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Scope and Goals

e Single-Degree-of-Freedom Systems

e Essentially-Strain Dependent Nonlinearity — Mostly Ductile

e Getting Familiar with the Essentials of Nonlinear Analysis

e Getting Familiar with Parameters that Govern the Nonlinear
Behavior

¢ Understanding the Dynamic Response of Nonlinear Systems
and the Effects of Dynamic Properties on the Response
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Modeling of Nonlinear Behavior

e Elastic-Perfectly Plastic Behavior
— The first nonlinear behavior to learn in Structural
Engineering
- Idealized based on the behavior of a ductile material
(e.g. steel) before reaching strain hardening
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Modeling of Nonlinear Behavior

o Elastic-Perfectly Plastic Behavior
— The first nonlinear behavior to learn in Structural
Engineering
- Idealized based on the behavior of a ductile material
(e.g. steel) before reaching strain hardening
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Modeling of Nonlinear Behavior

e Elastic-Perfectly Plastic Behavior
- Easy to formulate and analyze

K(u-u) K(u-u)<F,
fi(v)= r(u)f{ F, otherwise
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Modeling of Nonlinear Behavior

e Bilinear Models
- Based on the more realistic assumption that not all

section fibers yield simultaneously, or the material
shows some post-yield stiffness

- More stable analysis, since the stiffness is not suddenly
lost

- In addition to yield conditions (more formally, the yield
surface, when multi-axial stress conditions exist), we
need to decide how the behavior evolves after yielding

¢ Isotropic Hardening
¢ Kinematic Hardening
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Modeling of Nonlinear Behavior

e Bilinear Models 4 ax
- Isotropic Hardening F,

e The size of yield surface
increases

F F, +aKu,
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Modeling of Nonlinear Behavior

¢ Bilinear Models A aK

- Kinematic Hardening F,
¢ The yield surface moves

2F,
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Modeling of Nonlinear Behavior

e Tri-linear and Multi-linear Models
- Multiple yield surfaces

A pr 1

aK

— Example: plastic hinge moment/rotation diagram
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Modeling of Nonlinear Behavior

e Bouc-Wen Model
- An all-in-one model to represent a variety of nonlinear
behaviors

r(t)=aku(t)+(1-a)kuz(t)

2(0)= 2[00~ p 20200 - pa(o]z) ]

1
- Requires to keep track of an additional parameter

- Can be solved using the same approach used for the
overall structural analysis
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Modeling of Nonlinear Behavior

e Bouc-Wen Model
- Example:
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- Note that this model is not rate-dependent
- Figure shown using a static sinusoidal displacement

Sharif University of Technolo
Department Df‘(ijil Engineeri?g 4




4/7/2014

Modeling of Nonlinear Behavior

e Bouc-Wen Model
— Effect of Bouc-Wen Model Parameters: k
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Modeling of Nonlinear Behavior

e Bouc-Wen Model
- Effect of Bouc-Wen Model Parameters: U
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Modeling of Nonlinear Behavior

e Bouc-Wen Model
- Effect of Bouc-Wen Model Parameters: «
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Modeling of Nonlinear Behavior

e Bouc-Wen Model
- Effect of Bouc-Wen Model Parameters: /[
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Modeling of Nonlinear Behavior

e Bouc-Wen Model
- Effect of Bouc-Wen Model Parameters: 7
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Modeling of Nonlinear Behavior

e Bouc-Wen Model
- Effect of Bouc-Wen Model Parameters: n
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Modeling of Nonlinear Behavior

e Bouc-Wen Model

— Selection of suitable parameters is carried out by
directly comparing the model outcome to the desired
force-displacement relationship (e.g. an experimentally
obtained relationship)

- Bouc-Wen Model Assumes Kinematic Hardening
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Modeling of Nonlinear Behavior

e Other Models

- More advanced models exist that include the
nonlinearities resulting from gaps and degradation. For
example, refer to:

e Sivaselvan and Reinhorn, Hysteretic Models for

Deteriorating Inelastic Structures, ASCE JSE 126(6), 633-
640.
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Modeling of Nonlinear Behavior

e Other Models
- Sivaselvan and Reinhorn , T

SPECIMEN RESPONSE RESPONSE PARAMETERS

| EERC-RN3
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Dynamic Behavior of SDF Systems

e Parameters Affecting the Nonlinear Response of SDF
Systems

e Initial Stiffness

e Mass

e Damping

e Loading Characteristics
¢ Yield Displacement

e Ductile/Brittle Behavior
e Post-Yield Stiffness

e Ductility Demand (Share of Post-Yield Behavior in
: esponse)
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Dynamic Behavior of SDF Systems

Parameters Affecting the Nonlinear Response of SDF
Systems

Natural Frequency (Initial)

Damping Ratio

Loading Characteristics
Yield Displacement
Ductile/Brittle Behavior
Post-Yield Stiffness

Ductility Demand (Share of Post-Yield Behavior in
Response)
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Dynamic Behavior of SDF Systems

Dynamic Amplification Factors - Linear Response
- Harmonic Loading
- Steady-State Response

10 T

Displacement Amplification Factor
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Dynamic Behavior of SDF Systems

e Dynamic Amplification Factors - Nonlinear Response

- Need to include additional parameters (yield
displacement, post-yield stiffness, hysteretic behavior,
etc) in analysis

- Results usually obtained for elastic-perfectly plastic
systems to reduce the involved parameters and analysis
costs

— Here, we use a simple Bouc-Wen model to study the
response characteristics of nonlinear SDF systems
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Dynamic Behavior of SDF Systems

e Dynamic Amplification Factors — Nonlinear Response
- Model Properties:
e Common Parameters

m=1 £=0.05
p=1 y=1 n=1
e Variable Parameters

k=10
u, =1

a=0
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Dynamic Behavior of SDF Systems

e Effect of Yield Displacement
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Dynamic Behavior of SDF Systems

e Effect of Yield Displacement
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Dynamic Behavior of SDF Systems

e Effect of Yield Displacement
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e Effect of Yield Displacement
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Dynamic Behavior of SDF Systems
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Dynamic Behavior of SDF Systems

e Effect of Yield Displacement
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Dynamic Behavior of SDF Systems

e Effect of Yield Displacement
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Dynamic Behavior of SDF Systems

e Effect of Yield Displacement
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Dynamic Behavior of SDF Systems
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Dynamic Behavior of SDF Systems

e Effect of Yield Displacement
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Dynamic Behavior of SDF Systems

e Effect of Yield Displacement
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Dynamic Behavior of SDF Systems

e Effect of Post-Yield Stiffness
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Dynamic Behavior of SDF Systems

o Effect of Post-Yield Stiffness
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Dynamic Behavior of SDF Systems

e Effect of Post-Yield Stiffness
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Dynamic Behavior of SDF Systems

o Effect of Post-Yield Stiffness
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Dynamic Behavior of SDF Systems

e Effect of Post-Yield Stiffness
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Dynamic Behavior of SDF Systems

e Response Spectra

- Parameters in linear spectra:
e Natural Frequency
e Damping Ratio

- Parameters in nonlinear spectra:
e Natural Frequency (initial)
e Damping Ratio
e Ductility

» Results in more detailed analysis needs, since ductility is
not known before the analysis

¢ Note that the vertical axis in a nonlinear spectrum is used
to determine the yield acceleration and yield strength; i.e.
the yield strength to achieve the given ductility
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Dynamic Behavior of SDF Systems

e Developing Nonlinear Response Spectra
— For a Given Ductility Ratio
e For Each Natural Frequency and Damping Ratio

First assume a yield displacement
Obtain the nonlinear response
Calculate ductility
Compare obtained ductility with the desired value
» If the ductility is close enough, record the maximum
response as the point of the spectrum corresponding to
the required frequency, damping ratio and ductility
» Otherwise, adjust the yield displacement and repeat from
Step 2

A WNR
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Dynamic Behavior of SDF Systems

e Developing Nonlinear Response Spectra

- This usually requires many analyses with small time
steps. This is particularly problematic in stiff systems
(systems with large natural frequency), since in these
systems, the post-yield displacements are usually very
large. Obtaining the desired ductility ratio may require
very high precision in the analysis.

- Usually, the precision is not kept constant for the entire
range of frequencies
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Dynamic Behavior of SDF Systems

e Nonlinear Response Spectra - Example: Abbar
Longitudinal Record
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