ≥ 0. (25)

Thus, the function L(s, f ∗,sY ) is a convex function of s ≥ 0. The

minimum over s ≥ 0 is found by dL(s,f ∗,sY )

ds

∣∣∣
s=s∗
= 0. This yields a

minimizing s∗ ≥ 0 which is the solution of H(f ∗,sY ‖ gY )
∣∣
s=s∗ = Rc .

Further, it is evident that dH(f
∗,s
Y ‖gY )
ds = −

d2L(s,f ∗,sY )

ds2
≤ 0, which

implies thatH(f ∗,sY ‖ gY ) is a non-increasing function of s ≥ 0. �

Proof of Lemma 2.5. Eq. (9) is a result of direct substitution of
gY T−1 ∼ N(mT ,ΓT ) into Theorem 2.2. Further, by computing
f ∗,sY T−1 from (5), we have H(f

∗,s∗
Y ‖ gY ) = − Td2 log(

1+s∗
s∗ ) +

Td
2s∗ .

Consequently, by Theorem 2.2, ii, the minimizing s∗ > 0 is the
solution of Rc = 1

T H(f
∗,s∗
Y ‖ gY ) = − d2 log(

1+s∗
s∗ ) +

d
2s∗ . Note

that above expression can be written into the form e−2Rc =
e−

d
s∗ ( 1+s

∗

s∗ )
d , M(s∗). But dM(s

∗)

ds∗ > 0. Subsequently, M(s∗) is
strictly increasing function of s∗ > 0. Further, since M(s∗) is a
continuous function of s∗ > 0, the minimum and the maximum
of M(s∗) is obtained at s∗ → 0 and s∗ → ∞, respectively.
lims∗→0M(s∗) = 0 and lims∗→∞M(s∗) = 1. Subsequently,
M(s∗) ∈ (0, 1). On the other hand, ∀Rc ≥ 0, e−2Rc ∈ (0, 1].
Consequently, as M(s∗) is a continuous and strictly increasing
function of s∗ > 0 which covers the range of e−2Rc ,∀Rc ≥ 0, there
exists a unique s∗ > 0 such that e−2Rc = M(s∗), or equivalently
Eq. (10). �

Proof of Theorem 4.5. Consider the case without feedback chan-
nel. If the encoding scheme yields an average distortion EρT (Y T−1,
Ỹ T−1) ≤ Dv for a class of sources, then from data processing in-
equality (Theorem 4.5, i) follows that

I(Zn−1; Z̃n−1) ≥ I(Y T−1; Ỹ T−1), ∀fY T−1 ∈ D0,T−1
SU ,
sup
{fZn−1 ;fYT−1∈D

0,T−1
SU }

I(Zn−1; Z̃n−1) ≥ sup
fYT−1∈D

0,T−1
SU

I(Y T−1; Ỹ T−1),

sup
fZn−1∈DCI

I(Zn−1; Z̃n−1) ≥ sup
{fZn−1 ;fYT−1∈D

0,T−1
SU }

I(Zn−1; Z̃n−1)

≥ sup
fYT−1∈D

0,T−1
SU

I(Y T−1; Ỹ T−1),

Cn , sup
fZn−1∈DCI

I(Zn−1; Z̃n−1)

≥ inf
fỸ T−1 |YT−1∈DDC

sup
fYT−1∈D

0,T−1
SU

I(Y T−1; Ỹ T−1)

, RT ,r(Dv) (26)

where the second inequality follows by taking supremum over a
class of sources (please note that the channel inputs distribution
is affected by the source distribution); and the third inequality
follows since the class of channel inputs power constraint must
include those channel inputs distributionwhich are affected by the
class of sources; otherwise the reliable communication for the class
of sources is not possible.
Thus Cn ≥ RT ,r(Dv) under the assumption that there

exists an encoding scheme that yields an average distortion
EρT (Y T−1, Ỹ T−1) ≤ Dv for a class of sources. This means that Cn ≥
RT ,r(Dv) is a necessary condition for existence of such encoding
scheme.
For the case of feedback channel, in (26) I(Zn−1; Z̃n−1)

must be replaced by I(Zn−1 → Z̃n−1) and supremum must
be taken over {fZi|Z i−1,Z̃ i−1}

n−1
i=0 ∈ DCI , in which for DMC’s

or memoryless AWGN channels with feedback, the capacity
sup
{{fZi |Z

i−1,Z̃ i−1}n−1i=0 ∈DCI }
I(Zn−1 → Z̃n−1) is the same as the capacity

of those channels without feedback, i.e., Cn [18]. �

Proof of Lemma 4.6. From [13] it follows that ∀fY T−1 ∈ D0,T−1
SU ⊂

D0,T−1, we have 1
T RT (Dv) , 1

T inffỸ T−1 |YT−1∈DDC I(Y
T−1
;

Ỹ T−1) ≥ 1
T HS(fY T−1) − maxh∈GD HS(h), where RT (Dv) is the

rate distortion function for the density function fY T−1 ; and when∫
Rd e

sρ(ξ)dξ < ∞, ∀s < 0, the maximizer h∗(ξ) ∈ GD is given

by h∗(ξ) = esρ(ξ)∫
Rd e

sρ(ξ)dξ
, where s < 0 satisfies the following∫

Rd ρ(ξ)h
∗(ξ)dξ = Dv .

Consequently,

sup
fYT−1∈D

0,T−1
SU

1
T
RT (Dv) ≥ sup

fYT−1∈D
0,T−1
SU

1
T
HS(fY T−1)−max

h∈GD
HS(h). (27)

On the other hand, since

RT ,r(Dv) , inf
fỸ T−1 |YT−1∈DDC

sup
fYT−1∈D

0,T−1
SU

I(Y T−1; Ỹ T−1)

≥ sup
fYT−1∈D

0,T−1
SU

inf
fỸ T−1 |YT−1∈DDC

I(Y T−1; Ỹ T−1), (28)

we deduce the result. �

Proof of Theorem 4.7 (Uniform Observability). Assume there ex-
ists an encoder and decoder such that the uniform observabil-
ity in probability in the sense of Definition 4.1 is obtained. This
implies that for a given δ ≥ 0 and Dv ∈ [0, 1), there exist
T (δ,Dv) such that, ∀t ≥ T (δ,Dv), supfY t−1∈D

0,t−1
SU

1
t

∑t−1
k=0 Pr(‖Yk−

Ỹk‖ > δ) ≤ Dv . Subsequently, 1t
∑t−1
k=0 Pr(‖Yk − Ỹk‖ > δ) ≤

Dv, ∀fY t−1 ∈ D0,t−1
SU . Next, define the following single letter dis-

tortion measure ρt(Y t−1, Ỹ t−1) = 1
t

∑t−1
k=0 ρ(Yk, Ỹk), where ρ(., .)

is given inDefinition 4.1. Then, for t ≥ T (δ,Dv), Eρt(Y t−1, Ỹ t−1) =
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1
t

∑t−1
k=0 Pr(‖Yk − Ỹk‖ > δ) ≤ Dv, ∀fY t−1 ∈ D0,t−1

SU ⊂ D0,t−1. That
is, uniform reconstructability up to the distortion value Dv is ob-
tained for t ≥ T (δ,Dv). Then, by Theorem 4.5 and Lemma 4.6, the
capacity and robust rate distortionmust for all t ≥ T (δ,Dv) satisfy

lim
t→∞

1
t
Ct ≥ lim

t→∞

1
t
Hr(f ∗Y t−1)−maxh∈GD

HS(h)

C ≥ Hr(Y)−max
h∈GD

HS(h). (29)

Since among all distribution with the same covariance, the
Gaussian distribution has the biggest entropy, h∗(ξ) ∈ GD that
maximizes HS(h) is a Gaussian distribution which satisfies the
boundary conditions of GD. That is, h∗(ξ) ∼ N(0,Γg), in which
Γg satisfies

∫
‖ξ‖>δ

h∗(ξ)dξ = Dv . Consequently, substituting
maxh∈GD HS(h) = HS(h∗) = 1

2 log[(2πe)
d detΓg ] in (29), the

lower bound (20) is obtained. That is, (20) holds under the
assumption that there exist an encoder and decoder that yield
uniform observability in probability in the sense of Definition 4.1.
This means that (20) is a necessary condition for existence of such
encoder and decoder.
Necessary condition for uniform observability in r-mean is

obtained along the same lines of above proof. The only difference
is that from [28] it follows that for this case maxh∈GD HS(h) =
d
r − log(

r
dVdΓ (

d
r )
( drDv

)
d
r ) nats per time step.

(Robust stability). Follows similarly by considering the rate
distortion between Y t−1 and Υ t−1. �
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