
Robust Stabilizing Scheme for Uncertain Systems Controlled Over
Limited Capacity Additive White Gaussian Noise Channels

Alireza Farhadi and Charalambos D. Charalambous

Abstract— In this paper we propose an encoding scheme
and a stability scheme for reliable data reconstruction and
robust stability of uncertain dynamical systems controlled over
Additive White Gaussian Noise (AWGN) channels subject to
limited capacity constraints. The uncertainty in the dynamical
system is described by a relative entropy constraint. Specifically,
the design of an encoder, decoder and controller that stabilize
an uncertain system subject to the sum quadratic uncertainty
description, is considered.

I. INTRODUCTION

In this paper, we are concerned with the
control/communication system of Fig. 1. The
control/communication system of Fig. 1 is defined on
a complete probability space (Ω,F(Ω), P ) with filtration
{F}t≥0; t ∈ N+

4
= {0, 1, 2, ...}, where Yt, Zt, Z̃t, Ỹt and

Ut, t ∈ N+ are Random Variables (R.V.’s) denoting the
source message (observations produced by sensors from
the uncertain controlled dynamical system), channel input
codeword, channel output codeword, the reproduction of
the source message, and the control input to the source,
respectively. The information source is the output of an
uncertain controlled dynamical system with input Ut, output
Yt and state variables Xt. Throughout, it is assumed that the
controlled dynamical system is subject to certain unknown
terms (known as perturbed terms) which are unknown;
but they belong to certain known classes. Different values
for the perturbed terms correspond to different controlled
dynamical systems. In this paper we are interested to those
uncertain controlled dynamical systems which are described
by a relative entropy constraint.
The control/communication system of Fig. 1 can correspond
to tele-operation systems of space exploration devices. In
such systems the communication from exploring device to
controller (located at the base station) is subject to limited
capacity constraint due to normally limited power supply
of the exploring device; while the communication from
controller to exploring device is unconstraint. Furthermore,
in such applications, the exploring device is normally
supposed to work in an unknown/uncertain environment.
That is, the information source is also subject to uncertainty.
The control/comunication systems similar to the
control/communication system of Fig. 1 have been
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Fig. 1. Control/communication system subject to uncertainty in the source
of information

considered in many places (e.g., [1]-[13]) to address reliable
data reconstruction (known as observability in the literature)
and stability questions of the dynamical systems which are
controlled over limited capacity communication channels.
The objective of this paper is to design an encoder, decoder
and controller which guarantee uniform mean square
reconstruction of Yt by Ỹt and robust stability of the
uncertain systems.
The problem of uniform observability and robust stability
of fully observed uncertain dynamical systems subject to an
uniformly bounded disturbance input is considered in [4],
[9], [12], [13]. This paper complements the already existing
results in the literature since it addresses similar questions
for a class of dynamical systems which is described by a
relative entropy constraint. This uncertainty description is a
generalization of the sum quadratic uncertainty description
considered in [14], [15], [16]. Sum quadratic uncertainty
description includes uniformly bounded uncertainty
description as a special case.

This paper is organized as follows. In Section II, the
problem formulation is given. In Section III, a robust
stabilizing scheme for stability of the fully observed
uncertain dynamical systems is presented. Subsequently, in
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Section IV an encoding scheme is proposed that guarantee
uniform reliable data reconstruction when the capacity is as
minimum as possible. Finally, in Section V we conclude
the paper.

II. PROBLEM FORMULATION

In this paper, we are concerned with the
control/communication system of Fig. 1. Throughout,
sequences of R.V.’s are denoted by Y T 4

= (Y0, Y1, ..., YT )
for T ∈ N+ and log(.) denotes the natural logarithm. A
stochastic kernel P (dF ; x) is a mapping P : Â× Ā → [0, 1]
which satisfies i) For every x ∈ Ā, the set function P (:;x)
is a probability measure on Â, and ii) For every F ∈ Â,
the function P (dF ; .) is Ā-measurable ((Ā, Ā), (Â, Â) are
measurable spaces). σ{.} denotes σ-algebra, Id denotes
(d× d) identity matrix and

′
denotes matrix transpose.

The different blocks of Fig. 1 are described below.
Information Source. The information source is the output
of an uncertain controlled dynamical system with input Ut

and output Yt. Throughout, it is assumed that the controlled
dynamical system is subject to perturbed terms which are
unknown; but they belong to certain known classes. Let P
denote the probability measure associated with the uncertain
controlled dynamical system. In this paper we are interested
to those uncertain systems which are described by the
following relative entropy constraint.

P ∈ DSU (Π)
4
=

{
P ;

1
T

H(P ||Π) ≤ Rc

+EP [
1

2T

T−1∑
t=0

H
′
tMHt]

}
(1)

where H(.||.) is the relative entropy [17], P (dXT−1 ×
dY T−1) and Π(dXT−1 × dY T−1) are the probability mea-
sures associated with the uncertain system and the nominal
system (i.e., the controlled dynamical system in the absence
of the perturbed terms), respectively, Rc is a non-negative
scalar, Ht ∈ <d is the signal to be controlled, M = M

′ ∈
<d×d is positive semi-definite, and EP [.] is the expectation
with respect to the measure P .
The relative entropy H(P ||Π) can be thought of as a measure
of the difference between the nominal probability measure Π
and the perturbed probability measure P . Typical perturba-
tion allowed under the above relative entropy constraint are
the perturbations in the mean of the measure Π [16]. One
example of such perturbations is given by the following class
of Gauss Markov systems.

(Ω,F(Ω), P ; {Ft}t≥0) :{
Xt+1 = AXt + NUt + BWt + BW̄t, X0 = X,

Yt = Ht, Ht = Xt
(2)

where Xt ∈ <d, Ut ∈ <o, Wt ∈ <m, W̄t ∈ <m, Yt ∈ <d,
Ht ∈ <d, X0 ∼ N(x̄0, V̄0), Wt is Independent Identically
Distributed (i.i.d.) ∼ N(0,ΣW ), ΣW > 0, and W̄t is the
perturbed noise random process which is {σ{Wl}; l ≤ t−1}
adapted.

The nominal system associated with the above uncertain
system is the following system.

(Ω,F(Ω),Π; {Ft}t≥0) :{
Xt+1 = AXt + NUt + BWt, X0 = X,

Yt = Ht, Ht = Xt
(3)

It can be shown that for the uncertain system (2)
with the corresponding nominal system (3), H(P ||Π) =
1
2EP

[∑T−2
t=0 W̄

′
t Σ

−1
W W̄t

]
[16]. That is, the relative entropy

constraint (1) holds for the uncertain system (2) with the
nominal system (3), provided the following sum quadratic
constraint holds.

1
2T

EP [
T−2∑
t=0

W̄
′
t Σ

−1
W W̄t] ≤ Rc

+EP [
1

2T

T−1∑
t=0

H
′
tMHt]. (4)

Communication Channel: The communication channel is
an AWGN channel with channel input Zt, channel output
Z̃t and the channel noise W̃t which is i.i.d. ∼ N(0,Wc).
This communication channel at time t is subject to the
power constraint EP [Z

′
tZt] ≤ Pt, and it is described by

Z̃t = Zt + W̃t where Zt, Z̃t, W̃t ∈ <d.
Encoder: The encoder at any time t ∈ N+ is modeled by
a stochastic kernel P (dZt; yt, ut−1, z̃t−1).
Decoder: The decoder at any time t ∈ N+ is modeled by a
stochastic kernel P (dỸt; z̃t, ut−1).
Controller: The controller at any time t ∈ N+ is modeled
by a stochastic kernel P (dUt; z̃t−1, ut−1).

In this paper, we are concerned with the following observ-
ability and stability criteria.

Definition 2.1: (Uniform Mean Square Observability).
Consider the control/communication system of Fig. 1 de-
scribed by a class of dynamical systems. For a finite Dv ≥ 0,
the system is uniformly reconstructed using a mean square
error criterion if there exist a control sequence, an encoder
and decoder such that

lim
T→∞

sup
P∈DSU (Π)

1
T

T−1∑
t=0

E||Yt − Ỹt||2 ≤ Dv. (5)

Definition 2.2: (Robust Stability). Consider the con-
trol/communication system of Fig. 1 described by a class of
dynamical systems. Let Yt = Ht +Γt where Ht is the signal
to be controlled and Γt is a function of the measurement
noise and the perturbed terms. For a finite Dv ≥ 0, the
system is stabilizable if there exists an encoder, decoder and
controller such that

lim
T→∞

sup
P∈DSU (Π)

1
T

T−1∑
t=0

E||Ht||2 ≤ Dv. (6)

The objective of this paper is to design an encoding scheme
and a stability scheme for uniform mean square observability
and robust stability (as described above) when the capacity
for uniform observability is as minimum as possible.
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Fig. 2. Control/communication system subject to uncertainty in the source

III. ROBUST STABILITY OF AN UNCERTAIN FULLY
OBSERVED SYSTEM

In this section we are concerned with the
control/communication system of Fig. 2. In Fig. 2,
the source is described by the fully observed uncertain
systems described via the relative entropy constraint (1)
with the following nominal system.

(Ω,F(Ω),Π; {Ft}t≥0) :{
Xt+1 = AXt + NUt + BWt, X0 = X,

Yt = Ht, Ht = Xt
(7)

where Xt ∈ <d, Ut ∈ <o, Wt ∈ <m, Yt ∈ <d, Ht ∈ <d,
A ∈ <d×d, N ∈ <d×o, B ∈ <d×m, X0 ∼ N(x̄0, V̄0),
Wt i.i.d. ∼ N(0, ΣW ) and ΣW > 0. The encoder consists
of a pre-encoding scheme that produces Kt = Yt − Ŷt

where Ŷt
4
= X̂t ∈ <d is the mean square estimation of the

observations process in the presence of uncertainty, in which
this estimation is obtained by the knowledge of U t−1 and
Z̃t−1 at the encoder (see Fig. 2). Then, the encoder scales
Kt by αt ∈ <d×d and produces Zt = αtKt.
The decoder scales the channel outputs by γt ∈ <d×d

and produces K̃t = γtZ̃t; and subsequently, it produces
Ỹt = K̃t + Ŷt.
In this section we propose a stabilizing controller for robust

stability of the uncertain systems. In the next section, the
parameters αt and γt are chosen such that the process Kt is
matched to the AWGN Channel (as described in [18]).
At the communication end, the process K̃t can be viewed as
the observations process of the partially observed uncertain
dynamical systems described via the relative entropy con-
straint (1) with the following nominal system.

(Ω,F(Ω),Π; {Ft}t≥0) :{
Xt+1 = AXt + NUt + BWt, X0 = X,

K̃t = γtαtHt − γtαtŶt + γtW̃t,
(8)

Next, consider the following pay-off functional

J = lim
T→∞

1
2T

T−1∑
t=0

EP [X
′
tXt + U

′
tRUt], (9)

where R = R
′ ∈ <o×o > 0 and Ut ∈ GU

t−1 =
σ{K̃t−1, U t−1}. The objective is to find a control sequence
that minimizes the maximum of the pay-off functional (9)
over the class (1) (the Mini-max problem). Following similar
methodology used in [16] by implementing the Legendre-
Fenchel transformation [19], we can convert the Mini-max
problem to an equivalent partial information, risk sensitive
optimal control problem. Subsequently, the optimal con-
troller is given by the followings.

Ut = −R−1N
′
(Π−1

∞ + NR−1N
′ − BΣW B

′

τ
)−1A(Id

−Σ∞Π∞
τ

)−1X̂t (10)

X̂t+1 = AX̂t + NUt + K∞K̃t + A(Σ−1
∞

+α
′
∞W−1

c α∞ − Id

τ
−M)−1(

Id

τ
+ M)X̂t, X̂0 = x̄0,

K∞ = A(Σ−1
∞ + α

′
∞W−1

c α∞ − Id

τ
−M)−1

.α
′
∞W−1

c α∞,

(11)

where Π∞ and Σ∞ are the solutions to the following
indefinite Algebraic Riccati equations.

Π∞ = A
′
Π∞A−A

′
Π∞

(
Π∞ + (

BΣ∞B
′

τ
−NR−1N

′

)−1
)−1

Π∞A + Id + τM

Σ∞ = AΣ∞A
′ −AΣ∞

(
Σ∞ + (

1
τ

Id + M

−α
′
∞W−1

c α∞)−1
)−1

Σ∞A
′
+ BΣW B

′
. (12)

in which Π∞ and Σ∞ must satisfy the following conditions

Σ−1
∞ + α

′
∞W−1

c α∞ − Id

τ
−M > 0,

Σ∞ > 0

Π−1
∞ − BΣW B

′

τ
> 0

Π−1
∞ − Σ∞

τ
> 0 (13)
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Furthermore, τ > 0 is the lagrange multiplier which mini-
mizes D∗ given as follows

D∗ = 2τ( lim
T→∞

Ṽτ

T
+ Rc),

lim
T→∞

Ṽτ

T
= −1

2
log(det(Id − (

Id

τ
+ M)Σ∞))

−1
2

log det Θ∞, (14)

where Θ∞ = Id − 1
τ K∞(γ∞Wcγ

′
∞ + γ∞α∞(Σ−1

∞ − Id

τ −
M)−1α

′
∞γ

′
∞)K

′
∞(Π−1

∞ − Σ∞
τ )−1.

Please note that D∗ is the value of the cost functional
(9) subject to the minimizing control sequence (10) that
minimizes the maximum of the pay off functional (9) over
the class (1).

Remark 3.1: i) The proposed stability scheme guarantees
stability in the form of limT→∞ 1

T

∑T−1
t=0 EP ||Xt||2 ≤ Dc

v

(Dc
v ≥ D∗, when R is small) for all uncertain controlled

dynamical systems which belong to the relative entropy
constraint (1) with the nominal system (7).
ii) Rc = 0 and M = 0 (i.e., the case without uncertainty)
correspond to the case where τ → ∞. For this case the
results given in (10)-(12) are reduced to the standard Linear
Quadratic Gaussian (LQG) results; and αt and γt are given
in [11].
iii) Since the uncertain system (2) subject to the sum
quadratic constraint (4) is a sub-class of the relative entropy
constraint (1) with the nominal system (7), then the proposed
stability scheme also stabilizes such uncertain system.

IV. ENCODING SCHEME FOR UNIFORM OBSERVABILITY

In the previous section we proposed a stabilizing scheme
that stabilizes the uncertain systems described via the relative
entropy constraint (1) with the nominal system (7). In this
section for the control/communication system of Fig. 2
described by such uncertain systems, we find αt and γt

such that the uniform mean square observability of Yt by
Ỹt up to the distortion value Dv > 0, is guaranteed when
the capacity is as minimum as possible. For Simplicity in
analysis we consider the case of Yt ∈ <. The vector case
is treated similarly. Please note that an example of uncertain
systems described via the relative entropy constraint (1) with
the nominal system (3), is the uncertain system (2) subject
to the sum quadratic constraint (4).
Here, we use the source-channel matching technique [18].
That is, we find αt and γt such that the stochastic kernel
from Kt to K̃t behaves like the minimizing kernel of the
maximum rate distortion (i.e., Rsup

T (Dv), see [20], (10) for
definition).
The process Kt ∈ < is an orthogonal process; and the
process Kt associated with the maximum entropy (and
subsequently maximum rate distortion) has the following
distribution Kt ∼ N(0,Σt), where Σt in the uniform mean
square estimation error in estimation of Xt by Ŷt = X̂t when
the system is subject to uncertainty. Σt is the solution of the

following indefinite Riccati equation.

Σt+1 = AΣtA−AΣt

(
Σt + (

1
τ

+ M − α2
∞

Wc
)−1

)−1

.ΣtA,

Σ0 = V̄0. (15)

Subsequently, minimizing kernel associated with maximum
rate distortion is given by

P ∗(dK̃T−1; kT−1) =
( T−1∏

t=0

q∗
K̃t|Kt

)
dK̃T−1,

q∗
K̃t|Kt

∼ N(ηtkt, ηtDv), ηt = 1− Dv

Σt
, (16)

where Dv < mint∈N+ Σt.
Following the solution (16), αt and γt must be chosen as
follows

αt =
√

ηtWc

Dv
, γt =

√
Dvηt

Wc
, ηt = 1− Dv

Σt
. (17)

Subsequently, it is easily shown that EP (Kt − K̃t)2 ≤ Dv

over all values for the perturbed terms (and subsequently
EP (Yt−Ỹt)2 ≤ Dv). Furthermore, under assumption that the
indefinite Riccati equation (15) converges to the associated
indefinite Riccati equation (12) (conditions under which
this convergence is guaranteed have been discussed in [21],
Chapter 14), then C = Hr(K)− 1

2 loge(2πeDv), where C is
the capacity of the AWGN channel and Hr(K) is the robust
entropy rate of the process Kt (see [10], Definition 2.1).

Remark 4.1: Following the necessary condition presented
in ([20], Theorem 2.4) C = Hr(K) − 1

2 log(2πeDv) is the
minimum capacity for uniform mean square observability of
the process Kt by K̃t, up to the distortion value Dv .
Next, consider the control/communication system of Fig. 2
described by the uncertain system (2) subject to the sum
quadratic constraint (4). The observations process of system
(2) is written as follows.

Yt = AtX0 +
t−1∑

i=0

At−1−iBWi +
t−1∑

i=0

At−1−iBW̄i

+
t−1∑

i=0

At−1−iNUi, 0 ≤ t ≤ T − 1, (18)

where W̄t belongs to the following class

{
{W̄t}T−2

t=0 ;EP [
1

2T

T−2∑
t=0

(W̄
′
t Σ

−1
W W̄t)] ≤ Rc

+EP [
1

2T

T−1∑
t=0

(Y
′
t MYt)]

}
. (19)

But, by the knowledge of the control sequence U t−1 at
the decoder, the last term in (18) (i.e.,

∑t−1
i=0 At−1−iNUi)

is reconstructed perfectly at the communication end. Thus,
since U t−1 is also available in the encoder, the problem of
reliable data reconstruction of Yt is reduced to the equivalent
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problem of reliable data reconstruction of Ȳt given by the
following.

Ȳt = AtX0 +
t−1∑

i=0

At−1−iBWi +
t−1∑

i=0

At−1−iBW̄i. (20)

But, Ȳt is the outputs of the uncontrolled analogous system,
that is, the following system.

(Ω,F(Ω), P ; {Ft}t≥0) :{
Xt+1 = AXt + BWt + BW̄t, X0 = X,

Ȳt = Ht, Ht = Xt
(21)

where for this system, the perturbed term W̄t belongs to the
following class.

{
{W̄t}T−2

t=0 ; EP [
1

2T

T−2∑
t=0

(W̄
′
t Σ

−1
W W̄t)] ≤ Rc

+EP [
1

2T

T−1∑
t=0

(Ȳ
′
t MȲt)]

}
. (22)

But, this class is independent of the control sequence.
Thus, without loss of generality in addressing the uniform
observability of the control/communication system of Fig.
2 described by the uncertain system (2) subject to the sum
quadratic constraint (4), we can consider the uncontrolled
uncertain system (21) subject to the sum quadratic constraint
(22).
In ([20], Theorem 4.1) the robust entropy rate of the obser-
vations process of the uncontrolled system (21) subject to
the sum quadratic constraint (22) has been found, in which
we summarize this result in the following theorem.

Theorem 4.2: Consider the uncertain system (21) subject
to the sum quadratic constraint (22). Let for some s ≥
0, i) B

′
(BΣW B

′
)−1B − (1 + s)Σ−1

W < 0, ii) (A,B) is
controllable, iii) A and B

′
(BΣW B

′
)−1B − (1 + s)Σ−1

W are
invertible, and iv) β(η) > 0 for some η such that |η| = 1
where β(η) is the rational matrix function given by

β(η) = B
′
(BΣW B

′
)−1B − (1 + s)Σ−1

W + B
′
(η−1Id

−A
′
)sM(ηId −A)−1B, s ≥ 0. (23)

Then

Hr(Ȳ) =
d

2
log(2πe) +

1
2

log det(BΣW B
′
)

+min
s≥0

{sRc +
1
2
trac(B

′
Ξ∞BΣW )} (24)

where Ξ∞ is the solution of the following Algebraic Ric-
cati equation appearing in the H∞ estimation and control
problem

Ξ∞ = A
′
Ξ∞A−A

′
Ξ∞B[B

′
(BΣW B

′
)−1B

−(1 + s)Σ−1
W + B

′
Ξ∞B]−1B

′
Ξ∞A + sM.

(25)
Please note that since the Algebraic Riccati equation (25) is
quadratic, it has two symmetric solutions. Nevertheless, in
(24) the solution under which {sRc + 1

2 trac(B
′
Ξ∞BΣW )}

is bigger, must be used. Please note that conditions ii-iv

guarantee that the Algebraic Riccati equation (25) has real
solutions. These conditions just need to be valid for s ≥ 0
which minimizes {sRc+ 1

2 trac(B
′
Ξ∞BΣW )}. Furthermore,

condition i is critical for the validity of the result. Similarly,
this condition just need to be valid for s ≥ 0 which
minimizes {sRc + 1

2 trac(B
′
Ξ∞BΣW )}. Please note that

Condition i is invalidated for M = 0.
Corollary 4.3: The robust entropy rate calculated in The-

orem 4.2 is very useful to determine if the proposed encod-
ing/decoding scheme is optimal. For a given distortion value
Dv if Hr(K) ≈ Hr(Ȳ), then from the necessary condition
presented in ([20], Theorem 2.4) applied to the process Ȳt;
and from the proposed encoding scheme follows that the
capacity C = Hr(K) − 1

2 log(2πeDv) is also minimum
for uniform observability of the observations process of the
uncertain system (2) subject to the sum quadratic uncertainty
constraint (4).
As we discussed, the condition i of Theorem 4.2 is invali-
dated for M = 0. Subsequently, this theorem can not present
the robust entropy rate when M = 0. Subsequently, in the
following remark we calculate the robust entropy rate when
M = 0.

Remark 4.4: [22] The robust entropy rate of the uncer-
tain uncontrolled systems described via the relative entropy
constraint (1) with M = 0 and the uncontrolled version of
the nominal system (3) (i.e., (3) with Ut = 0) is given as
follows.

Hr(Ȳ) = HS(Ȳ) +
d

2
log(

1 + s∗

s∗
), (26)

where HS(Ȳ) = 1
2 log((2πe)d det(BΣW B

′
)) is the Shan-

non entropy rate of the nominal system; and for a given
Rc ∈ [0,∞), s∗ > 0 is the unique solution of the following
nonlinear equation.

Rc = −d

2
log(

1 + s∗

s∗
) +

d

2s∗
. (27)

It is evident that the robust entropy rate (26) also represents
the robust entropy rate of the system (21) subject to the
sum quadratic constraint (22) when M = 0. This robust
entropy rate is also very useful to determine if the proposed
encoding/decoding scheme is optimal. Following the same
discussion we had in Corollary 4.3 if Hr(K) ≈ Hr(Ȳ), then
the capacity C = Hr(K)− 1

2 log(2πeDv) is also minimum for
the uniform observability of the observations process of the
uncertain system (2) subject to the sum quadratic constraint
(4) when M = 0.

V. CONCLUSION

In this paper for the control/communication system of Fig. 2
described by the uncertain systems characterized via the rela-
tive entropy constraint (1) with the nominal system (3), a sta-
bility scheme and an encoding scheme were proposed for ro-
bust stability in the form of limT→∞ 1

T

∑T−1
t=0 EP ||Xt||2 ≤

Dc
v for all possible values of the perturbed terms. Further-

more, the proposed encoding scheme guaranteed uniform
mean square observability up to the distortion value Dv > 0
when the capacity was as minimum as possible. In the real
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life applications the desired stability criterion (i.e., Dc
v) is

given. This criterion determines the admissible distortion
value (i.e., Dv > 0) from relation Dc

v = D∗ (where D∗

is given by (14) when R is small). Subsequently, by im-
plementing the proposed encoding scheme we have uniform
observability up to the admissible distortion value Dv , while
the capacity is as minimum as possible; and the robust
stability is being guaranteed using the proposed controller.
For the future direction it would be interesting to extend
above results to the uncertain partially observed systems de-
scribed by the relative entropy constraint (1). This extension
can be done following the same methodology used in Section
IV and by finding the robust entropy rate.
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