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Scope and Goals

• Need a basis that determined through signal characteristics 
, not by user prior to the analysis.

• Need transformation that be able to overcome Heisenberg 
uncertainty theorem which is restricted resolution.

• Need to noise subtraction.
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Review on transformations

• TRADITIONAL FOURIER

• STFT:

– which allow a signal to be nonstationary as long as it is 
piece-wise stationary

• WAVELET

– which can sift out particular signatures from a signal on 
a variety of size scales

• HHT

4



• General STFT

• Gabor Transform 

Gaussian window function minimizes the Fourier uncertainty 
principle. (Gabor transform  with modifications for multi-resolution 
becomes the Morlet wavelet transform).

• Generalized Time-Frequency Distributions

Overall, the Wigner-Ville distribution gives better time and frequency 
resolution than STFT and does not have to sacrifice one resolution 
for the benefit of the other.

STFT
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WAVELET

• This was an improvement over STFT because, as the 
result of the flexible basis functions, both the high-
frequency and the low-frequency structures could be 
analyzed.

• However, a drawback of wavelet analysis is that the 
wavelet basis functions, and therefore the structures 
being sifted out from the original signal, are chosen a 
priori.

• It is possible that the utilized wavelets may or may 
not reflect the processes in the analyzed signal. 

6



Introduction

• HHT is able to extract the frequency components from 
possibly nonlinear and nonstationary intermittent signals

• HHT is able to overcome Heisenberg uncertainty theorem 
which is restricted resolution of Fourier transformation.

• HHT has been used to study a wide variety of data 
including rainfall, earthquakes, heart-rate variability, 
financial time series, Lidar data, and ocean waves to name 
a few subjects.
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HHT

Hilbert transform is developed the unique and physical 
definitions of instantaneous frequency and instantaneous 
amplitude of a signal but with different physical explanation of 
frequency , generalized from the conventional Fourier 
definition.

𝑌 𝑡 = 𝐻 𝑥 𝑡 =
1

𝜋
 
−∞

+∞ 𝑥 𝜏

𝑡 − 𝜏
𝑑𝜏

𝑥(𝑡) arbitrary real signal
𝑌 𝑡 Hilbert transform of 𝑥 𝑡
𝑍 𝑡 analytic signal of 𝑥 𝑡 in polar coordinate representation

𝑍 𝑡 = 𝑥 𝑡 + 𝑖𝑌 𝑡 = 𝑎 𝑡 𝑒𝑖𝜃 𝑡

𝑎 𝑡 = 𝑥2 𝑡 + 𝑌2 𝑡 1/2

𝜃 𝑡 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑌 𝑡

𝑥 𝑡
𝜔 𝑡 = 𝜃′ 𝑡

𝜔 𝑡 is dominated as instantaneous frequency 
𝑎 𝑡 the instantaneous amplitude
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Mathematical Properties of Hilbert

• Linearity

• Inverse of Hilbert Transform
𝐻2 = 𝐼
𝐻3 = 𝐻−1

• Derivatives of Hilbert Transform
𝐻 𝑓′ 𝑡 = 𝐻′ 𝑓 𝑡

• Orthogonality
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some Hilbert transform Pairs
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Comparison b/w transformers (.wiki)

Transform Fourier Wavelet Hilbert

Basis a priori a priori adaptive

Frequency
convolution: 
global, 
uncertainty

convolution: 
regional, 
uncertainty

differentiation: 
local, certainty

Presentation
energy-
frequency

energy-time-
frequency

energy-time-
frequency

Nonlinear no no yes

Non-stationary no yes yes

Feature 
Extraction

no
discrete: no, 
continuous: 
yes

yes

Theoretical 
Base

theory 
complete

theory 
complete

empirical
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HHT

• not all functions give “good” Hilbert transforms, 
meaning those which produce physical instantaneous 
frequencies.

• It is essentially an algorithm which decomposes 
nearly any signal into a finite set of functions which 
have “good” Hilbert transforms that produce 
physically meaningful instantaneous frequencies.

• For this purposes, the empirical mode decomposition 
was introduced.
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IMF

1- the number of local extrema and the number of zero 
crossings must either equal or differ at most by one;

2- at any point, the mean value of the envelope defined 
by local maxima and the envelope defined by local 
minima is zero.

Any signal satisfying these two conditions is called an 
intrinsic mode function (IMF)
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EMD

EMD is which process is decomposed an arbitrary real signal 
into its IMFs by sifting.

1. Determine the local extrema (maxima, minima) of the 
signal.
2. Connect the maxima with an interpolation function, creating 
an upper
envelope about the signal.
3. Connect the minima with an interpolation function, creating 
a lower
envelope about the signal.
4. Calculate the local mean as half the difference between the 
upper and lower
envelopes.
5. Subtract the local mean from the signal.
6. Iterate on the residual.
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by patrick
Flandrin

emd.ppt
emd.ppt


Limitations for IF computed through Hilbert 
Transform

• Data must be expressed in terms of Intrinsic Mode 
Function. IMF is only necessary but not sufficient.

• Bedrosian Theorem:  Hilbert transform of a(t) cos θ(t)
might not be exactly a(t) sin θ(t). Spectra of a(t) and   
cos θ(t) must be disjoint.

• Nuttall Theorem:  Hilbert transform of cos θ(t) might 
not be sin θ(t) for an arbitrary function of θ(t).  
Quadrature and Hilbert Transform of arbitrary real 
functions are not necessarily identical.

• Therefore, a simple derivative of the phase of the 
analytic function for an arbitrary function  may 
not work.



Bedrosian Theorem

Let  f(x) and  g(x) denotes generally complex functions in 
L2(-∞, ∞) of the real variable x.  If  

(1)  the Fourier transform F(ω) of  f(x) vanished for │ω│> a 
and the Fourier transform G(ω) of  g(x) vanishes for 
│ω│< a, where a is an arbitrary positive constant, or

(2) f(x) and g(x) are analytic (i. e., their real and imaginary 

parts are Hilbert pairs),

then the Hilbert transform of the product of  f(x) and g(x) is 
given 

H { f(x) g(x) }  =  f(x)  H { g(x) }  .

Bedrosian, E., 1963: A Product theorem for Hilbert 
Transform, Proceedings of the IEEE, 51, 868-869.



Nuttall Theorem

For any function x(t), having a quadrature xq(t), and a 

Hilbert transform xh(t); then,

where Fq(ω) is the spectrum of xq(t).

Nuttall, A. H., 1966: On the quadrature approximation to the Hilbert 

Transform of modulated signal, Proc. IEEE, 54, 1458
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Difficulties with the Existing 
Limitations

• Data are not necessarily IMFs.

• Even if we use EMD to decompose the data into IMFs.  
IMF is only necessary but not sufficient because of the 
following limitations:

• Bedrosian Theorem adds the requirement of not having 
strong amplitude modulations.

• Nuttall Theorem further points out the difference 
between analytic function and quadrature. 

• The discrepancy, however, is given in term of the 
quadrature spectrum, which is an unknown quantity.  
Therefore, it cannot be evaluated.  Nuttall Theorem 
provides a constant limit not a function of time; 
therefore, it is not very useful for non-stationary 
processes.



Analytic vs. Quadrature

X(t)

Y(t) Z(t)    Analytic

Hilbert Transform

Q(t)   Quadrature, not analytic

No Known general method

Analytic functions satisfy Cauchy-Reimann equation, but may be x2+ y2

≠ 1. Then the arc-tangent would not recover the true phase function.

Quadrature pairs are not analytic, but satisfy strict 90o phase shift; 

therefore, x2+ y2 = 1, and the arc-tangent always gives the true phase 

function.

For cosθ(t) with arbitrary function of θ(t) :



Other Limitations

The EMD  has limitations in distinguishing components in 
narrowband signals.

1- End effect issue,

2- Order of the IMF extractions,

3- EMD’s unsatisfactory resolution.

20



example

[Chen, 2003]proposes a new method to eliminate this problem

21



Example
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Sunspot number data set 

23



Total solar Irradiance measurements
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Global mean temperature
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CO2 Concentration
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Subsection of IM2
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Comparison b/w TSI and sunspot number IMF
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Comparison of IMFs for global mean 
temperature and TSI

29



Comparison of IMFs for global mean 
temperature and sunspot number data
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Correlation Coeff. TSI and sunspot/GMT
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Correlation Coeff. GMT and TSI/sunspot

32



Correlation Coeff. GMT and sunspot
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Gibbs Effect (.wiki)

• In non-continuous signal with an abrupt discontinuity, when finite 
number of Fourier coefficients was used, Gibbs phenomenon was 
occurred.

• All of 3 mentioned transforms suffers this effect.

• Wavelets are more useful for describing these signals with 
discontinuities because of their time-localized behavior (both Fourier 
and wavelet transforms are frequency-localized, but wavelets have an 
additional time-localization property). Because of this, many types of 
signals in practice may be non-sparse in the Fourier domain, but very 
sparse in the wavelet domain. 

• For HHT could be used more sophisticated methods, such as Riesz 
basis, to avoid the Gibbs phenomenon.

• The reducing methods of this phenomenon for Fourier, were 
introduced in [Hamming 2003]
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Example (.wiki)
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Functional approximation of square 
wave using 5 harmonics

Functional approximation of square 
wave using 25 harmonics

Functional approximation of square 
wave using 125 harmonics



HHT implementation

• commercial software called the Hilbert-Huang 
transform data processing system (HHT-DPS) which 
was developed by Norden Huang at NASA and is 
available through NASA’s website. 

• There are also publicly available Matlab codes by 
Patrick Flandrin and R code which extract IMFs from a 
given input data series.
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