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Abstract
A non‐linear large scale stochastic optimisation model for enhancing the oil production
and the recovery factor of the offshore oil reservoirs is proposed. The model aims at
minimising the miss‐match between mathematical model and the actual dynamic
behaviour of the reservoir and the exploitation time, while maximising the oil production
and the recovery factor. The model involves the three dimension (3D) oil reservoirs
equipped with a few vertical injection and production wells. The limited number of wells
is one of the major features of the common oil reservoirs in the middle‐east region. The
proposed model consists of the primarily mathematical model of the 3D reservoir, a
model update algorithm and a large scale constrained non‐linear optimisation algorithm.
The input to this model is the daily production rate of the oil, natural gas and water
produced from the oil reservoir and the output is the optimal injection rate to be injected
to the injection wells in order to maximise the oil production and the recovery factor. In
order to evaluate the performance of this model, the authors apply this model on part of
one of the Iran's offshore oil reservoirs and study the performance improvement due to
the proposed model and compare its performance with the performance of the available
Improved Oil Recovery (IOR) technique. It is illustrated that the proposed model can
increase the oil production from the reservoir up to 47.96% and reduce the exploitation
period up to 66.66% compared with those of the available technique.
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1 | INTRODUCTION

1.1 | Motivation and backgrounds

One of the growing application of the Operation Research
(OR)‐based decision systems is in the oil and gas industry. The
motivation for introducing this model for oil and gas industry
is the global demand for fossilised energy and an urgent need
for improvement in the efficiency and productivity from oil
reservoirs, which are often very old in order to properly
respond to the increasing global demand for oil and gas. In

particular, the available oil and gas reservoirs are very limited
and exploration and utilisation of new resources are very time
consuming and expensive and cannot full fill the immediate
global demand for energy. In Iran, for example, more than half
of the Iran's oil reservoirs (around 80%) are in the second half
of their life. The Improved Oil Recovery (IOR) technique is
mainly used in this country to exploit oil from these old res-
ervoirs. This technique is known as a proactive method
because it implements the primary mathematical model of the
reservoir for predicting the reservoir behaviour for the entire
life time of the reservoir, which is unrealistic resulting in a poor
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efficiency and productivity. As a result of that the oil recovery
factor, which is the percentage of the recoverable oil initially in
the reservoirs using this technique, is only 29% in Iran. This
means that using the available exploitation techniques in Iran
only 29% of the available oil can be extracted and the rest will
remain unusable in reservoirs for ever. This calls for devel-
oping and utilising more advanced techniques that significantly
improve the efficiency and productivity from the available
reservoirs.
The invention of Industrial Internet of Things (IIoT)

communication modules has enabled us to interconnect
distributed sensors, instruments, actuators and other net-
worked devices of the oil/gas reservoirs to computers resulting
in a closed loop OR‐based decision system. This paper aims to
illustrate the potential of such a relatively very cost effective
and easily implementable decision system for significant
improvement of the efficiency and productivity from the
available oil and gas reservoirs. In the proposed system, gate-
ways connect the distributed sensors and actuators to the
Internet allowing the exchange of data between this network
and a remote computer server. This computer server is
equipped with optimisation, estimation, machine learning or
artificial intelligent algorithms. The input to these algorithms is
the real time data collected by sensors and the output is the
generated proper commands for distributed actuators
computed so that the efficiency and productivity are enhanced
[1–10]. Due to the uncertainty in exchange of information
between distributed sensors and actuators and gateways, as well
as complexity in the environment equipped with the network
of these sensors and actuators, we need to develop a large scale
stochastic non‐linear operation research model that is obvi-
ously much difficult to develop with respect to the commonly
used small scale deterministic models. Some of the available
results for the compensation of the uncertainty in communi-
cation can be found in Refs. [11–17].
The proposed stochastic model allows for real time data

collection and exchange. Using the collected real time data
from reservoir, the model should regularly update the reservoir
mathematical model based on the available data, for example,
daily production and the injection rates. This calls for the
development and implementation of an advance filter that is
able to estimate the states of a very large scale non‐linear
system in reasonable time with high precision. The model
needs to regularly update the reservoir mathematical model
because reservoir behaviour is dynamic and it changes
frequently. The lack of explicit mathematical expression for
describing the reservoir dynamics is one of the major diffi-
culties for designing such a filter. Very often the model for
describing the dynamics of reservoir is provided by an Eclipse
file. Another difficulty in the realisation of such a filter is the
dimension of reservoirs, which results in a very long compu-
tation time for advance filters, while the updated mathematical
model generated by the filter should be ready by the end of the
day based on the measurement provided at the beginning of
the day in order to have a real time planning. To overcome
these drawbacks, we use the ensemble Kalman filter in this
paper. The successful applications of the ensemble Kalman

filter for the reservoir monitoring and model update have been
reported in several papers, for example, [18–21]. Generating
new ensembles to be used in the ensemble Kalman filter from
the primary mathematical model embedded in a software
package, for example, Eclipse or Mrst etc. is possible. To
reduce the computation time for updating the mathematical
model, we can use M parallel computers each responsible for
generating a new ensemble. Also, the ensemble Kalman filter is
very suitable for updating the model of very complex non‐
linear dynamics. Hence, it is suitable filter for updating the
model of oil and gas reservoirs. The proposed OR‐based de-
cision system then uses the updated mathematical model in a
non‐linear Model Predictive Control (MPC) algorithm, which
implements a large scale constrained non‐linear optimisation
algorithm, to compute the optimal injection rate not only for
the pressure stabilisation but also for the maximising oil pro-
duction. This involves a very complex optimisation problem
subject to non‐linear large scale reservoir dynamics and oper-
ational constraints; and therefore, advance numerical optimi-
sation methods should be implemented to solve it.
The proposed closed loop OR‐based decision system

regularly updates the optimal injection rate based on new
measurements from the reservoir. Hence, unlike the commonly
used techniques, it compensates the uncertainty and
complexity of the reservoir management and, therefore, pro-
duces an optimal multi‐valued injection rate based on the
current behaviour of the reservoir (instead of a single‐valued
injection rate based on the primary mathematical model).
Thus, it is expected that this system enhances the productivity
and efficiency compared with those of the available techniques.
The main objective of this paper is to investigate this question
and to illustrate the impacts of the proposed model in up-
stream oil and gas industry.
Under the unrealistic assumption that the reservoir primary

mathematical model is the true representation of the reservoir
dynamics for the entire life of the reservoir, Refs. [3–8] show
that the optimal multi‐valued injection rate technique enhances
the oil production by 30% and the oil recovery factor by 3%. It
can also reduce the water injection rate for the pressure sta-
bilisation by 25% compared with the currently used IOR
technique. Refs. [9, 10] show that the combination of the
ensemble Kalman filter with multi‐valued injection rate tech-
nique results in a better exploitation efficiency. Aforemen-
tioned references are concerned with the 2D (two‐
dimensional) reservoirs, which have narrow thickness. There
are also concerns with the 2D reservoirs equipped with the
horizontal production and injection wells with many injection
and production outlets and many observation points. More-
over, they do not assume any faults in the reservoir.

1.2 | Paper contributions

Refs. [9, 10, 18–21] suggest that the real time data collection
from the oil reservoir and the exchange of real time data be-
tween reservoir and a remote computer server that runs the
ensemble Kalman filter, and a large scale non‐linear
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optimisation algorithm for the computation of the optimal
multi‐valued injection rate facilitate improvement in the oil
productivity and exploitation efficiency for the 2D oil reser-
voirs. Nevertheless, the dynamics of the oil reservoirs in the
middle‐east region including Iran are very different from the
dynamics considered for the reservoirs in Refs. [9, 10, 18–21].
Iran's offshore oil reservoirs, for example, similar to the other
oil reservoirs in the middle‐east region are 3D (three‐dimen-
sional) and are very thick. They include faults and are equipped
with a few production vertical wells and few vertical injection
wells and, therefore, the number of observation and actuation
points are very limited in these reservoirs. Also, the assumption
that the primary mathematical model of the reservoir is a
legitimate model for the reservoir entire life time is not realistic
for these reservoirs. Because most of the reservoirs in this
region are of the type of the carbonate reservoirs and, there-
fore, injection results in new cracks in the reservoir rocks and
thus the dynamic model of the reservoir is getting away from
its primary mathematical model after injection. Hence, it is
worth studying the impacts of the proposed closed loop OR‐
based decision system for the improvement of the productivity
and the exploitation efficiency of this type of reservoirs.
To the best of our knowledge, this paper is the first paper

addressing the impacts of multi‐valued injection rate on 3D
reservoirs equipped with a few vertical and horizontal wells.
To achieve this goal, this paper introduces the following
closed loop OR‐based decision system. In this large scale
stochastic non‐linear model, distributed sensors are the
available separators on the surface of the oil reservoir. At the
end of the day, the daily production of oil, gas and water can
be determined from separators. We can supply the compu-
tation layer of the OR‐based decision system with the daily
production of separators manually; or we can equip each
separator unit with an IIoT module and using this module we
can provide the remote computer server with the daily pro-
duction rates of the oil, natural gas and water from each
production well. In other words, the input to the proposed
model is the knowledge from reservoir that can be gathered
by the available infrastructure on the field. As it is shown in
Figure 1, the remote computer server is equipped with three

software packages: The primary mathematical model of the
oil reservoir, a model update algorithm which is the ensemble
Kalman filter and the non‐linear MPC algorithm [22] that
involves a single objective cost functional known as the in-
jection Net Present Value (NPV) subject to operational
constraints and the large scale non‐linear stochastic mathe-
matical model of reservoir. The model update algorithm uses
the collected data from separators and using the primary
mathematical model updates the reservoir model. Then, the
updated model is used in the non‐linear MPC algorithm to
compute the optimal multi‐valued injection rate for each in-
jection well. The primary mathematical model is the reservoir
model obtained using seismic tests, core sampling etc., during
the comprehensive study of the oil reservoir, which is
repeated every 3–5 years. This model is available as an
Eclipse or Mrst file. The non‐linear MPC of this paper is
based on the optimisation algorithms of the Mrst tool box,
which is a MATLAB toolbox developed for reservoir simu-
lation. This computation is updated every month based on
the updated model for the reservoir and the computed
optimal injection rate is communicated to the injection
controlled valves to be injected to the oil reservoir. In this
paper this system is implemented on small part of one of the
Iran's offshore oil reservoirs. Using extensive computer
simulations, we study the impacts of the currently used IOR
technique as well as the proposed model (with and without
the model update sub‐package) on the exploitation efficiency
of this reservoir. The outcomes of this study is interesting
because it is a bit different from the results reported in the
literature for the 2D reservoirs. In particular, this paper il-
lustrates that for Iran's offshore oil reservoirs, there is no
gain in implementing the ensemble Kalman filter in terms of
the exploitation efficiency improvement compared to the
efficiency improvement for the 2D reservoirs. Also, unlike
the results reported for the 2D reservoirs, it is illustrated that
the proposed model for the 3D reservoirs can increase the
injection rate by 21.79%. However, it can increase the oil
production by 47.96% and decrease the exploitation time by
66%. Hence, the proposed model is a very facilitating tech-
nology for the improvement in the clean oil production and

F I GURE 1 The components of the proposed
model.
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the exploitation efficiency of the middle‐east oil reservoirs. It
can satisfy all the stakeholders’ needs as shown in Table 1.

1.3 | Paper organisation

The paper is organised as follows: the Introduction was pre-
sented in Section 1. The second section is devoted to the
problem formulation. In this section the oil reservoir consid-
ered in this paper is also described. Section 3 is devoted to the
experimental results. In Subsection 3.1 the impact of the
currently used IOR technique on the exploitation efficiency of
the Iran's offshore oil reservoirs is studied. In Subsection 3.2
the impact of the proposed model without the model update
sub‐package on the exploitation improvement of the oil
reservoir of Section 2 is studied. Subsection 3.3 is devoted to
the impact of the proposed model equipped with the model
update sub‐package on the exploitation improvement. In
Subsection 3.4, we compare the performances of the proposed
model (with and without the model update sub‐package) with
the performance of the available IOR technique. Finally, we
conclude the paper in Section 4 by summarising the main
contributions of the paper and presenting the future research
directions.

2 | PROBLEM FORMULATION

The basic block diagram of the proposed model is shown in
Figure 1. In this figure, the SCADA software is the computer
programme of the remote computer server. This computer
programme comprises of the following three sub‐packages:
The primary mathematical model of the reservoir, a model
update algorithm and a non‐linear MPC algorithm. Because the
field devices (separators and controlled surface valves) are
already available in the surface of the oil reservoir and the
communication layer of the proposed model can be easily
constructed by adding IIoT modules to each separator and
controlled valve, in this section we only focus on the
computation layer of the proposed model; that is, the SCADA
software shown in the block diagram of Figure 1.

2.1 | Primary mathematical model

Petroleum resources are found within porous rocks that have
sufficient interconnected void space to store and transmit
fluids. Two petrophysical properties are fundamental in reser-
voir modelling. The first one is the rock porosity, ϕ, is a
dimensionless quantity that denotes the void volume fraction
of the medium available to be filled by fluids [23]. The second
property is the permeability, K, is a measure of the reservoir
rock's ability to transmit a single fluid at certain conditions [23].
Its unit is Darcy [23]. A single phase flow dynamic in a porous
medium is described by the combination of the fundamental
properties of conservation of mass with the Darcy's law, as
follows [23]:
Conservation of mass [23]:

∂ðϕρÞ
∂t
þ ∇: ρv!

� �
¼ q: ð1Þ

Here, ρ is the density and ∇. is the inner product operator. q is
the fluid source/sink term used to model wells. It is described
by

q¼WI pwb − pbð Þ; ð2Þ

whereWI is the well index, pwb is the well bore pressure and pb
is the perforated blocks pressure. v! is the velocity of fluid in
the porous medium, which is described by Darcy's law as
follows [23]:

v!¼ −
K
μ

∇p − ρg!
� �

; ð3Þ

where μ is the viscosity of the fluid and g! is the earth gravity
vector. In a reservoir we normally have a three ‐ phase fluid:
α = {o, w, g}, where o denotes oil, w water and g denotes
natural gas. For such a reservoir we have eq. (1) and eq. (3) for
each phase linked through the saturation factors Sw, So and Sg
(Sw + So + Sg = 1) as follows:

∂ ϕραð Þ

∂t
þ ∇: ρα v

!
α

� �
¼ qα;

v!α ¼ −
Kkrα
μα

∇pα − ρα g
!� �

; α¼ fo; g;wg:
ð4Þ

Here, krα is a dimensionless scaling factor known as relative
permeability, which is a function of saturation factors. The
pressures po, pw and pg are related by the so called capillary
pressure, pc, as follows: pcow = po − pw and pcgw = pg − pw,
where pcow and pcgw are also the functions of the saturation
factors.
The above equation is a non‐linear partial differential

equation and, therefore, in order to be solved by digital com-
puters we need to discretise it using, for example, the finite
element method [24] to approximate it by a network of the so
called grids described by a network of ordinary differential

TABLE 1 The major benefits of stakeholders from the proposed
model.

Stakeholder Benefits

The reservoir owner (Iran) The recovery factor
enhancement

The reservoir owner (Iran) Higher rate of oil and gas
production

The reservoir owner (Iran) Faster depleting shared reservoirs

Corporate oil producer
(TotalEnergies)

Higher rate of oil and gas
production

Environment Faster depleting reservoirs and
therefore lower damage to
environment
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equations. Then, we need to discretise this network of ordinary
differential equations in time in order to be able to solve it by
digital computers. For this model, if we choose the gas and
water saturation factors and also the oil pressure as the state
variables, we reach to the following state space representation
for the reservoir.

Xkþ1 ¼ Xk þ F θ;Xk;Ukð Þ;

Yk ¼G θ;Xk;Ukð Þ:
ð5Þ

Here, Xk is the state vector, which includes the state variables
of all discretised grids (i.e., the oil pressure and the gas and
water saturation factors of all grids), and θ is a vector that
includes the porosity and permeability coefficients of all grids.
Note that if we use the Cartesian coordinate for discretisation,
then the permeability coefficient of each grid is represented by

a 3 � 3 tensor, as follows: K ¼
kx kxy kxz
kyx ky kyz
kzx kzy kz

0

@

1

A. In the

above equation, Uk is the vector of injection rates to be
injected by the injection wells and Yk is the vector of oil, gas
and water production rates from the production wells. k is the
time index measured in day.

2.2 | Non‐linear model predictive control

For both techniques (IOR and the proposed OR‐based tech-
niques), we use the following cost functional, known as the
injection NPV to determine the optimal injection rates for the
injection wells.

J ¼
XL

i¼1

Go½i�qo½i� þGg½i�qg½i� −Gw½i�qw½i� −Gwi½i�qwi½i�

ð1þ dÞ
i
τ

Δt:

ð6Þ

Here i is the time index measured in days, L is the exploitation
life time, d is the discount factor, τ = 365, Δt is the time in-
terval between 2 injection rate updates, Go[i] is the oil price
measured in $/stb, Gg[i] is the gas price, Gw[i] is the cost of
separating water from oil and gas in separators and Gwi[i] is
the cost of injecting water to the reservoir. In the above cost
functional qo[i] is the total oil produced in day i, qg[i] is the
total natural gas produced, qw[i] is the total water produced
and qwi[i] is the total water injected to the reservoir in day i.
When we use the IOR technique, prior exploitation from

oil reservoir, this cost functional is maximised subject to the
reservoir dynamics (5) and the operational constraints in order
to obtain the optimal fixed valued injection rate qwi(=
qwi[1] = … = qwi[L]). Then, during the exploitation phase
from the reservoir, water is injected by injection wells with
fixed rates so that the summation of the injection rates is
equivalent to the optimal fixed rate qwi, which has been
computed off line. To observe the pressure stabilisation
requirement, this optimisation is also subject to the following
operational constraint: qo[i] + qg[i] + qw[i] = qwi[i]. Note also

that another operational constraint is Umin ≺ Uk ≺ Umax,
where Umin and Umax are known lower and upper bounds on
the injection vector Uk, respectively. Note that in the above
optimisation problem, L is very large, typically 30–40 years,
and the reservoir dynamics (5) is non‐linear and large scale (the
dimension of Xk ranges from 150,000 to 1,500,000 and the
dimension of θ ranges from 100,000 to 1,000,000) and the
problem is a constrained non‐convex optimisation problem.
Hence, solving this non‐convex non‐linear constrained optimal
control problem is subject to a heavy computational
complexity and it may take several months to be completed by
very powerful computers.
Nevertheless, when we use the proposed OR‐based tech-

nique, the optimal injection rate is computed online using
the available measurements from the reservoir, for example, the
daily production rates of oil, water and natural gas from the
reservoir and the water injection rate. In order to perform this
online computation, in this technique the receding horizon idea
or the so called MPC [22] is implemented to reduce the associ-
ated computational load, as follows: First of all in the proposed
OR‐based decision technique, we consider the following
modification in the cost functional (6):

J ¼
XL

i¼1

Go½i�qo½i� þGg½i�qg½i� −Gw½i�qw½i� −Gwi½i�:
Pn
j¼1 qwi;j½i�

ð1þ dÞ
i
τ

Δt:

ð7Þ

Here, j ∈ {1, 2, …, n} denotes the index of the jth injection
well and qwi,j[i] is the injection rate of the jth well at day i.
Using this modified cost functional, the optimal injection rate
for each injection well can be computed separately. Now,
suppose we are in day k and we need to update the injection
rates. This is done using the cost functional (8), which is
extracted from the cost functional (7), taking into account the
available information up to this day. Subsequently, the
computed optimal rates q∗

wi;j½k� are implemented to the reser-
voir for the next Δt days by the injections wells j ∈ {1, 2, …,
n}. Then, at the day k + Δt we update the injection rates again
and we implement them to the reservoir for the next Δt days
and so on and so forth. To perform this operation, we consider
the following cost functional, which is extracted from the cost
functional (7)

Jk ¼
XkþN :Δt

i¼k

Go½i�qo½i� þGg½i�qg½i� −Gw½i�qw½i� −Gwi½i�:
Pn
j¼1 qwi;j½i�

ð1þ dÞ
i
τ

Δt; N ∈ f1; 2; 3;…g:

ð8Þ

Here, N.Δt is the prediction horizon (N is fixed); and because it
is much smaller than L the computational complexity associ-
ated with this optimisation problem is much smaller than that
of the IOR technique. Therefore, the optimal injection rates,
which are obtained from this technique, can be implemented
online. Note that the above MPC problem is also subject to the
following additional constraint:
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This type of constraint can be easily handled using the so called
the re‐sampling method. That is, in the dynamic model (5)
under the assumption that the input vector, Uk¼
qwi;1½k� … qwi;n½k�
� �

0, is subject to the above constraint, we
compute the output vector, Yk, for the time instants k + Δt,
k + 2.Δt,…, k + N.Δt and we use them in the above MPC
problem.
To implement this closed loop feedback strategy in the

proposed OR‐based decision system, a model update algo-
rithm, such as the ensemble Kalman filter [18–21] is imple-
mented to estimate the state variables, Xk, and θ online using
the available measurements, Yk, where the estimations X̂k and
θ̂ are used in the dynamic model (5) instead of Xk and θ to
generate Yk, Ŷ kþΔt, …, Ŷ kþN :Δt that includes information
about qo[i], qg[i] and qw[i] of the cost functional (8) for the
time instants i = {k, k + Δt, …, k + N.Δt}. Note that most of
the relevant papers in the literature, for example, Refs. [3–8] do
not implement this model update strategy and assume the
primary model of the reservoir (5) is the legitimate model for
the entire reservoir life time, which is an unrealistic assump-
tion. The ensemble Kalman filter is described next.

2.3 | Model update

For the model update we use the ensemble Kalman filter to
estimate the state variables and porosity and permeability
vector, θ, each time the injection rate is updated using the
available measurements, Yk, and Uk [18–21]. In order to use
this filter we need to have a linear relation between the mea-
surement vector and the state variables. Therefore, we define

the augmented variable Sk ¼
Xk
θ
Yk

0

@

1

A to reach the following

dynamic model for the reservoir.

Skþ1 ¼ F Sk;Ukð Þ þWk;

Ok ¼ C:Sk þ Vk:
ð10Þ

Here, C is a matrix that maps Sk to Yk. As the measurement is
always subject to noise, in the above dynamic, we include the
noise term Vk which is an i.i.d. Gaussian process with mean
zero and variance R. Using the seismic test combined with the

core sampling, we can also have an estimation of S0. Obviously,
this is an estimate and, therefore, it is subject to error. Hence,
for S0 we also assume a Gaussian distribution with known
mean and variance Q. For the use of the ensemble Kalman
filter, we also include the process noise Wk to the above dy-
namic. Wk is an i.i.d. Gaussian process with mean zero and
known variance Q. For the above non‐linear dynamic model,
the ensemble Kalman filter has the following description:

Ŝk ¼ Ŝkjk−1 þ Kk Ok − CŜkjk−1
� �

;

Kk ¼ Pkjk−1C0 CPkjk−1C0 þ R
� �−1

:

ð11Þ

In this filter, Ŝ0j−1 and P0|−1 are computed as follows: denote

M realisations of S0 ∼ N S0;Q
� �

by Sð1Þ0 ;…; SðMÞ0

� �
, then

Ŝ0j−1 ¼
1
M

XM

i¼1
SðiÞ0 : ð12Þ

Now, define L0|−1 with M columns as follows:

L0j−1 ¼
1
ffiffiffiffiffi
M
p Sð1Þ0 − Ŝ0j−1 Sð2Þ0 − Ŝ0j−1 : : : SðMÞ0 − Ŝ0j−1

� �
:

ð13Þ

Then, P0j−1 ¼ L0j−1L00j−1. Now, as soon as observing O0, we
have the following estimation for Ŝ0.

Ŝ0 ¼ Ŝ0j−1 þ K0 O0 − CŜ0j−1
� �

;

K0 ¼ P0j−1C0 CP0j−1C0 þ R
� �−1

:

ð14Þ

Now, in order to estimate S1 at the time instant k = 1, we need
to compute Ŝ1j0 and P0|1. In order to perform this computa-
tion, using the dynamic model (10) and M realisations ofW0 ∼
N(0, Q) denoted by W ð1Þ0 ;…;W ðMÞ0

� �
, we compute M real-

isations of SðiÞ1 as follows by the knowledge of U0:

SðiÞ1 ¼ FðS
ðiÞ
0 ;U0Þ þW

ðiÞ
0 ; i¼ f1; 2;…;Mg: ð15Þ

qwi;j½k� ¼ qwi;j½kþ 1� ¼…¼ qwi;j½kþ Δt − 1�
:

:

:

qwi;j½kþ ðN − 1ÞΔt� ¼ qwi;j½kþ ðN − 1ÞΔt þ 1� ¼…¼ qwi;j½kþ NΔt − 1�:

ð9Þ
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Note that S
ðiÞ
0 ¼

XðiÞ0
θ̂
Y0

0

B
@

1

C
A, where θ̂ is the estimation of θ

obtained from the previous step and XðiÞ0 is obtained from S
ðiÞ
0

as follows: SðiÞ0 ¼
XðiÞ0

θ
Y0

0

B
@

1

C
A. Then,

Ŝ1j0 ¼
1
M

XM

i¼1

SðiÞ1 : ð16Þ

Now, define L1|0 with M columns as follows:

L1j01 ¼
1
ffiffiffiffiffi
M
p Sð1Þ1 − Ŝ1j0 Sð2Þ1 − Ŝ1j0 : : : SðMÞ1 − Ŝ1j0

� �
:

ð17Þ

Then, P1j0 ¼ L1j0L01j0. Now, as soon as observing O1, we have
the following estimation for Ŝ1.

Ŝ1 ¼ Ŝ1j0 þ K1 O1 − CŜ1j0
� �

;

K1 ¼ P1j0C0 CP1j0C0 þ R
� �−1

:

ð18Þ

By following a similar procedure, Ŝk is obtained for the rest of
time instants. It is shown in Refs. [10–18] that for two ‐
dimensional reservoirs equipped with many production and
injection wells and, therefore, many observation points, the
ensemble Kalman filter as described above, provide a good
estimation of the state variables and parameters of the
reservoir.
This model update is very time consuming. In order to

significantly speed up the computation associated to this model
update, we can use M computers, where each computer is
responsible to compute one ensemble (e.g. SðiÞ1 in eq. (15)) in
parallel with other computers.

2.4 | The case study

In this paper, we are concerned with the part of Iran's offshore
oil reservoir with the thickness of 3057 m. It consists of two
main layers: Oil only layer with the thickness of 305.7 m on the
top and below this layer we have a two‐phase layer of oil and
water with the water saturation factor of 26%. The perme-
ability in the reservoir varies between 5 and 31 mD. The
porosity varies between 5% and 37%. The initial pressure of
this reservoir is 4000psi and its temperature is 227 Fahrenheit.
We consider a part of this reservoir with the dimensions of
1000 � 1000 m square. This part includes one injection well
and four production wells. We discretise this part by a
25 � 25 � 10 grids, as shown in Figure 2.
The model described by Figure 2 is a simplified primary

mathematical model that will be used for the optimisation and

model update. In fact, there are two big faults in this part of the
reservoir; therefore, its true primary model perhaps has the
actual representation described by Figure 3.
Throughout, we use the simplified primary mathematical

model of Figure 2 for the model update and optimisation
purposes; while, the measurements are obtained from the
actual representation of Figure 3. Also, the outcome of the
model update and optimisation, which is the optimal injection
rate is applied to the actual representation of Figure 3. Note
that for the mathematical model of Figure 2 we assume that
the porosity and permeability of each grid is 21% and 18 mD,
respectively; while the porosity and permeability of the actual
model are not exactly known at each grid and vary between 5%
and 37% and 5 mD to 31 mD, respectively (see Figure 4). Note
that for the simplified mathematical model we consider a di-
agonal 3 � 3 tensor for the permeability coefficients. For
computer simulation, we set the parameters according to Ta-
ble 2. We also set L = 720, N = 3, Δt = 30, Umin = 0 and
Umax = 5,608,152. This upper bound for the injection rate is

F I GURE 2 The simplified primary mathematical model considered for
the reservoir of the case study.

F I GURE 3 The actual primary representation for the reservoir of the
case study.
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unrealistic, which also results in unrealistic production rates
that are beyond the capacity of the actual production wells.
However, in order to speed up the computer simulations to
have a fair comparison between the available IOR technique
and the proposed closed loop IIoT‐based control technique,
we choose this upper bound.

3 | EXPERIMENTAL RESULTS

This section is devoted to the experimental results. In Sub-
section 3.1 the impact of the currently used IOR technique on
the exploitation efficiency of the Iran's offshore oil reservoirs
is studied. In Subsection 3.2 the impact of the proposed model
without the model update sub‐package on the exploitation
improvement of the oil reservoir of Section 2 is studied.
Subsection 3.1 is devoted to the impact of the proposed model
equipped with the model update sub‐package on the exploi-
tation improvement. In Subsection 3.4, we compare the per-
formances of the proposed model (with and without the model

F I GURE 4 Left figures: The porosity and permissibility (in the x direction) of the actual representation of the reservoir of the case study. Right figures: The
porosity and permissibility (in the x direction) of the simplified mathematical model.

TABLE 2 Reservoir properties.

Symbol Description Value Unit

cr Rock compressibility 10−6 Pa−1

ρo Oil density 770 Kg
m3

ρw Water density 1000 Kg
m3

co Oil compressibility 10−5 Pa−1

cw Water compressibility 10−5 Pa−1

μo Oil viscosity 5 cp

μw Water viscosity 0.3 cp

no Corey power for oil 2 –

nw Corey power for water 2 –

Go Oil price 30 $/stb

Gw Cost for separating water from oil 7 $/stb

Gwi Cost for injecting water 7 $/stb

d Discount factor 0.1 –
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update sub‐package) with the performance of the available
IOR technique.

3.1 | The impact of the available Improved
Oil Recovery technique

In the available IOR technique the injection NPV is solved
once based on the primary mathematical model and the
computed fixed valued injection rates are applied to reservoir
until in the next comprehensive study of reservoir (it takes 3–
5 years), the reservoir model is updated and based on the new
model the fixed valued injection rates are updated. Figure 5
illustrates the injection NPV when the available IOR technique
is applied to the reservoir of the case study. In this technique,
model update is not used and the simplified mathematical
model of Figure 2 (the primary mathematical model) is used to
maximise the cost functional (6) subject to the mathematical
model of Figure 2 and the operational constraints in order to
obtain the optimal fixed valued injection rate. Note that this
optimisation is performed off line and then the optimal fixed
valued injection rate is applied to the actual representation of
Figure 3 for the reservoir of the case study to obtain the red
curve of Figure 5. In comparison, in the proposed OR‐based
decision system, the optimisation is repeated every month
based on the updated model for the reservoir; therefore, the
output within the time frame of two successive comprehensive
studies is a multi‐valued injection rate. Figure 5 for the IOR ‐
based technique illustrates that the maximum value for the
injection NPV is achieved at the day 360. After that day the
injection NPV has a decreasing trend and, therefore, there is
no gain in exploitation from the reservoir. Hence, at the day
360 the reservoir is abandoned. Table 3 summarises the main

features of this technique and Table 4 illustrates the total
amount of the oil and water produced from each production
well before the reservoir is abandoned. Figure 6 illustrates the
daily injection rate and the daily total production rates of oil
and water from the reservoir when the available IOR technique
is used for this reservoir.

Remark III. 1 Figure 5 also illustrates the impact of the
simplified model of Figure 2 in the IOR technique, which is an
open loop control strategy. In particular, the blue curve rep-
resents the NPV when the simplified model is an exact rep-
resentation of the true dynamics of reservoir. As it is clear
from Figure 5, even this unrealistic assumption, does not result
in a significant improvement in the NPV compared with the
other more realistic case (illustrated by the red curve).

3.2 | The impact of the closed loop OR‐
based decision system without the model
update sub‐package

Figure 7 illustrates the injection NPV when the OR‐based
decision technique without the model update sub‐package is
applied on the reservoir of the case study. Here, model update
is not used and the simplified mathematical model of Figure 2
is used to maximise the cost functional (8) subject to the
mathematical model of Figure 2 and the operational con-
straints to obtain the optimal multi‐valued injection rate. Note
that in order to perform this receding horizon optimal control
strategy, the measurements from the actual representation of
Figure 3 for the reservoir of the case study is used. Therefore,
this optimisation is online. This figure illustrates that the
maximum value for the injection NPV is achieved at the day
120. After that the injection NPV has a decreasing trend and,
therefore, there is no gain in exploitation from the reservoir.
Hence, at the day 120 the reservoir is abandoned. This figure
includes two curves. The red curve is the injection NPV for the

F I GURE 5 The comparison of the Net Present Values (NPVs) when
the Improved Oil Recovery (IOR) technique is implemented. Red curve:
the Net Present Value (NPV) when the optimal injection rate is applied to
the actual representation of the reservoir. Blue curve: when it is applied to
the simplified mathematical model of the reservoir.

TABLE 3 The main features of the Improved Oil Recovery (IOR)
technique.

Tmax (days) NPVmax(b$)
Total water
injected (Mstb)

360 3.19 552.55

TABLE 4 The total amount of the water and oil produced from each
production well when the Improved Oil Recovery (IOR) technique is
implemented.

Well Water (Mstb) Oil (Mstb)

P1 70.22 67.91

P2 62.80 75.33

P3 56.48 81.65

P4 65.13 72.99
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actual representation of the reservoir of the case study, and the
blue curve is the injection NPV when the optimal injection rate
is applied to the simplified mathematical model. That is, in this
case it is assumed that the mathematical model used for the
optimisation is the exact representation of the reservoir
behaviour. As it is clear from Figure 7, these two curves are
almost identical. This indicates that although in this case the
optimal injection rate is obtained using the simplified mathe-
matical model, due to the existence of the closed loop feed-
back, the impacts of the model miss‐match between the
reservoir actual behaviour and the mathematical model is

almost compensated. This also indicates that for the reservoir
of the case study, there is not any performance improvement if
we use the model update algorithm as the closed loop feedback
very well compensates the effects of the miss‐match between
the reservoir actual behaviour and the simplified mathematical
model of the reservoir. This will be illustrated in more details in
the next section. It is also interesting to note that the NPV of
the actual representation outperforms the NPV of the ideal
case (when the simplified mathematical model is the actual
representation of the reservoir dynamics). This is due to the
existence of non‐zero off diagonal terms in the tensor matrix
of the permeability coefficient of each grid of the actual rep-
resentation. Table 5 summarises the main features of this
technique and Table 6 illustrates the total amount of the oil and
water produced from each production well before the reservoir
is abandoned. Figure 8 illustrates the daily injection rate and
the daily total production of the oil and water produced from
the reservoir when the proposed OR‐based decision technique
is used for this reservoir.

3.3 | The impact of the closed loop OR‐
based decision system equipped with the
model update sub‐package

Figure 9 illustrates the injection NPV when the OR‐based
decision technique equipped with the model update sub‐
package is implemented on the reservoir of the case study.
Here, the model update sub‐package is used to estimate the
state variables and the porosity and permeability vector using
the mathematical model of Figure 2, which is used to generate
M ensembles of the state vector and the porosity and perme-
ability vector and the measurements are obtained online from
the actual representation of the reservoir of the case study.
This online estimation is used to maximise the cost functional

F I GURE 6 The daily injection rate and the
daily total production rates of the oil and water
produced from the reservoir when the Improved Oil
Recovery (IOR) technique is implemented.

F I GURE 7 The comparison of the NPVs when the proposed IIoT‐
based control technique without the model update sub‐package is
implemented. Red curve: the Net Present Value (NPV) when the optimal
injection rate is applied to the actual representation of the reservoir. Blue
curve: when it is applied to the simplified mathematical model of the
reservoir.
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(8) subject to the operational constraints in order to obtain the
optimal injection rate online. Note that in order to perform
this estimation and subsequently optimisation, the measure-
ments from the actual representation of Figure 3 for the
reservoir of the case study is used. This figure illustrates that
the maximum value for the injection NPV is also achieved at
the day 120. After that the injection NPV has a decreasing
trend and, therefore, there is no gain in exploitation from the
reservoir. Hence, at the day 120 the reservoir is abandoned.
Table 7 summarises the main features of this technique and
Table 8 illustrates the total amount of the oil and water pro-
duced from each producing well before the reservoir is aban-
doned. Figure 10 illustrates the daily injection rate and the daily
total production of the oil and water produced from the
reservoir when the OR‐based decision technique equipped
with the model update sub‐package is applied to this reservoir.

The above figures and tables show that there is no gain in
using the OR‐based decision system equipped with the model
update sub‐package in terms of the exploitation efficiency
respect to the OR‐based system without this sub‐package for
the exploitation of Iran's offshore oil reservoirs. This is quite
different from the available results in the literature (e.g. Refs.[9,
10]). As it is shown in Figure 7 when we use the OR‐based
decision system without the model update sub‐package
although the optimal injection rate is obtained using the
simplified mathematical model, due to the existence of the

F I GURE 8 The daily injection rate and the
daily total production rates of the oil and water
produced from the reservoir when the OR‐based
decision technique is implemented.

TABLE 5 The main features of the IIoT‐based control technique.

Tmax (days) NPVmax(b$)
Total water
injected (Mstb)

120 4.72 672.97

TABLE 6 The total amount of the water and oil produced from each
production well when the IIoT‐based control technique is implemented.

Well Water (Mstb) Oil (Mstb)

P1 75.2 85.26

P2 74.79 100.72

P3 58.96 107.95

P4 80.61 89.34

F I GURE 9 The Net Present Value (NPV) when the optimal injection
rate obtained from the OR‐based decision technique equipped with the
model update sub‐package is applied to the actual representation of the
reservoir.
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closed loop feedback, the impacts of the model miss‐match
between the reservoir actual dynamic and the mathematical
model is almost completely compensated. This means that no
performance improvement can be obtained using the model
update algorithm as the closed loop feedback strategy very well
compensates for the effects of the miss‐match between the
reservoir actual behaviour and the simplified mathematical
model for the reservoir.
In order to evaluate the performance of the ensemble

Kalman filter, Figure 11 illustrates the estimation of the daily
production of the water from the production wells and
Figure 12 illustrates the estimation of the daily production of
the oil from these wells. Note that for the ensemble Kalman
filter, we set M = 100, R = 0.0027.I, where I is the identity
matrix with the appropriate dimension and Q is a diagonal

matrix with different elements. Note also that we are able to
measure the daily production of water and oil from the pro-
duction wells; and therefore, we are able to compare the ac-
curacy of the estimation provided by the ensemble Kalman
filter. As it is clear from these figures, the ensemble Kalman
filter provides accurate estimations for these parameters that
are measured.

Remark III. 2 The permeability and porosity coefficients
mainly change by the reservoir pressure [23]. Therefore, as the
available IOR technique and the proposed OR‐based decision
technique implement a pressure stabilisation method, these
parameters do not significantly change during the exploitation
period of the reservoir. Hence, if the simplified model of
Figure 2 is an exact approximation of the reservoir dynamics,
with or without the model update algorithm it predicts these
coefficients with high accuracy during the life time of the
reservoir.

3.4 | Comparison

Table 9 compares the performances of the proposed closed
loop OR‐based decision system equipped with and without the
model update sub‐package with the performance of the
available IOR technique.
From this table it follows that the closed‐loop OR‐based

decision system without the model update sub‐package can
increase the oil production by 47.96% and reduce the exploi-
tation period by 66.67% compared with the available IOR
technique. This is consistent with the available results in the
literature (e.g. Ref. [3] ‐ (Lorentzen et al., 2006)). The afore-
mentioned references also show that the optimal multi‐valued
injection rate technique can increase the oil production by 30%

TABLE 7 The main features of the OR‐based decision technique
equipped with the model update sub‐package.

Tmax (days) NPVmax(b$)
Total water
injected (Mstb)

120 4.72 672.97

TABLE 8 The total amount of the water and oil produced from each
production well when the OR‐based decision technique equipped with the
model update sub‐package is implemented.

Well Water (Mstb) Oil (Mstb)

P1 74.12 84.22

P2 76.15 101.92

P3 58.57 107.57

P4 80.85 89.54

F I GURE 1 0 The daily injection rate and the
daily total production of the oil and water produced
from the reservoir when the OR‐based technique
equipped with the model update sub‐package is
implemented.

NAGHNEH ET AL. - 83

 23983396, 2024, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cps2.12068 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [20/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



from 2D reservoirs. However, unlike the available results in the
literature (e.g. Ref. [3] ‐ (Lorentzen et al., 2006)) for Iran's
offshore reservoirs (3D reservoirs), the proposed closed loop
OR‐based decision system can increase the total water injected.
Under the condition simulated, the total water injected using

the proposed OR‐based decision system has increased by
21.79% compared with the available IOR technique. This
water is mainly obtained from the reservoir, which is a fossil-
ised salty water. It can be only used for the injection to the
reservoir. Nevertheless, this result is different from the results

F I GURE 1 1 Blue: the estimated value. Red: the
actual value.

F I GURE 1 2 Blue: the estimated value. Red: the
actual value.
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reported for 2D reservoirs. [3] ‐ (Lorentzen et al., 2006)
illustrate a reduction in the water injected up to 25%. From the
above table it also follows that, unlike the available results in
the literature for 2D reservoirs (e.g. Ref. [9], (Brouwer et al.,
2004)), there is no gain in terms of the exploitation efficiency
in using the OR‐based decision system equipped with the
model update sub‐package compared with the case of without
this sub‐package when exploiting from Iran's offshore oil
reservoirs, which have many faults and limited injection and
observation points.
As shown above, the proposed technique while signifi-

cantly enhances the exploitation efficiency of oil reservoirs
with respect to the available IOR technique in terms of the oil
production and the exploitation time and therefore the re-
covery factor, it is easily implementable due to its software
based nature. To implement the proposed model, purchasing
extra and expensive equipment is not required. We just need to
supply the model with the daily production from reservoir and
at the end of the month tune the injection rates of the injection
wells based on the optimal injection rates computed by the
model. Obviously, after tuning the injection rate, we can supply
the model with the value of the tuned injection rates. In this
way, the injection rates are also measured by the model. In
other words, the optimal measurable injection rates are the
outputs of the OR‐based decision system. The optimal injec-
tion rates are computed based on the updated model for
reservoir using a non‐linear model predictive algorithm so that
they sweep oil towards production wells, resulting in higher
production and, therefore, higher efficiency and recovery fac-
tor very cost effectively. The non‐linear model predictive
controller is subject to the operational constraints including the
minimum and maximum capacities of the production and in-
jection wells. Considering these operational constraints, mini-
mises the risk of the implementation of the proposed OR‐
based decision system. This is another positive aspects of the
proposed model. The updated reservoir model provided by the
model is also very helpful for top managers to come up with a
better long terms reservoir planning and management.

4 | CONCLUSION AND DIRECTIONS
FOR FUTURE RESEARCH

This paper introduced an application of the closed loop OR‐
based decision system for enhancing the oil production and
hence the recovery factor of the offshore oil reservoirs in the

middle‐east region. It has been shown that using the proposed
OR‐based decision system, the amount of the recoverable oil
can be increased up to 47.96%; therefore, this system can
significantly improve the middle‐east oil production and the oil
recovery factor. Also, this paper has shown that the proposed
OR‐based decision system can decrease the exploitation time
by 66% respect with the available techniques. This is very
important when exploiting from the reservoirs shared with
other countries. For example, the Iran's offshore oil reservoirs
are mainly shared with neighbouring countries; therefore, it is
important for this country to deplete the shared reservoirs
before neighbouring countries deplete them. The advantages
of the proposed model respect with the other available tech-
niques for enhancing the oil recovery factor, such as the smart
well technology [25] is the ease of implementation with a very
low cost. Moreover, it was shown in this paper that for the
middle‐east offshore oil reservoirs, which are three‐
dimensional and include faults with a few vertical production
wells and few injection wells, there is no gain in terms of the
exploitation efficiency when the ensemble Kalman filter is
implemented. This is quite different from the available results
in the literature given for the two‐dimensional reservoirs (i.e.
when the reservoir is not thick) equipped with horizontal in-
jection and production wells with many outlets and observa-
tion points.
In this paper, a very small part of Iran's offshore oil res-

ervoirs were simulated. Nevertheless, the middle‐east and in
particular Iran's offshore oil reservoirs are very large scale
reservoirs; therefore, a centralised computer server proposed
in this paper will not be able to perform the computation
required for proper tuning of the settings of the injection
valves in real time. In order to overcome this drawback, one
way is to implement the fog and edge computing concepts and
to exploit the computers of the separator sites (the measure-
ment points) to distribute the computational load of the cen-
tralised computer server to the distributed computers. In this
setup, the computation layer is integrated with the field layer
forming a Cyber Physical System (CPS). It has been shown in
the literature (e.g. Refs.[2, 26–28]) that such an integration
results in a real time computation for very large scale closed
loop OR‐based decision systems via parallel computation and
consensus between distributed computing devices. How to
develop such a CPS for the oil reservoirs with the objective of
the enhancing the oil recovery factor and the oil production is
an interesting research direction, which is currently under way
in our research group.

TABLE 9 The comparison between the performances of the available Improved Oil Recovery (IOR) technique and the proposed closed loop OR‐based
decision technique equipped with and without the model update sub‐package.

Technique NPVmax (b$) EP(days) TWI(M STB) TWP(M STB) TOP(M STB)

A 3.19 360 552.55 254.65 297.9

B 4.72 120 672.97 289.7 383.27

C 4.72 120 672.97 289.7 383.27

Abbreviations: EP: Exploitation Period, TWI: Total Water Injected, TWP: Total Water Produced, TOP: Total Oil Produced, A: The available IOR, B: The OR technique without the
model update sub‐package, C: The OR technique with the model update sub‐package.
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