
Control of Tele-Operation Systems Subject to Capacity Limited Channels

and Uncertainty

Alireza Farhadi
School of Information Technology

and Engineering,
University of Ottawa

Ottawa, Canada
e-mail: afarhadi@site.uottawa.ca

C. D. Charalambous
Department of Electrical and

Computer Engineering,
University of Cyprus

Nicosia, Cyprus
e-mail: chadcha@ucy.ac.cy

Abstract

This paper is concerned with asymptotic observability and stabiliz-
ability of dynamical systems over communication channels subject to
limited transmission capacity constraint and uncertainty. In particu-
lar, the following control/communication systems are considered. 1)
The control/communication system described by a controlled diffusion
process over an Additive White Gaussian Noise (AWGN) flat fading
channel subject to limited transmission capacity constraint, in which,
the sensors are geographically separated from the plant while the con-
troller is attached to the plant, and 2) The control/communication
system described by an uncertain plant over uncertain communica-
tion channels subject to limited transmission capacity constraint, in
which, there is communication constraint in both forward and feed-
back paths.

Keywords—Networked control systems, stabilizability and
observability, robust control.

1 Introduction

One of the issues that has begun to emerge in some de-
veloping application areas such as sensor networks [1] and
large scale Networked Control Systems (NCS’s) [2] which
consists of many components, is how to transmit informa-
tion and control a plant by communicating information re-
liably, through communication channels subject to limited
transmission capacity constraint. Although the total capac-
ity of these application areas may be large, the resources
available for communication between the components can
be very limited due to the size or cost. Therefore, in this
application areas, it is fundamental to construct encoders,
decoders and controllers under limited transmission capac-
ity constraint. One logical approach to address the above
question is to find a condition in the form of necessary and
sufficient condition in terms of a lower bound for the trans-
mission capacity for reliable communication and/or control-
ling purposes (i.e., finding the minimum achievable trans-
mission capacity); and then to construct the actual encoder
and decoder that can achieve this lower bound. The first
step to find the minimum achievable transmission capacity
is to derive necessary and sufficient conditions for existence
of the encoder and decoder that can work under limited
transmission capacity constraint. Some of the fundamental
results for stabilizability of NCS’s can be found in [3]-[7].
The objective of this paper is twofold. First, to extend
the results of [8] and [9] (which is the scalar version of [8])
to the case when the sensors are geographically separated
from the controlled system (See Fig. 1). Second, to ex-

tend the results presented in [10] to the case when there is
uncertain communication channel subject to limited trans-
mission capacity constraint in both forward path (e.g., from
the sensor to the controller) and feedback path (e.g., from
the controller to the plant) (See Fig. 2).
In [8] and [9] an encoder, decoder and controller are de-
signed for bounded asymptotic and asymptotic observabil-
ity (e.g., reliable communication) and stabilizability in the
mean square sense under limited transmission capacity con-
straint. The proposed encoder, which encodes the observed
information obtained by sensors, is a function of the de-
coder output while the controller is attached to the plant.
Further, in the case of AWGN channel, the proposed en-
coding/decoding scheme achieves the minimum achievable
transmission capacity for bounded asymptotic and asymp-
totic observability in the mean square sense. Nevertheless,
the dependency of the proposed encoder to the decoder out-
put requires the sensors to be also attached to the plant to
observe the decoder output by observing the control signal
been applied. In contrast, in the control/communication
system of Fig. 1, we relax this assumption, to extend the
results to a practical case when the sensors are geograph-
ically separated from the plant while the controller is at-
tached to the plant. As an example of NCS’s which can be
described by the control/communication system of Fig. 1,
we can recall the tracking problems in which, the trajec-
tory of several moving objects is observed by a geograph-
ically separated camera where the observed information is
transmitted through a limited transmission capacity wire-
less communication channel to the local controller attached
to each moving objects. [11] introduces a platform which
can be described by this tracking problem.

In the control/communication system of Fig. 1, the
plant is described by a continuous time controlled diffusion
process and the channel is an AWGN flat fading wireless
channel. This system can be viewed as a basic block dia-
gram of NCS’s described by diffusion processes and AWGN
flat fading channels, in which, the sensors are geographi-
cally separated from the controlled system (e.g., plant with
its attached controller). It can be also viewed as a simplified
model of tele-operation system subject to limited transmis-
sion capacity constraint in which, there is only communi-
cation constraint in forward path. In the spacial case of no
control action, the control/communication system of Fig.
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Figure 1. Control/communication system over AWGN
flat fading channel

1 is reduced to the communication system of Fig. 3 which
can be viewed as a basic block diagram of sensor network
described by AWGN flat fading channels.
Using a fixed linear encoder, a condition in the form of nec-
essary and sufficient condition for bounded asymptotic and
asymptotic observability of the control/communication sys-
tem of Fig. 1 in the mean square sense is derived. Then,
using a certainly equivalent controller, a sufficient condi-
tion for bounded asymptotic and asymptotic stabilizability
of the control/communication system of Fig. 1 in the mean
square sense is given. Further, applying the Bode integral
formula, a necessary condition for bounded asymptotic sta-
bilizability in the mean square sense is presented.
On the other hand, in [10], by assuming that there is only an
uncertain communication channel subject to limited trans-
mission capacity constraint in forward path, necessary con-
ditions for uniform asymptotic observability and stabiliz-
ability in probability and r-mean are derived. In contrast,
in the control/communication system of Fig. 2, we are con-
cerned to the case when there is also an uncertain commu-
nication channel subject to limited transmission capacity
constraint in feedback path. The control/communcation
system of Fig. 2 can be viewed as a basic block dia-
gram of NCS’s in which, the plant is controlled by a re-
mote controller. It can be also viewed as a basic block
diagram of tele-operation system subject to limited trans-
mission capacity constraint and uncertainty. In the con-
trol/communication system of Fig. 2 by applying a robust
version of the converse of the information transmission the-
orem and a robust version of the generalized Shannon lower
bound, necessary conditions for uniform asymptotic stabi-
lizability in probability and r-mean are presented.
This paper is organized as follows. Section 2 is con-
cerned with the control/communication system of Fig. 1.
Necessary and sufficient conditions for bounded asymp-
totic and asymptotic observability and stabilizability in the
mean square sense are presented. In Section 3 the con-
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Figure 2: Tele-operation system subject to uncertainty
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Figure 3: A basic block diagram of sensor network

trol/communication system of Fig. 2 is considered and nec-
essary conditions for uniform asymptotic stabilizability in
probability and r-mean are given.

2 Control of Continuous-Time Linear
Gaussian Systems over Additive
Gaussian Wireless Flat Fading

Channels

Consider the control/communication system of Fig. 1.
Here, it is assumed that at time t the output of the plant,
x(t) ∈ �n, is the information obtained by sensors and it
is square integrable, F (t) ∈ � is the encoder output which
is also square integrable, y(t) ∈ � is the channel output,
x̃(t) ∈ �n is the reproduced information at the decoder
end and u(t) ∈ �m is the control signal. Throughout this
section, it is assumed that the encoder and decoder know
the channel state information, z(t, θ), which is a function
of the random process θ, the encoder at time t is a non-
anticipative function of the sample paths x and θ, the de-
coder at time t is a non-anticipative function of the sam-
ple paths y and θ, and the controller at time t is a non-
anticipative function of the sample paths x̃ and θ.
The state of the plant is described by the following con-



tinuous time controlled diffusion process given by the Itô
equation

dx(t) = Ax(t)dt + B(t)u(t)dt + G(t)dw(t), x(0), (1)

where A ∈ �n×n has distinct eigenvalues, B : [0, T ] →
�n×m, and G : [0, T ] → �n×l are Borel measurable and
bounded, and x(0) is Gaussian random variable x(0) ∼
N(x̄0, V̄0), which is independent of the Gaussian standard
Brownian motion w. Throughout this section, it is assumed
that the encoder is subject to the instantaneous power con-
straint

E
[
|F (t, x, θ)|2

∣∣∣θ] ≤ P (2)

and the channel is an AWGN flat fading wireless channel
described by the following stochastic differential equation

dy(t) = z(t, θ)F (t, x, θ)dt + dv(t), y(0) = 0, (3)

where v is the Gaussian standard Brownian motion inde-
pendent of w and x(0). In ([9], Lemma 4.3), it is shown that
the transmission capacity of the AWGN flat fading channel
(3) in nats per second is

Ca = lim
T→∞

P

2T

∫ T

0

Eθ[z2(t, θ)]dt, (4)

where Eθ[.] denotes the expectation with respect to the
sample path θ.
The objective of this section is to find a condition in the
form of a necessary and sufficient condition for bounded
asymptotic and asymptotic observability and stabilizability
of the control/communication system of Fig. 1 in the mean
square sense, defined as follows.

Definition 2.1: (Bounded Asymptotic and Asymptotic
Observability in the Mean Square Sense). Define

V (t, y, θ)
�
= E

[
(x(t) − x̃(t, y, θ))

′
(x(t) − x̃(t, y, θ))

∣∣∣Fy,θ
0,t

]
,

where Fy,θ
0,t = Fy

0,t

∨Fθ
0,t, in which, Fy

0,t and Fθ
0,t are com-

plete filtration generated by Fy
0,t

�
= σ{y(s); 0 ≤ s ≤ t},

and Fθ
0,t

�
= σ{θ(s); 0 ≤ s ≤ t}, respectively (σ denotes the

sigma algebra). Then, the control/communication system
of Fig. 1 is bounded asymptotic (resp. asymptotic) observ-
able in the mean square sense, if for a given control sam-
ple path u, there exists an encoder and decoder such that
limt→∞ V (t, y, θ) < ∞ P-a.s. (resp. limt→∞ V (t, y, θ) = 0,
P-a.s.)

Definition 2.2: (Bounded Asymptotic and Asymptotic
Stabilizability in the Mean Square Sense). The con-
trol/communication system of Fig. 1 is bounded asymp-
totic (resp. asymptotic) stabilizable in the mean square
sense, if there exists an encoder, decoder, and a controller
such that limt→∞ E

[
||x(t)||2Q

∣∣∣Fθ
0,t

]
< ∞, P-a.s., (resp.

limt→∞ E
[
||x(t)||2Q

∣∣∣Fθ
0,t

]
= 0, P-a.s.), where Q = Q

′
> 0,

and ||x(t)||2Q
�
= x

′
(t)Qx(t).

2.1 Necessary and sufficient Conditions for
Observability

In this section, unlike [8] and [9], we fix the encoder and
we find a condition in the form of necessary and sufficient
condition for bounded asymptotic and asymptotic observ-
ability of the control/communication system of Fig. 1 in
the mean square sense.
Since applying a similarity transformation does not change
the observability and stabilizability features of the con-
trol/communication system of Fig. 1, we apply the simi-

larity transformation γ(t)
�
= Sx(t) on system (1), in which,

SAS−1 = Λ = diag(λ1(A), ..., λn(A)) and λi(A) are the dis-
tinct eigenvalues of A, to obtain the following transformed
system

dγ(t) = Λγ(t)dt + SB(t)u(t)dt + SG(t)dw(t),
γ(0) = Sx̄0. (5)

Throughout of this section, we assume SG(t)G
′
(t)S

′
and

SV̄0S
′

are diagonal matrices. Under these assumptions,
it can be shown that the mean square estimation error,
V (t, y, θ), obtained by transmitting γ(t) is diagonal.

Remark 2.3: Notice that if G(t) is orthogonal (e.g,
G(t)G

′
(t) = I), A is positive semi-definite, and V̄0 = αI,

α ≥ 0, then SG(t)G
′
(t)S

′
and SV̄0S

′
are diagonal.

The encoder and the optimal decoder that minimizes the
mean square estimation error, V (t, y, θ), are given in the
following theorem.

Theorem 2.4: Consider the control/communication sys-
tem of Fig. 1 described by (5). Then, the encoder, the op-
timal decoder, and the corresponding optimal mean square
estimation error, are given by

F (t, γ, θ) =
n∑

i=1

f∗
ii(t, γ̃

∗, θ)γi(t),

f∗
ii(t, γ̃

∗, θ) =

√
αiP

V ∗
ii(t, y, θ)

, (6)

dγ̃∗(t, y, θ) = Λγ̃∗(t, y, θ)dt + SB(t)u(t)dt

+z(t, θ)[
√

α1PV ∗
11, ...,

√
αnPV ∗

nn]
′
dy(t)

−z(t, θ)
n∑

i=1

√
αiP

V ∗
ii

γ̃∗
i (t, y, θ) (7)

V ∗
ii(t, y, θ) = [SV̄0S

′
]ii exp{2

∫ t

0

λi(A)ds

−
∫ t

0

αiz
2(s, θ)Pds} +

∫ t

0

[S(s)G(s)G
′
(s)S

′
(s)]ii

. exp{2
∫ t

s

λi(A)du −
∫ t

s

αiz
2(u, θ)Pdu}ds, (8)

where γ̃∗
i (t, y, θ) is the i-th element of γ̃∗(t, y, θ) ∈ �n,

[W ]ii ∈ �n×n denotes the i-th diagonal element of the
square matrix W , and the constants 0 ≤ αi ≤ 1,

∑n
i=1 αi =

1 are chosen such that V ∗
ii(t, y, θ) is bounded asymptotically



(in the case of G(t) �= 0) or asymptotically zero (in the case
of G(t) = 0).
Proof: After fixing the encoder in the form of the encoder
given in (6), following the same methodology used in ([12],
Section 16.4), the results are obtained.
Next, from (8), we have the following necessary and suf-
ficient conditions for bounded asymptotic and asymptotic
observability in the mean square sense.

Theorem 2.5: i) When the encoder is described by (6)
and G(t) �= 0, a necessary and sufficient condition for
bounded asymptotic observability in the mean square sense
is P-a.s.

P

2
z2(t, θ) ≥

∑
{i;Re(λi(A))≥0}

Re(λi(A)), a.e. − t ≥ 0, (9)

ii) When the encoder is described by (6) and G(t) = 0,
(9) is a necessary and sufficient condition for asymptotic
observability in the mean square sense.

Corollary 2.6: i) For the case of AWGN channel (e.g.,
z(t, θ) = 1) for which the channel capacity is Ca = P

2 , a
necessary and sufficient condition for bounded asymptotic
and asymptotic observability in the mean square sense is
given by

Ca ≥
∑

{i;Re(λi(A))≥0}
Re(λi(A)), P − a.s. (10)

That is, the lower bound (10) is the minimum achievable
transmission capacity for bounded asymptotic and asymp-
totic observability in the mean square sense, in which this
bound is achieved by the encoding/decoding scheme pro-
posed in Theorem 2.4.
ii) For the communication system of Fig. 3 described by
the encoder (6), a necessary and sufficient condition for
bounded asymptotic and asymptotic reliable communica-
tion in the mean square sense, as defined by Definition 2.1,
is given by (9).
iii) For the communication system of Fig. 3 described by
the encoder (6) and AWGN channel (e.g., z(t, θ) = 1),
the minimum achievable transmission capacity for bounded
asymptotic and asymptotic reliable communication in the
mean square sense, is given by (10) in which this capacity
is achieved by the encoding/decoding scheme proposed in
Theorem 2.4, with u(t) = 0.

2.2 Necessary and Sufficient Conditions
for Stabilizability

In this section, we propose an output feedback controller
for the time-invariant analogous of system (5), in which, it
minimizes the following quadratic pay-off for a fixed sample
path θ.

J̄ = lim
T→∞

1
T

E
{∫ T

0

[γ
′
(t)Qγ(t) + u

′
(t)Ru(t)]dt

}
, (11)

where Q = Q
′

> 0 and R = R
′

> 0. Here, it is assumed
that the system (5) is exponentially stabilizable.

According to the classical separation theorem of estimation
and control, the optimal controller that minimizes (5) sub-
ject to the AWGN flat fading channel and linear encoder
(6) is separated into a state estimator and the certainly
equivalent controller given by

u∗(t) = −K̄γ̃∗(t, y, θ), K̄ = R−1B−1P̄ ,

0 = Q − P̄SBR−1B
′
S

′
P̄ + 2ΛP̄ , (12)

where γ̃∗(t, y, θ) is given by (7). Further, the average crite-
ria is given by

J̄ = trac
[
P̄SGG

′
S

′
+ V̄ ∗K̄

′
RK̄

]
V̄ ∗ = lim

t→∞ diag{V ∗
11(t, y, θ), ..., V ∗

nn(t, y, θ)}. (13)

Subsequently, we have the following theorem for bounded
asymptotic and asymptotic stabilizability in the mean
square sense.

Theorem 2.7: Consider the time-invariant analogous of
system (5) and assume it is exponentially stabilizable.
Then, for a fixed sample path θ we have the followings.
i) In the case of G �= 0, using the certainly equivalent con-
troller (12) and the encoding/decoding scheme proposed in
Theorem 2.4, the control/communication system of Fig. 1
is bounded asymptotic stabilizable in the mean square sense
if P-a.s.

P

2
z2(t, θ) >

∑
{i;Re(λi(A))≥0}

Re(λi(A)), a.e − t ≥ 0. (14)

ii) In the case of G = 0, using the certainly equivalent
controller (12) and the encoding/decoding scheme proposed
in Theorem 2.4, the control/communication system of Fig.
1 is asymptotic stabilizable in the mean square sense if (14)
holds.
Proof: From (13), it follows that under assumption
(14) by using the optimal controller (12) and the en-
coding/decoding scheme proposed in Theorem 2.4, J̄ is
bounded (in the case of G �= 0) or zero (in the case of
G = 0). Subsequently, from (11), it follows that E||γ(t)||2Q
and E||u(t)||2R must be asymptotically bounded (in the case
of G �= 0) or asymptotically zero (in the case of G = 0).

Corollary 2.8: For the case of AWGN channel, a suffi-
cient condition for bounded asymptotic and asymptotic sta-
bilizability in the mean square sense is given by

Ca >
∑

{i;Re(λi(A))≥0}
Re(λi(A)), P − a.s. (15)

Remark 2.9: For the case when the encoder, decoder,
and controller are linear time-invariant and z(t, θ) = 1, from
the Bode integral formula follows that

Ca ≥
∑

{i;Re(λi(A))≥0}
Re(λi(A)) (16)

is a necessary condition for bounded asymptotic stabiliz-
ability in the mean square sense.



3 Robust Control over Uncertain
Communication Channels

Consider the control/communication system of Fig. 2.
Unlike Section 2, the plant, communication channels, con-
troller, and subsequently, the encoders and decoders are
discrete in time. Denote by Dt the set of joint density
functions corresponding to a sequence of random variables
with length t. Consider the following nominal state space
form

(Ω,F(Ω), {F}t≥0, P ) :{
Xt+1 = AXt + BWt + NUt, X0 = X,
Yt = CXt + DVt + MUt.

(17)

where t ∈ N+
�
= {0, 1, 2, ...}, Xt ∈ �n is the unobserved

(state) process, Yt ∈ �d is the observed process, Ut ∈ �o is
the control, Wt ∈ �m, Vt ∈ �l, in which {Wt; t ∈ N+} is
Independent Identically Distributed (i.i.d.) ∼ N(0, Im×m)
{Vt; t ∈ N+}, is i.i.d. ∼ N(0, Il×l), X0 ∼ N(x̄0, V̄0),
{Wt, Vt,X0; t ∈ N+} are mutually independent and D �= 0.
(C,A) is detectable and (A, (BB

′
)

1
2 ) is stabilizable.

Denote by g ∈ Dt and f ∈ Dt the density functions cor-
responding to Y0,t−1

�
= {Yk}t−1

k=0 obtained by (17) and the
uncertain plant, respectively. Then, the uncertain plant is
described by the following relative entropy uncertainty set

DSU (g)
�
= {f ∈ Dt;D(f ||g) ≤ tRc, g ∈ Dt}, (18)

where D(.||.) is the relative entropy [13] and Rc ∈ [0,∞).
In the control/communication system of Fig. 2, the com-
munication channels are discrete time. In the case of digi-
tal noiseless channel with rate R, delayed noiseless digital
channel with rate R, and binary erasure channel with rate
R and the packet erasure probability α which deliver R
bits in each time step with probability 1, 1, and 1 − α, re-
spectively, the transmission capacity is C = R, C = R and
C = (1 − α)R bits per time step, respectively [3]. Further,
if the channel is binary erasure channel with rate R and
α ∈ L ⊆ [0, 1], in which α is deterministic but unknown,
the transmission capacity is C = (1−αmax)R bits per time
step, where αmax is α ∈ L which minimizes (1 − α) over
the set L.
Next, consider the following asymptotic stabilizability cri-
teria.

Definition 3.1: The control/communication system of
Fig. 2 is uniform asymptotic stabilizable in probability
and/or r-mean if there exists encoders, decoders, and con-
troller such that

lim
t→∞ sup

f∈DSU (g)

1
t

t−1∑
k=0

Eρ(Xk, 0) ≤ Dv, (19)

where for uniform asymptotic stabilizability in probability
Dv ≥ 0 is arbitrary small and

ρ(Xk, 0)
�
=




1 if ||Xk − 0||C′C > δ,

0 if ||Xk − 0||C′C ≤ δ,

δ ≥ 0 is fixed. (20)

While, for uniform asymptotic stabilizability in r-mean, r >
0, Dv ≥ 0 is fixed and ρ(Xk, 0) = ||Xk − 0||r

C′C , r > 0.
Next, from a robust version of the converse of the infor-
mation transmission theorem ([10], Theorem 2.5) and a ro-
bust version of the generalized Shannon lower bound ([10],
Lemma 2.4), we have the following necessary conditions
for uniform asymptotic stabilizability in probability and r-
mean.

Theorem 3.2: Consider the control/communication sys-
tem of Fig. 2 under conditional independence assumption,
that is, the blocks of Fig. 2 forms a Markov chain. Denote
by Cr and Cf the transmission capacity of forward channel
and feedback channel, respectively.
Then, i) A necessary condition for uniform asymptotic sta-
bilizability in probability in bits per time step is

Cr ≥ Hrobust(Y) − 1
2

log[(2πe)d det Γg],

and (21)

Cf ≥ H(U) − 1
2

log[(2πe)d det Γg], (22)

where Hrobust(Y) is the robust Shannon entropy rate (see
[10], Definition 2.1) of the observed process when Ut = 0,
H(U) is the Shannon entropy rate of the control process,
log stands for logarithm with respect to base 2 and Γg is
the covariance matrix of the Gaussian distribution h∗(ξ) ∼
N(0,Γg), (ξ ∈ �d) which satisfies

∫
||ξ||>δ

h∗(ξ)dξ = Dv (An
expression for Hrobust(Y) is given in [10], Proposition 3.7;
and H(U) depends to the type of decoder used).
ii) A necessary condition for uniform asymptotic stabiliz-
ability in r-mean in bits per time step is given by

Cr ≥ Hrobust(Y) + log(
r

dVdΓ(d
r )e

d
r

(
d

rDv
)

d
r ),

and (23)

Cf ≥ H(U) + log(
r

dVdΓ(d
r )e

d
r

(
d

rDv
)

d
r ), (24)

where Γ(.) is the gamma function and Vd is the volume of

the unit sphere (e.g., Vd = V ol(Sd);Sd
�
= {ξ ∈ �d; ||ξ|| ≤

1}).
Proof: Consider the decoder in the forward path and the
controller as one block. Also consider the encoder in the
feedback path and the plant as another block. Then, under
the assumption of the existence of encoders, decoders, and
controller that provides uniform asymptotic stabilizability
in probability or r-mean, it follows that a robust rate dis-
tortion (see [10], Definition 2.3) between the outputs of the
plant and the outputs of the controller is obtained. Subse-
quently, from the robust converse of information transmis-
sion theorem ([10], Theorem 2.5) and the robust general-
ized Shannon lower bound ([10], Lemma 2.4), (21) or (23)
is obtained. Next, since the robust Shannon entropy rate



of the controlled system is lower bounded by the robust
Shannon entropy rate of open loop system (e.g., Ut = 0),
in (21) and (23), the robust Shannon entropy rate of the
observed process when Ut = 0 can be used. On the other
hand, since a rate distortion between the plant and the
controller is obtained, a rate distortion between the out-
puts of the controller and the outputs of the plant is also
occurred. Subsequently, from the robust converse of in-
formation transmission theorem and the robust generalized
Shannon lower bound, (22) or (24) is obtained.
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