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Abstract—This paper presents distributed model pre-
dictive control methods for improving the transient re-
sponse of feedback-controlled irrigation channels by man-
aging the water-level reference set points across the irriga-
tion season. The implemented distributed model predictive
control methods exploit a two-level and single-level archi-
tectures for communication. For an automated irrigation
channel, the satisfactory performance of the method with
two-level architecture for communication in improving
the transient response of automated irrigation channel
is illustrated using computer simulation and compared
with the performance of the distributed model predictive
control method that exploits a single-level architecture
for communication. It is illustrated that the distributed
model predictive control method that exploits a two-level
architecture for communication has a better performance
in improving the transient response by better managing
communication overhead.

I. INTRODUCTION

An automated irrigation channel is a system of
water transfer for agricultural purposes that consists
of several pools cascaded by flume gates (see Fig. 1).
Each flume gate includes an overshot gate, a modem
for wireless communication, sensors, actuators and a
processing device for making decision. The adjustment
of the flow over upstream gates regulate the downstream
water level in each pool under a downstream control.
This leads to adequate releasing water from reservoir
in the response to changes in the water levels of
pools from the reference set points; and hence, near to
demand supply that avoids water transmission lost due
to oversupply. As the irrigation pools are very often
long, delays for responding to the changes ruin the per-
formance of automated irrigation channel and results in
upstream transient error propagation and amplification
phenomenon. This results in actuators saturation and
flooding in long automated irrigation channels.

To mitigate these drawbacks, in [1] a supervi-
sory controller is proposed that exploits the informa-
tion available from automated irrigation channel and
properly manages the reference set points for local

A. Khodabandehlou was M.Sc. student in the Department of
Electrical Engineering, Sharif University of Technology.
A. Farhadi is Assistant Professor in the Department of Electrical
Engineering, Sharif University of Technology, Tehran, Iran. Email:
afarhadi@sharif.edu.
A. Parsa is currently a Ph.D student in the Department of Electrical
Engineering, Sharif University of Technology.
This work was supported by the research office of Sharif University
of Technology.

controllers of distributed flume gates. To achieve this
goal, the supervisory controller solves a constrained
linear quadratic optimal control problem. But, in long
irrigation channels, the total number of constraints and
decision variables are very large. Therefore, to solve
this optimal control problem in real time using closed
loop control strategy, the receding horizon idea must
be used. However, the computation overhead (i.e., the
time spent for computing the optimal solution) using
centralized model predictive control methods, as used
in [1], at each receding horizon will not be practical
for long irrigation channels because of large number of
constraints and decision variables. For large irrigation
channels, Distributed Model Predictive Control (DMPC)
methods [2], [4] must be used that have relatively much
smaller computation overhead.

Towards overcoming this computational scalabil-
ity problem, the distributed model predictive control
method of [2] can be used. This method solves con-
strained linear quadratic optimal control problems us-
ing a single-level architecture for communication by
exploiting the computational power often available at
each sub-system in the network. This distributed control
method consists of two steps: 1) Initialization and 2)
Iterated (parallel) computation and communication for
exchanging updates of components of the overall deci-
sion variable between distributed computing resources.

To provide scope for managing the communication
overheads, motivated by the initial idea presented in [3],
in [4] a distributed model predictive control method with
hierarchical (two-level) architecture for communication
and a three-step algorithm including an extra outer
iterate step are presented for solving constrained linear
quadratic optimal control problems. Hence, this method
seems to be more suitable to overcome the above
computational scalability problem. In This method, dis-
tributed decision makers are grouped into q disjoint
neighborhoods. Exchange of information between de-
cision makers within a neighborhood occurs after each
update, whereas the exchange of information between
neighborhoods is limited to be less frequent. Within a
neighborhood, each decision maker frequently updates
its local component of the overall decision variable by
solving an optimization problem of reduced size. The
updated value is then communicated to all other neigh-
boring decision makers. This intra-neighborhood update
and communication is referred as an inner iterate. In
addition to inner iterates, updates of decision variables
from other neighborhoods are received periodically.



These are referred to as outer iterates. Between outer
iterates, distributed decision makers continue to com-
pute and refine the local approximation of the optimal
solution, with fixed values for decision variables from
outside the neighborhood.

In this paper, the distributed model predictive control
methods of [2] and [4] are used to solve the constrained
linear quadratic optimal control problem associated with
the supervisory controller of [1] for automated irriga-
tion channels. For an automated irrigation channel, the
satisfactory performance of the method with two-level
architecture for communication [4] in improving the
transient response of automated irrigation channel and
mitigating the upstream transient error propagation and
amplification phenomenon is illustrated using computer
simulation and compared with the performance of the
distributed model predictive control method that exploits
a single-level architecture for communication [2]. It is
illustrated that the distributed model predictive control
method that exploits a two-level architecture for com-
munication has a better performance by better managing
communication overhead.

The paper is organized as follows: Section II
briefly describes the distributed model predictive control
method of [4] and also the method of [2] (as the method
of [2] is a special case of the method of [4]). Section
III is devoted to modeling automated irrigation channels,
explaining upstream transient error propagation and am-
plification phenomenon in automated irrigation channels
and the formulation of the constrained linear quadratic
optimal control problem to be solved for mitigating this
phenomenon. Section IV is devoted to simulation study
and applications of distributed model predictive control
methods of [4] and [2] in automated irrigation channels.
In Section V the paper is concluded by summarizing the
paper.

II. DISTRIBUTED MPC WITH HIERARCHICAL
ARCHITECTURE FOR COMMUNICATION

The distributed model predictive controller of [4]
is concerned with n interacting sub-systems: S1, S2,
... , Sn each equipped with a decision maker with
limited computational power for solving the following
optimization problem in a distributed fashion at each
receding horizon:

min
(u1,...,un)

{
J(g, u1, ..., un), ui ∈ Ui,∀i

}
. (1)

Here, g is a collection of known vectors, J ≥ 0 is
a finite-horizon quadratic cost functional of decision
variables with horizon length N̄ << L, for each
i = 1, 2, ..., n, ui ∈ RN̄mi is the decision variable
associated with sub-system Si and Ui is a closed convex
subset of the Euclidean space RN̄mi that includes zero
vector.

For the simplicity of presentation, without loss of
generality, the dependency of the cost functional J on g
is dropped. Throughout, it is assumed that decision mak-
ers have knowledge of known parameters described by
g and also the expression for the cost functional J in (1)
at each receding horizon. To manage the communication

overhead, the distributed controller of [4] uses a two-
level architecture for exchanging information between
distributed decision makers. This communication archi-
tecture involves a collection of disjoint neighborhoods
of sub-systems. In each neighborhood at least one
decision maker is selected as the neighborhood cluster
head such that all the sub-systems of the neighborhood
and also all the sub-systems of the nearest neighboring
neighborhood are within the effective communication
range of the neighborhood cluster head so that the com-
munication graph between cluster heads is connected.
That is, there is a communication path between a cluster
head to any other cluster heads.

Without loss of generality, suppose sub-systems S1,
S2,...,Sn are distributed into q disjoint neighborhoods,
as follows: N1 = {S1, .., Sl1}, N2 = {Sl1+1, ..., Sl2},
..., Nq = {Slq−1+1, ..., Sn}. Then, the distributed model
predictive controller of [4] approximates the solution
of the optimization problem (1) for each time instant
k ∈ {0, 1, 2, 3, ...} by taking the following three steps:

• Initialization: The information exchange
between neighborhoods at outer
iterate t ∈ {0, 1, 2, ..., t̄ − 1} makes
it possible for sub-system Si to
initialize its local decision variables as
h0
i = uti ∈ RN̄mi ,∀i ∈ {1, ..., n}. For k ≥ 1,
u0
i = (ut̄

′

i [1] ut̄
′

i [2] ... ut̄
′

i [N̄ − 1] 0′ )
′

where

ut̄i = (ut̄
′

i [0] ut̄
′

i [1] ... ut̄
′

i [N̄ − 1] )
′ ∈ RN̄mi

is the approximated solution of the optimization
problem (1) for the time instant k − 1. For
the time instant k = 0, u0

i ∈ Ui are chosen
arbitrarily. This means that the initialization is
based on the warm start for t = 0.

• Inner Iterate: Between every two successive
outer iterates there are p̄ inner iterates. Sub-
system Si ∈ Ne (e ∈ {1, 2, ..., q}) performs p̄
inner iterates, as follows:
For each inner iterate p ∈ {0, 1, ..., p̄−1}, sub-
system Si first updates its decision variable via

hp+1
i = πih

∗
i + (1− πi)hpi , (2)

where πi are chosen subject to πi >
0,
∑l1
j=1 πj = 1, ... ,

∑n
j=lq−1+1 πj = 1 and

h∗i =̇argminhi∈UiJ(h0
1, ..., h

0
le−1

, hple−1+1, ..., hi
, ..., hple , h

0
le+1, ..., h

0
n) (note that l0 = 0, lq =

n). Then, it trades its updated decision variable
hp+1
i with all other sub-systems in its neigh-

borhood Ne.

• Outer Iterate: After p̄ inner iterates, there is an
outer iterate update as follows:

ut+1
i = λih

p̄
i + (1− λi)uti, (3)

where t ∈ {0, 1, 2, ..., t̄ − 1} and λi, i =
1, 2, ..., n, are chosen subject to λi > 0, λ1 =
... = λl1 , λl1+1 = ... = λl2 , ..., λlq−1+1 =
... = λlq (λlq = λn), λl1 + λl2 + ...+ λlq = 1.
Then, there is an outer iterate communication,
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Fig. 1. An automated irrigation channel.

in which the updated decision variables ut+1
i

are shared between all neighborhoods; and sub-
sequently, between all sub-systems.

The above three-step algorithm is repeated t̄ times. As
shown in [4] when t̄ → ∞, then ut̄i converges to the
optimal solution of the optimization problem (1). Hence

ut̄i = (ut̄
′

i [0] ut̄
′

i [1] ... ut̄
′

i [N̄ − 1] )
′ ∈ RN̄mi

represent the approximated solution of the optimization
problem (1) for the time instant k, in which based
on the receding horizon idea, its first component, i.e.,
ut̄i[0] is applied by the sub-system i to the system as
the control input of the time instant k.

III. AUTOMATED IRRIGATION CHANNEL

This section is devoted to modeling automated ir-
rigation channels, explaining upstream transient error
propagation and amplification phenomenon in auto-
mated irrigation channels and the formulation of the
constrained linear quadratic optimal control problem to
be solved by the distributed model predictive controllers
of [2] and [4] for mitigating this phenomenon.

A. Automated Irrigation Channel Model

Throughout, we use the following model for auto-
mated irrigation channel that has been borrowed from
[5]. Consider the automated irrigation channel shown
in Fig. 1. For the i-th pool of this channel we have the
following representation

ẏi(t) = Cini zi(t− τi) + Couti zi+1(t) + Couti di(t),

i = 1, 2, ..., n,

zi=̇h
3
2
i , hi = yi−1 − pi, (4)

zi+1=̇h
3
2
i+1, hi+1 = yi − pi+1,

di =
d̄i
γi+1

, dn =
d̄n
γn
.

Here, αi > 0 (measured in meter square - m2) is a
constant that depends on the pool surface area, yi ≥
0 (measured in meter Above Height Datum - mAHD)
is the downstream water level at the i-th pool, hi ≥
0 (measured in meter) is the head over upstream gate
(the i-th gate), hi+1 is the head over downstream gate

(the i+1-th gate), pi ≥ 0 (measured in meter) is the
position of the i-th gate, τi (measured in minutes) is
the fixed transport delay, d̄i ≥ 0 (measured in meter
cube per minutes - m3/min) is the known off-take flow
rate disturbance taken at the end of pool i by user, and
γi as well as Cini (measured in m

−1
2 /min) and Couti

(measured in m−
1
2 /min) are constant.

The equation (4) can be written in terms of the storage
(integrator) equation (5) and transport (delay) equation
(6), as follows.

ẏi(t) = Cini z̃i(t) + Couti zi+1(t) + Couti di(t). (5)

z̃i(t) = zi(t− τi). (6)

The storage equation (5) can be directly converted
to discrete time model using the zero holder tech-
nique, while the transport equation (6) is converted
to discrete time model by introducing τi

T states as
follows xi,2(kT ) = zi(kT − τi

T ), ... , xi, τiT +1(kT ) =
zi(kT −T ), where the sampling period T is the biggest
common factor of pools transport delays (note that
xi,1(kT ) = yi(kT ), k ∈ {1, 2, 3, ...}). Following the
above conversions, the equivalent discrete time model
describing the dynamics of the i-th sub-system/pool is
given by the following:{
si[k + 1] = Ǎisi[k] + B̌izi[k] + Ďizi+1[k] + F̌idi[k],

yi[k] = Čisi[k] i = 1, 2, ..., n

In automated irrigation channel, PI controllers
zi(s) = Ci(s)ei(s), Ci(s) = KiTis+Ki

TiFis2+Tis
, ei = ui − yi

are used to stabilize automated irrigation channel around
the pre-defined reference signals uis. Now, by finding
the corresponding discrete time transfer function Ci(z)
and then the corresponding state space representation,
we have the following discrete time representation for
the PI controllers{

qi[k + 1] = Āiqi[k] + B̄iei[k], qi[0] = 0,
zi[k] = C̄iqi[k].

Consequently, by defining the augmented state variable

xi[k] =

(
si[k]
qi[k]

)
, the dynamics of the automated

irrigation channel is given by (7)

Si :
xi[k + 1] = Aixi[k] +Biui[k] + Fidi[k]

+vi[k],
yi[k] = Cixi[k],
zi[k] = Dixi[k],

(7)

for i = 1, 2, ..., n and k ∈ {0, 1, 2, ..., }. In the above
dynamic model vi[k] = Mixi+1[k] represents the cas-
cade interconnection, xi ∈ Rni is the state variable of
dimension ni ∈ N=̇{1, 2, 3, ...}, ui ∈ R is the reference
set point, yi ∈ R and zi ∈ R are variables to be
controlled, and di ∈ R is a known off-take disturbance
for the i-th sub-system.



Pool cin(m
−1/2

min ) cout(
m−1/2

min ) τ(min) γi(
m3

min ) Ki Ti Fi
1 (pool 2 of the East Goulburn) 0.01072 0.01034 36 2330 0.585 539 47.2
2 (pool 5 of the East Goulburn) 0.01169 0.00833 28 1210 0.679 366 43.4
3 (pool 8 of the East Goulburn) 0.01065 0.01599 15 351 0.892 355 31.2
4 (pool 9 of the East Goulburn) 0.08457 0.0853 1 527 1.31 26.1 3.1

TABLE I. NUMERICAL VALUES FOR PARAMETERS DESCRIBING A FEW POOLS OF THE EAST GOULBURN MAIN IRRIGATION CHANNEL.

 Fig. 2. The upstream transient error propagation and amplification
phenomenon.

B. Upstream Transient Error Propagation and Amplifi-
cation Phenomenon

For the purpose of illustrating the upstream transient
error propagation and amplification phenomenon in au-
tomated irrigation channels, in this section we consider
an automated irrigation channel consisting of pools
2,5,8 and 9 of the East Gourburn main irrigation channel
located in Victoria, Australia. Numerical values for
parameters describing these automated pools borrowed
from [1] are given in Table I.

Fig. 2 illustrates the response of this automated
irrigation channel to an off-take disturbance with the
value of d̄4 = 8 m3

min applied to the last pool (pool 9
of the East Goulburn irrigation channel) for the first 15
time steps (note that for simulations, the desired steady
state values for water levels are set to be 1m above
datum in Fig. 1 and for simulations the datum for the
water levels are moved to the desired steady state water
levels).

Fig. 2 illustrates the upstream transient error prop-
agation and amplification phenomenon due to interplay
between off-take flow disturbance and transport delay
in this automated irrigation channel. As clear from Fig.
2 for the last pool (pool 4) the transient deviation of
the water level from the desired set point is relatively
small. However, this transient error propagates towards
upstream pools and as we moved towards upstream
pools, the deviation of water levels from desired set
points increases. In large scale automated irrigation
channels with large number of pools, at their worst,
these undesirable transient characteristics can result in
instability and performance degradation due to actuator
limitations.

C. Reference Manager

As shown in [1] one way to mitigate the above
effect is to equip automated irrigation channels with

a supervisory controller which properly manages refer-
ence set points uis of local PI controllers by solving
a quadratic constrained optimal control problem. To
formulate this problem note that the distributed dynamic
model (7) for automated irrigation channels has the
following augmented state space representation{

x[k + 1] = Ax[k] +Bu[k] + Fd[k],
y[k] = Cx[k],
z[k] = Dx[k],

(8)

where x[k] = (x′1[k] x′2[k] ... x′n[k] )
′
,

u[k] = (u1[k] u2[k] ... un[k] )
′
,

d[k] = ( d1[k] d2[k] ... dn[k] )
′
,

y[k] = ( y1[k] y2[k] ... yn[k] )
′
, z[k] =

( z1[k] z2[k] ... zn[k] )
′
. As the supervisory

controller can have a larger sampling period than the
sampling period of local PI controllers, the sampling
period for supervisory controller is set to be ST ,
S ∈ N. Hence, the dynamic model for supervisory
controller is obtained by taking the model re-sampling
approach, which involves holding the inputs to the
system constant for the whole new sample period, and
aggregating the dynamic (8) across the new sample
period, as follows:

x[k + 1] = ASx[k] + (
∑S−1
j=0 A

S−j−1B)u[k]

+(
∑S−1
j=0 A

S−j−1Fd[Sk + j]),
y[k] = Cx[k],
z[k] = Dx[k],

k = {0, 1, 2, 3, ...}.

(9)

After obtaining the re-sampled model, the number of
states in the re-sampled model (9) is reduced while
maintaining the input-output behavior using balanced
truncation. Consequently, the obtained reduced model
for the supervisory controller has the following repre-
sentation

x̂[k + 1] = Âx̂[k] + B̂u[k] + d̂[k],

y[k] = Ĉx̂[k],

z[k] = D̂x̂[k],
k = {0, 1, 2, 3, ...},

(10)

where d̂[k] represents the effect of known off-take
disturbances on the reduced model. Now, the super-
visory controller manages reference set points uis of
local PI controllers by solving the following quadratic
constrained optimal control problem [1].

min
u=(u1,...,un)

JL(x̂[0], d̂L−1
0 , r, u)

subject to (10) and{
yi[k] ∈ [Li, Hi], ui[k] ∈ [Li, Hi]

zi[k] ∈ [Ei, Zi]

}
∀i ∈ [1, n], k ∈ [0, L− 1],

(11)



 

Fig. 3. DMPC with two-level architecture for communication. Solid line: without computational latency, dotted line: with latency.

where L is the irrigation season length, the interval
[Li, Hi] is the admissible region for water-levels yis and
also decision variables uis, the interval [Ei, Zi] is the
admissible region for variable zi which is a measure of
water flow rate, and

JL(x̂[0], d̂L−1
0 , r, u)=̇

n∑
i=1

L−1∑
k=0

||yi[k]− ri||2Q

+||ui[k]− ui[k − 1]||2R + ||zi[k]||2P (ui[−1] = 0). (12)

Here ||.|| denotes the Euclidean norm (i.e.,
||z||2P =̇z′Pz), x̂[0] is the vector of known
initial states, d̂L−1

0 =̇{d̂[k]}k=0,1,...,L−1, where
d̂[k] = ( d̂

′

1[k] . . . d̂
′

n[k] )
′ is a collection

of known vectors that represent the effects of off-take
disturbances, r = ( r1 . . . rn )

′ is the vector of
desired steady state values for yis, and Q,P ≥ 0,
R > 0 are weighting matrices. The first norm in the
cost functional (12) penalizes deviation of water levels
from the corresponding desired values, and the second
norm penalizes large changes in the input vector to the
local PI controllers; and therefore, it tries to provide a
smooth input trajectory. The last norm tries to minimize
the input flow rates as zis are measures of input flow
rates; and therefore, it is desirable to make them as
small as possible to keep water in reservoir as much as
possible.

Remark 3.1: As the optimal control problem (11)
is a constrained problem and the season length L is
long, to solve this optimization problem in real time
using a closed loop control strategy, the receding hori-
zon idea must be used. In [1] a centralized model
predictive control method is used to solve this optimal
control problem, in which this method uses a central-
ized optimization method at each receding horizon. As
shown in [6], the computation overhead for solving the
optimization problem associated with problem (11) at

each receding horizon using centralized optimization
methods grows as O(n5). However, the overhead using
the methods of [2] and [4] grows as O(n). This results
in large computational latency (i.e., time delay between
making measurements and applying the corresponding
control inputs) when we use centralized model predic-
tive control methods for large scale automated irrigation
channels which have large number of sub-systems n.
Long computational latency significantly reduces the
performance of the supervisory controller. Hence, for
large scale automated irrigation channels a practical
way to solve the constrained optimal control problem
(11) using full computational capacity of existing local
decision makers is to implement the distributed model
predictive controller with either two-level or single-level
architecture for communication. Using these controllers,
at each time instant k by solving a constrained opti-
mization problem with horizon length N̄ << L, the set
points uis for the time instant k is obtained and they are
applied to automated irrigation channel by distributed
decision makers.

IV. SIMULATION STUDY

In this section, the satisfactory performance of the
distributed model predictive controller of [4] in mit-
igating the upstream transient error propagation and
amplification phenomenon is illustrated using computer
simulation and compared with the performance of the
distributed model predictive controller of [2].

To illustrate the satisfactory performance of the
distributed model predictive controller with two-level
architecture for communication in improving the tran-
sient response of automated irrigation channels, this
controller is applied to the optimization problem (11)
formulated for the automated irrigation channel with
four pools with numerical values as given in Table I.
Here, it is assumed that the above automated irrigation
channel is subject to an off-take disturbance with the



 
Fig. 4. DMPC with single-level architecture for communication. Solid line: without computational latency, dotted line: with latency.

value of d̄4 = 8 m3

min for the first 135 min. It is also as-
sumed that x[0] = 0, r = 0, S = 9, L = 240, N = 10,
[Li, Hi] = [−0.2m, 0.2m] and [Ei, Zi] = [0, 0.753/2].
Note that by applying balanced truncation, the reduced
model has only 22 states instead of 92 states. Also,
a similar method as used in [1] is used to guarantee
the recursive feasibility of DMPCs. The communication
load for each inner iterate communication is assumed to
be 5sec., while for each outer iterate communication the
load is assumed to be 50 sec. p̄ is set to be 10 and t̄ = 1.
Hence, at each receding horizon the communication
overhead of the Distributed Model Predictive Control
(DMPC) with two-level architecture for communication
is p̄× 5 + t̄× 50 = 10× 5 + 1× 50 = 100 sec., and the
overhead of the DMPC with single-level architecture for
communication is p̄× 50 = 500 sec.

Fig. 3 illustrates the response of the DMPC with
two-level architecture for communication without and
with considering the computational latency. As the com-
putation overhead in average is 13sec., its computational
latency in average is (100 + 13 =)113sec., which is
almost 2/9th of the sampling period of 9min. As clear
from Fig. 3, the response with the computational latency
is similar to the response without latency. This result
is expected because the computational latency here is
almost 4 times smaller than the sampling period. As
clear from Fig. 3, the magnitude of transient errors
between water levels and the desired values decreases as
we move towards upstream pools. This indicates that the
DMPC with two-level architecture for communication
mitigates the upstream transient error propagation and
amplification phenomenon.

Fig. 4 illustrates the response of the DMPC with
single-level architecture for communication without and
with considering the computational latency. Here, the
average computation overhead is 15sec., and hence
the computational latency in average is 515sec. Fig.
4 clearly illustrates that the performance of the case
with the computational latency in disturbance rejection
is worst than the performance of the case without the
computational latency. This results is expected because

of large computational latency here. Obviously, this
reduction in performance is more significant in larger
channels that have larger communication overhead. Fig.
3 and Fig. 4 illustrate that the DMPC with two-level
architecture has a performance better than the perfor-
mance of DMPC with single-level architecture by better
managing communication overhead.

V. CONCLUSION

In this paper, it was illustrated that the distributed
model predictive control method with two-level archi-
tecture for communication is a suitable method for
improving the transient response of automated irrigation
channels. Hence, this method can be particularly used in
large scale automated irrigation channels to mitigate the
upstream transient error propagation and amplification
phenomenon.
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