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Scope and Goals

 Need a basis that determined through signal characteristics
, hot by user prior to the analysis.

 Need transformation that be able to overcome Heisenberg
uncertainty theorem which is restricted resolution.

« Need to noise subtraction.
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Review on transformations

e TRADITIONAL FOURIER

e STFT:

— which allow a signal to be nonstationary as long as it is
piece-wise stationary

e WAVELET

— which can sift out particular signatures from a signal on
a variety of size scales

e HHT
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STFT

. 1 _
General STFT STFT(w, t) =£ ff[t)h{t_ T)e i@ty

« Gabor Transform G.(t, f) :/ E—F{T—fjge—jinj’rI{T) g

—

Gaussian window function minimizes the Fourier uncertainty

principle. (Gabor transform with modifications for multi-resolution
becomes the Morlet wavelet transform).

« Generalized Time-Frequency Distributions
1 r T T . .
— — k¥ \p—lwT—iy(8+t)
Clw,t) o fqo(y,r)x(t+2)x (t 2)6 dédtdy

Overall, the Wigner-Ville distribution gives better time and frequency
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WAVELET

Fur(a,b) = % | Zf(t)w(t —)ae

a

e This was an improvement over STFT because, as the
result of the flexible basis functions, both the high-

frequency and the low-frequency structures could be
analyzed.

e However, a drawback of wavelet analysis is that the
wavelet basis functions, and therefore the structures
being sifted out from the original signal, are chosen a
priori.

e It is possible that the utilized wavelets may or may
not reflect the processes in the analyzed signal.
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Introduction

« HHT is able to extract the frequency components from
possibly nonlinear and nonstationary intermittent signals

« HHT is able to overcome Heisenberg uncertainty theorem
which is restricted resolution of Fourier transformation.

e HHT has been used to study a wide variety of data
including rainfall, earthquakes, heart-rate variability,
financial time series, Lidar data, and ocean waves to name
a few subjects.
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HHT

Hilbert transform is developed the unique and physical
definitions of instantaneous frequency and instantaneous
amplitude of a signal but with different physical explanation of
frequency , generalized from the conventional Fourier

definition.
T x(1)

t—1

Y(t) = H[x(t)] = %f dt

— 00
x(t) arbitrary real signal
Y (t) Hilbert transform of x(t)
Z(t) analytic signal of x(t) in polar coordinate representation
Z(t) = x(t) + iY (t) = a(t)el?®
a(t) = [x2(t) + Y2()]'/?

6(t) = arctan %
w(t) =0'(t)

w(t) is dominated as instantaneous frequency
the instantaneous amplitude
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Mathematical Properties of Hilbert

e Linearity Hf(t) = cHA{t) + cHfb(G).

e Inverse of Hilbert Transform
H?2 =]
H3 =H1

e Derivatives of Hilbert Transform
H(f'®) =H'(f(®)

/i F() f(t)dt =

e Orthogonality

N
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some Hilbert transform Pairs

g(t) a(t)
a191(t) + asga(t); aj,aa € C a191(t) + azga(t)
h(t —to) h(t — to)
h{at); a # 0 sgn(a)h(at)
Lh(1) Shit)
S(t) L
ot _jeit
T jeit
cos(t) sin(t)
rect(t) Lin|(2t +1)/(2t — 1)]
sinc(t) Tsinc?(t/2) = sin(wt/2)sinc(t/2)
1/(1+ ) t/(1+12)
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Transform Fourier
Basis a priori
convolution:
Frequency global,
uncertainty
Presentation o c 9Y”
frequency
Nonlinear no
Non-stationary no
Feature no
Extraction
Theoretical theory
Base complete
Sharif University of Technolog,
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Wavelet
a priori

convolution:

regional,
uncertainty

energy-time-

frequency
no
yes

discrete: no,

continuous:
yes

theory
complete

Comparison b/w transformers (.wiki)

Hilbert
adaptive

differentiation:
local, certainty

energy-time-
frequency

yes
yes

yes

empirical




HHT

e not all functions give “good” Hilbert transforms,
meaning those which produce physical instantaneous
frequencies.

e It is essentially an algorithm which decomposes
nearly any signal into a finite set of functions which
have “good” Hilbert transforms that produce
physically meaningful instantaneous frequencies.

e For this purposes, the empirical mode decomposition
was introduced.
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IMF

1- the number of local extrema and the number of zero
crossings must either equal or differ at most by one;

2- at any point, the mean value of the envelope defined
by local maxima and the envelope defined by local
minima is zero.

Any signal satisfying these two conditions is called an
intrinsic mode function (IMF)
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EMD

EMD is which process is decomposed an arbitrary real signal
into its IMFs by sifting.

1. Deltermine the local extrema (maxima, minima) of the
signal.

2. Connect the maxima with an interpolation function, creating
an upper

envelope about the signal.

3. Connect the minima with an interpolation function, creating
a lower

envelope about the signal.

4. Calculate the local mean as half the difference between the
upper and lower

envelopes.
5. Subtract the local mean from the signal. EXAMPLE

6. Iterate on the residual. .
_ by patrick

a, Flandri
r
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emd.ppt
emd.ppt

Limitations for IF computed through Hilbert
Transform

Data must be expressed in terms of Intrinsic Mode
Function. IMF is only necessary but not sufficient.

Bedrosian Theorem: Hilbert transform of a(t) cos 6(t)
might not be exactly a(t) sin 6(t). Spectra of a(t) and
cos 6(t) must be disjoint.

Nuttall Theorem: Hilbert transform of cos 6(t) might
not be sin 6(t) for an arbitrary function of 6(t).
Quadrature and Hilbert Transform of arbitrary real
functions are not necessarily identical.

Therefore, a simple derivative of the phase of the
analytic function for an arbitrary function may
not work.
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Bedrosian Theorem

Let f(x) and g(x) denotes generally complex functions in
L2(-00, o) of the real variable x. If

(1) the Fourier transform F(w) of f(x) vanished for |w|> a
and the Fourier transform G(w) of g(x) vanishes for
|w| < a, where a is an arbitrary positive constant, or

(2) f(x) and g(x) are analytic (i. e., their real and imaginary
parts are Hilbert pairs),

then the Hilbert transform of the product of f(x) and g(x) is
given

H{f(x)g(x)} = f(x) H{ag(x)} .

o Bedrosian, E., 1963: A Product theorem for Hilbert
7 Transform, Proceedings of the IEEE, 51, 868-869.
Sharif University of Technoloy,




Nuttall Theorem

For any function x(t), having a quadrature xq(t), and a
Hilbert transform xh(t); then,

E =°f|xq(t)—xh(t)|2dt
L 2i||:q(m)|2dm,

where Fq(w) Is the spectrum of xq(t).

Nuttall, A. H., 1966: On the quadrature approximation to the Hilbert
Transform of modulated signal, Proc. IEEE, 54, 1458
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Difficulties with the Existing
Limitations

e Data are not necessarily IMFs.

e Even if we use EMD to decompose the data into IMFs.
IMF is only necessary but not sufficient because of the
following limitations:

e Bedrosian Theorem adds the requirement of not having
strong amplitude modulations.

e Nuttall Theorem further points out the difference
between analytic function and quadrature.

e The discrepancy, however, is given in term of the
quadrature spectrum, which is an unknown quantity.
Therefore, it cannot be evaluated. Nuttall Theorem
provides a constant limit not a function of time;

o therefore, it is not very useful for non-stationary

\ Processes.
Sharif University of Technolog,
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nalytic vs. Quadrature

For cos@(t) with arbitrary function of 6(t) :

Y(t) » Z(t) Analytic
/ Hilbert Transform

No Known general method

X(t)

Q(t) Quadrature, not analytic

Analytic functions satisfy Cauchy-Reimann equation, but may be x?+ y?
# 1. Then the arc-tangent would not recover the true phase function.

Quadrature pairs are not analytic, but satisfy strict 90° phase shift;
therefore, x?+ y? = 1, and the arc-tangent always gives the true phase
function.
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Other Limitations

The EMD has limitations in distinguishing components in
narrowband signals.

1- End effect issue,
2- Order of the IMF extractions,
3- EMD’s unsatisfactory resolution.
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[Chen, 2003]proposes a new method to eliminate this problem
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Sunspot number data set

Sunspot Number
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Total solar Irradiance measurements

Total Solar Irradiance (W/mz)
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Global

mean temperature

Global Mean Temperature (°C)
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CO2 Concentration

002 Concentration (ppm)
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Subsection of IM2

Annual Qscillaton of ECI? Concaniration
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Subsection of IMF 2, the yearly cycle extracted from the CO: data using EEMD.
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Comparison b/w TSI and sunspot number IMF

Companson of IMFs between TSI"100 and Sunspot Number
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temperature and TSI

Comparison of IMFs between TSHW/m ) and T(°C)

Comparison of IMFs for global mean
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Comparison of IMFs for global mean
temperature and sunspot number data

Comparison of IMFs between Sunspot Number and T (°C)
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Correlation Coeff. TSI and sunspot/GMT

Correlation coefficients (r)—Total Solar Irradiance and Sunspot from 1749 to 2009,

Sunspot IMF1 IMF2 IMF3 IMF4 IMF 5 IMF &

TS1 0.85 0.50 0.82 0.27 0.28 033 0.20
IMF1 021 0.54 0.26 0.04 -—-008 0.02 —-0.02
IMF2 0.1 0.54 095 010 -0M -0.001 -003
IMF3 036 0.10 0.31 0.74 0.10 0.03 0.06
IMF4 026 =0.02 0.01 0.19 0.79 =0.05 0.03
IMF5 048 —-0.01 0.03 0.01 031 0.84 025
IMF& 059 -003 -005 -001 -0001 0.59 0.96

Correlation coefficients (r}—Total Solar Irradiance and Global Mean Temperature
from 1880 ro 1945,

TSI IMF 1 IMF2Z IMF2 IMF4 IMF5 IMF &
T 028 0.02 -0,03 -034 0.13 0.28 0.41
IMF 1 =013 -0.03 =008 -009 -0.04 =004 -010
IMF2 -0.13 0,004 -002 -034 -007 =004 014
IMF 3 0.09 0.02 =002 -040 0.30 0.10 013
IMF 4 0.11 0.07 0.08 004 =006 -026 0.26
IMF 5 077 0.03 0.02 0.02 0.20 0.66 0.86
IMF & 0.67 0.01 =004  —-0u04 0.27 037 0.87
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Correlation Coeff. GMT and TSI/sunspot

Correlation Coefficients (r}—Total Solar Irradiance and Global Mean Temperature
from 1945 ro 2009,

TSI IMF 1 IMF2 1IMF3 IMF4 IMFS5 IMF &6
T 0.13 0.01 0.09 039 027 =006 0.06
IMF 1 0.02 0.004 013 0.17 0.01 0.005 -=0.04
MF2 -0.02 0.02 0.06 0.43 008 =010 =011
IMF 3 010 =0u003 0.03 0.08 067 =005 0.04
IMF 4 027 0.02 0.01 -0.05 0.13 0.59 0.08
IMF5 -0.5 0.004 006 -0006 -028 -031 =077
IMF 6 083 004 —0.04 0.007 033 0.26 0.99

Correlation Coefficients (r}—Sunspot Number and Global Mean Temperature from

1380 m 1945.

T IMF 1 MF2 IMF3 IMF4 IMF5 IMFG6
Sunspot # 0.04 0.02 -003 -034 0.06 0.17 0.07
IMF 1 -0.14 -0.09 =011 =002 -004 001 -013
IMF 2 -022 -0005 -001 -031 -015 -006 =017
IMF 3 =0.03 0.08 =002 -037 0.20 008 -007
IMF 4 =0.16 0.06 0.0 0.01 036 -042 -022
IMF 5 0.79 0.04 0.03 0.05 023 0.80 0.76
IMF & 0.68 0.01 =004 -0.03 027 0.40 0.88
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Correlation Coeff. GMT and sunspot

Correlation Coefficients (r)—Sunspot Number and Global Mean Temperature from

1945 to 2009.

T IMF 1 IMF2 IMF3 IMF4 IMF5 IMF 6
Sunspot # -0.11 0.01 0.08 0.34 013 -014 -0.20
IMF 1 -0.13 -0.09 005 -0.05 -007 -011 -0.09
IMF 2 0.04 0.02 0.07 0.42 008 -0.03 -0.05
IMF 3 0.06 ~-0.005 0.02 0.09 068 -0.20 0.05
IMF 4 -0.02 0.03 002 -0.10 0.03 030 -0.17
IMF 5 -0.90 0.01 005 -0.005 -031 -064 -090
IMF 6 083 -004 -004 0.007 033 0.26 0.99
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Gibbs Effect (.wiki)

In non-continuous signal with an abrupt discontinuity, when finite
numberdof Fourier coefficients was used, Gibbs phenomenon was
occurre

All of 3 mentioned transforms suffers this effect.

Wavelets are more useful for describing these signals with
discontinuities because of their time-localized behavior (both Fourier
and wavelet transforms are frequency-localized, but wavelets have an
additional time-localization property). Because of this, many types of
signals in practice may be non-sparse in the Fourier domaln but very
sparse in the wavelet domain.

For HHT could be used more sophisticated methods, such as Riesz
basis, to avoid the Gibbs phenomenon.

The reducing methods of this phenomenon for Fourier, were
introduced in [Hamming 20035)

Sharif :uniuersuCy of Technoicy,

Department of vil Engineering




Example (.wiki)

Functional approximation of square
wave using 5 harmonics

Functional approximation of square
wave using 25 harmonics

Functional approximation of square
wave using 125 harmonics
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HHT implementation

e commercial software called the Hilbert-Huang
transform data processing system (HHT-DPS) which
was developed by Norden Huang at NASA and is
available through NASA’s website.

e There are also publicly available Matlab codes by
Patrick Flandrin and R code which extract IMFs from a
given input data series.
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