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ABSTRACT 
Explicit integration procedures have been widely adapted and applied to hybrid 
simulations of the seismic response of structures due to their simplicity. However, these 
procedures are conditionally stable and require small time steps for stiff systems, or 
systems involving high-frequency modes. In this study, a combined implicit or explicit 
integrator is proposed to solve the equation of motion for hybrid simulations. In this 
method, command displacement predictions are determined to load the experimental 
substructures beyond the current step using explicit kinematics expressions. The 
displacement and force measurements are then used to iteratively correct the explicit 
displacement prediction within the numerical model until an implicit formulation is 
satisfied. An explicit solution is accepted only in time steps for which the iterative 
correction of displacement fails to convergence after maximum number of iterations. This 
procedure limits communication between the experimental substructures and the 
numerical integrator, thus it is well suited for networked applications of hybrid 
simulation. Numerical and experimental simulations demonstrate the effectiveness of this 
numerical integration scheme, especially in utilization of longer time steps, prevention of 
excitation of higher modes, and testing of stiff systems. 

INTRODUCTION 
The increasing need for experimental verification of the seismic performance of novel 
structural systems has resulted in highly sophisticated dynamic test procedures. Further, 
new design procedures, such as performance-based design, require better understanding 
and modeling of the behavior of structures and components well into their nonlinear 
response range. Hybrid simulation, including real-time dynamic testing of substructures, 
offers an efficient means for assessment of dynamic and possibly rate-dependent 
behavior of structural systems subjected to earthquake excitation. Real-time dynamic 
testing of substructures, which is a natural evolution of pseudo-dynamic test methods 
developed in past decades [1-4], may have significant advantages over a shaking table 
test in terms of cost, scale size, geometry, and required physical mass of structures and 
components that can be tested [5]. 

The path-dependent behavior of experimental specimens does not allow for the direct 
implementations of implicit integration procedures with iterations in a hybrid simulation. 
As a result, explicit procedures without the need for iterations have been very popular. 
Further, the command displacement sent to actuator in an explicit method directly reflects 
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the desired displacement of the current time step. Despite their simplicity and 
applicability to hybrid simulations, explicit methods are only conditionally stable. 
Extensive research has been dedicated to the development of unconditionally stable 
integration procedures that do not require iterative displacements on experimental 
substructures [6-9]. Such improvements are necessary for the extension of hybrid 
simulation to large structural systems that may have high frequency modes, or for 
distributed testing, where the small time step requirements of explicit procedures may not 
be practical. 

Recently developed integration procedures with improved stability characteristics 
take advantage of the initial elastic stiffness matrix of the structure [6-13], which may be 
a good approximation if the nonlinear behavior is limited. One procedure introduced by 
Pan et al. [14] measures the instantaneous behavior of single-degree-of-freedom 
experimental substructures to estimate the tangent stiffness. Another group of procedures 
introduce feedback loops involving experimental substructures [3, 15-18]; these 
procedures need to impose iterative displacements or forces on the specimens, which 
greatly increases the communication between the numerical and experimental 
substructures. In addition, uni-directional convergence has not been verified for these 
procedures, which is important for prevention of unwanted displacement reversals that 
can damage the experimental specimens or erroneously dissipate energy. 

In this paper, a new method for numerical integration is proposed, in which recent 
measurements are used to implement an iterative scheme numerically, without physical 
imposition of displacements on the experimental substructures. The command 
displacement is still determined based on an explicit Newmark’s kinematics equation, 
which can remain unchanged if an implicit correction is not possible in a particular step. 
The effectiveness of this approach has been demonstrated through numerical and 
experimental simulations. 
 

 
 
FIGURE 1 
OVERALL BLOCK DIAGRAM OF A DISPLACEMENT CONTROLLED HYBRID SIMULATION 
 

COMBINED IMPLICIT-EXPLICIT INTEGRATION SCHEME 
In a displacement controlled hybrid simulation, the displacements computed by the 
numerical model are applied to the physical specimen, and resisting forces are measured 
and fed back into the numerical model, as shown in Figure 1. The essential components 
to a hybrid simulation include the numerical simulation component to solve the equation 
of motion for the hybrid model, an experimental setup, and the actuator and its control 
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system. Figure 1 also shows two correction and compensation blocks; one acting on the 
actuator command signals, and the other on the measurements. These blocks represent 
signal correctors and conditioners that are essential for stability and accuracy of any 
hybrid simulation [19]. 

In a hybrid simulation, the equation of motion of the combined numerical and 
experimental model can be expressed as: 

 gu+ −Ma + Cv + Kd r = Mι&&  (1) 

in which M , C  and K  are mass, damping, and stiffness matrix of the system, ι  is the 
influence vector, d , v , and a  are displacement, velocity and acceleration vectors, 
respectively; gu&&  is the input ground acceleration and r  is the restoring force measured in 

the experimental substructures, which may include strain-dependant, damping, or inertial 
forces.   

The proposed method for solving the above equation of motion is first introduced 
through a modification of an explicit integration scheme for a single-degree-of-freedom 
system. The extension of this approach to multi-degree-of-freedom systems will be 
discussed later. In an explicit integration procedure, e.g. Newmark’s method ( 0β = , 

1/ 2γ = ), the command displacement is given by: 

 
2

1 1 1 2
d
n n n n

t
d d v t a− − −

∆= + ∆ +  (2) 

This displacement can be sent to the actuator as command displacement, after 
possible system delay and dynamics compensation. In this equation, step number is 
indicated by the subscripts for displacement, velocity and acceleration, and t∆  is the 
integration time step. The measured force, nr , corresponding to desired displacement d

nd is 
then used directly to determine velocity and acceleration at step n , using the following 
relations: 

 , 1 1
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In the above equation, it is assumed that all of the strain restoring force is originating 
from the experimental substructure, although the numerical stiffness term can be easily 
introduced. The next desired displacement 1

d
nd +  can then be determined using (2). 

As shown above, the force corresponding to the imposed displacement is used 
without any modification. In the proposed approach, the measurements of force and 
displacement are used in an iterative scheme to correct the imposed displacement to 
satisfy the implicit form of Newmark’s integration method. Here, the predictor 
displacement 0

nd  is taken to be the same as the previously determined desired 
displacement based on an explicit equation ( d

nd ). With predictor velocity given by 
0

1n n nv v t a+ = + ∆ , the objective is to solve the following equations iteratively: 
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in which superscripts represent the iteration number, and β  and γ  are Newmark 
coefficients. The above equations are repeated until a convergence criterion is satisfied, 
such as: 

 
( )
( )
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n n
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d d

d
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+

+

−
<  (6) 

where ε  is the convergence tolerance. 
However, the challenge in solving the above relations is that imposing iterative 

displacements on experimental substructures is not acceptable in a hybrid simulation, as 
it may result in unrecoverable damage to experimental specimens and erroneous energy 
dissipation. Therefore, it is not advisable to measure experimental restoring forces, 1i

nr
+ , 

due to iterative displacements. In order to overcome this issue, recent data points are used 
to fit a second-order polynomial to both displacements and forces versus time. As shown 
in Figure 2, for experimental degrees of freedom, the iterative displacements are not 
physically imposed on the specimen. Instead, the displacement polynomial is used to 
estimate a time corresponding to that displacement and the corresponding force can then 
be determined by replacing the computed time into force polynomial. Therefore, the 
algorithm can be completed by addition of another step to the iterative scheme of (5), 
which estimates the restoring force 1i

nr
+  for the iterative displacement 1i

nd + . It is evident 
that the proposed approach does not require any additional communication between 
experimental and numerical subsystems, which is important for implementation in hybrid 
simulations with geographically distributed substructures. 
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FIGURE 2 
ESTIMATION OF FORCES CORRESPONDING TO ITERATIVE DISPLACEMENTS 

 
Utilization of time as a parameter relating two fitted polynomials has several 

advantages. First, as the points are equally spaced in time, determination of fitted 
polynomial coefficients is computationally efficient. In addition, the time histories will 
always be of sufficient quality, as the effects of specimen nonlinearities will be less 
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pronounced on time histories compared to force-displacement curves. Clearly, the 
accuracy of fitted polynomials will decrease with distance from the fitted points. For this 
reason, one can impose limits on the variation of time within one step, in order to avoid 
extremely large extrapolations and ensure that the polynomials adequately represent the 
specimen behavior within the considered time step. 

One problem in using this procedure occurs at displacement reversals when a real-
valued time for the sought iterative displacement does not exist due to undershooting of 
displacements. Inserting the resulting complex-valued time in the fitted force polynomial 
results in a complex value; the real part of this value increases proportionally beyond the 
peak force, and the imaginary part is negligible, as long as the sought displacement 
remains close to the peak measured displacement. As a result, the absolute value of this 
complex number, which is very close to its real part, can be used as the estimated force. 
With this approach, the number of steps with successful completion of implicit 
integration increases, which has been observed to be advantageous for the overall 
accuracy of the simulation.  

Compared to the operator-splitting method [8], this approach uses the measured data 
for iterations and eliminates the need for approximations using the initial stiffness matrix 
of the structure. However, as with most iterative schemes on non-linear systems, 
convergence is not guaranteed at each step due to noise and other experimental errors that 
can prevent accurate estimation of iterative forces. The failed iteration steps can be 
identified by detection of excessive time parameter variation or convergence failure after 
maximum number of iterations. As the presented procedure updates the states in the same 
way as an explicit procedure, it is proposed that the implicit correction be turned off in 
such situations. In other words, whenever force estimations of iterative displacements are 
not successful, or convergence cannot be achieved, the procedure switches to the explicit 
equations (3) and (4), which only use the last measurements to continue the simulation 
without interruption. 
 

FULLY IMPLICIT INTEGRATION

ACTUATOR PATH IN COMBINED METHOD
EXPLICIT COMMAND PREDICTION

FULLY EXPLICIT INTEGRATION

IMPLICIT DISPLACEMENT CORRECTION

 
 
FIGURE 3 
A SCHEMATIC DISPLACEMENT HISTORY OF COMBINED IMPLICIT-EXPLICIT INTEGRATION PROCEDURE 

 
A schematic view of the performance of implicit or explicit integration method is 

shown in Figure 3. It is shown that the actuator follows the explicit desired displacement 
path, while an attempt is made to bring the displacement to the implicit equation result in 
the following step. Consequently, the actuator displacement will remain close to the 
results of an implicit scheme and numerical errors will not cumulate as much compared 
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to a fully explicit scheme. Of course, the actuator may not achieve the exact desired 
displacements as shown in Figure 3. 

Extension to Multi-Degree-of-Freedom Systems Using α-Method 

In order to improve the control of numerical damping in Newmark’s Method, Hilber, 
Hughes, and Taylor introduced the α-Method [20]. In this approach, the time-discretized 
equation of motion and approximations of displacement and velocity are given by: 
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 (7) 

The numerical damping in the algorithm can be controlled by parameter α, which when 
selected to be zero, reduces to Newmark’s method (trapezoidal integration). If the 
parameters are selected such that 1 3 0α− ≤ ≤ , ( )1 2 2γ α= − , and ( )2

1 4β α= − , an 

unconditionally stable second-order accurate scheme results. 
In a hybrid simulation, the force feedback from the experiment may include strain, 

damping, or inertial contributions; therefore, the time discrete equation of motion will be 
modified for a hybrid simulation as follows: 

 
( ) ( ) ( ) ( )1 1 1 1

a a a e
n n n n

e e e a a
n n n n n n n n nt tα α− − − −

+ + + +

⎡ ⎤− − − + − + − = + ∆⎣ ⎦

M a C v K d r

r r M a a C v v K d d f
 (8) 

in which superscripts a  and e  denote analytical and experimental quantities, 
respectively. In order to ensure proper adaptation of this procedure to hybrid simulations, 
the inertial portion of the experimental restoring force should be removed from the 
increment multiplied by α. Therefore, the experimental mass should be known in order to 
solve this set of equations. The mass present in experimental substructures is generally 
small, although its accurate estimation is often possible through free vibration tests or 
direct measurements. In the combined integration procedure, step n  corresponds to the 
step with predictor displacements given by: 

 
2

1 1 12
d
n n n n

t
t− − −

∆= +∆ +d d v a  (9) 

As for the single-degree-of-freedom, (9) can be used to predict and command the 
displacement path of the actuator. The measured forces and displacements along the 
predicted traveled path are available for use in subsequent corrective iterations. The 
polynomials are then fitted to actuator feedback data, and used to estimate forces in the 
iterative scheme of (7) to update the states at step n . Therefore, in any integration step 
with iteration, the iterative displacements are determined in actuator coordinate system 
but they are not physically imposed on the specimen. Instead, following the same 
procedure described for single-degree-of-freedom systems, the forces corresponding to 
the iterative displacements are estimated. 

As with most nonlinear analysis, convergance of the implicit scheme cannot be 
guaranteed in each step. Is this case, an explicit approach becomes necessary to continue 
the simulation. In the explicit steps, no polynomials will be fitted, and (7 and 8) should 
slightly change in order to use most recent measurements for improved accuracy. After 
imposition of predictor displacement, the experimental restoring force vector e

nr  becomes 
available, and the acceleration and velocity vectors are given by: 
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where: 

 ( )1
2

a a etα α∆⎛ ⎞= + + −⎜ ⎟
⎝ ⎠

A M C M  (12) 

can be evaluated prior to simulation. 
It should be noted that the amount of mass in the experimental model should be 

modified if any event time scale other than unity is used (non-real-time fast hybrid 
simulation). As the inertia force generated by the experimental mass will be smaller for 
larger time scale values, the amount of experimental and analytical mass should be 
modified using the following relations: 
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in which tS  is the simulation time scale. The above equation suggests that the effect of 
experimental mass quickly diminishes as the time scale increases. As an extreme case, 
the analytical mass should be equal to the total mass in a slow (pseudo-dynamic) hybrid 
simulation. A similar consideration should be taken into account for damping matrix, if 
the experimental model is known to show significant damping characteristics and the 
experiment is not real-time. If the damping matrix of the system is divided into analytical 
and experimental parts, as in: 

 a e= +C C C  (14) 
then the analytical part of damping matrix should be modified as: 

 actual actual

1
1a a e

tS

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
C C C  (15) 

Clearly, if this rate dependent property of the experimental setup, actual
eC , is not well 

identified, then a real-time hybrid simulation ( 1tS = ) is necessary for identification of 
damping characteristics. 

Finally, it should be mentioned that in the above formulations, the numerical model is 
assumed to be linear; however, as the analytical stiffness matrix can be replaced by a 
tangential stiffness, this procedure does not have any limitation for extension to cases 
involving nonlinear numerical models. 

Error Sources and Enhancements 

As mentioned in the previous section, the major difference between this method and 
operator-splitting family of procedures adapted for hybrid simulation is that actual 
measurements are used to numerically satisfy (1) instead of imposing a single correction 
based on the initial stiffness matrix. It is expected that the proposed procedure will have 
better performance for highly nonlinear systems, in which tangential stiffness matrix 
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greatly differs from the initial value. However, this is only true if the fitted polynomials 
accurately represent the behavior of experimental substructures. As shown in Figure 2, 
the fitted polynomials follow the actual measurement as long as the extrapolation 
distance (variation of time parameter) is small. Therefore, it is important to limit the 
variation range of time within an iteration to ensure adequate correlation between the 
measurements and fitted polynomials. 

From Figure 2 it is also evident that within the curve fitting range, the correlation 
between actual and fitted curves is very good. In the above-mentioned integration 
scheme, however, the final corrected displacement is expected to be close to the last point 
used for curve fitting. Consequently, the iterative displacements, which are expected to 
be close to the predicted displacement, can be either interpolated or extrapolated. In order 
to reduce the number of the cases in which extrapolation is necessary, one can make the 
actuator impose a displacement ahead of time by increasing the prediction time for 
determination of desired displacement, as in: 

 2
1 1 12 2d

n n n nt t− − −= + ∆ + ∆d d v a  (16) 
By imposition of this displacement, the measurements will include data that are one step 
ahead of calculations, which makes interpolated force estimation possible for a larger 
number of iterative displacements. This modification is particularly useful for smaller 
values of time steps, where an increase of prediction distance will not significantly affect 
the accuracy of desired displacement. It is important to note that this change should not 
affect the initial iterative displacement vector, which should still be determined using (9). 
Several simulations have demonstrated that using (16) increases the number of 
integration steps with successful completion of iterative scheme. 

As the fitted polynomials provide an instantaneous relation between the displacement 
of an actuator to its restoring force, this approach is very close to a complete implicit 
integration for single-degree-of-freedom substructures; however, when it comes to multi-
degree-of-freedom experimental substructures, it does not consider the interaction of 
actuators. In other words, the effects of off-diagonal terms of tangent stiffness matrix of 
substructures are being neglected in displacement modification process after imposition 
of explicit displacement. Nonetheless, through numerical and experimental simulations, it 
has been observed that this simplification does not have any dramatic effect on the 
results. 

Finally, it is recommended that a number of data points larger than the minimum 
required by the polynomial should be used in fitting process. As the data points are 
equally spaced in time, use of more data points will not significantly increase 
computational costs, but helps to reduce the effects of measurement noise in the fitted 
polynomials. 

Delay Compensation 

As with any other real-time hybrid simulation, delay issue should be properly addressed 
to ensure stability and accuracy. Delay compensation procedures that modify command 
displacement or force measurement signals can be used with this integration procedure. 
However, measured force correction procedure should equally modify the measured 
displacements, as their phase difference can result in unpredictable simulation 
performance from this integration approach. 
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In addition to polynomial extrapolation of command displacements, the same explicit 
expression for desired displacement can be used for delay compensation in command 
displacement signal. Therefore, (9) will result in the following expression for delay 
compensated displacement vector for j th actuator: 

 ( ) ( )2

1 1 12
jj c

n n j n n

t
t

τ
τ− − −

∆ +
= + ∆ + +d d v a  (17) 

in which jτ  is the j th actuator’s delay. The command displacement for this actuator is 

then the result of transformation of the above displacement vector to actuator coordinates 
system. 

NUMERICAL SIMULATIONS 
Numerical models of hybrid simulation systems have significant advantages for 
performing low-cost computer simulations. These numerical evaluations are very useful 
for pre-test analyses, as well as development of new test procedures. One characteristic 
that makes these models very useful for performance evaluation of new procedures is that 
they provide the possibility of an ‘exact’ simulation by simply eliminating all uncertainty 
sources of the model associated with experiments. A direct comparison of the results will 
then give a full insight of the performance of the procedure in question. In this section, 
the results of numerical evaluation of the proposed integration procedure are presented. 
Several computer models have been used in this study, ranging from simple models with 
artificial error and delay sources to nonlinear actuator-specimen models. 
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FIGURE 4 
A TWO-DEGREE-OF-FREEDOM STRUCTURE AND CORRESPONDING LABORATORY SETUP FOR A COLUMN, AND 

CORRESPONDING SIMULINK MODEL 
 

 Weight (kN) Stiffness (kN/mm) Yield Displacement (mm) 
Story 2 44.5 0.95×2 5 
Story 1 80.1 1.89×2 5 
 

TABLE 1 
STRUCTURAL PROPERTIES OF NUMERICAL TWO-DEGREE-OF-FREEDOM MODEL 
 

The two-degree-of-freedom system of Figure 4 with properties listed in Table 1 is 
considered for a numerical study. The entire stiffness of the system is assumed to 
originate from the two-degree-of-freedom column setup. Damping is selected to be 5% of 
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critical, entirely considered in the analytical model. The majority of the mass is also 
assumed to be in the numerical model, but a small mass in experimental setup is always 
inevitable. The natural periods of this system are 0.60 and 0.15 seconds. The input 
excitation selected for these numerical simulations is the 1978 Tabas earthquake scaled in 
amplitude by 25%.  

In order to simulate the actuator delay and noise in the measured signals, a 
Mathworks Simulink [21] model shown in Figure 4 is used. As illustrated, this model 
simulates the response of a two-degree-of-freedom substructure representing the two-
story column of Figure 4, which is subjected to displacements imposed by two actuators. 
The restoring force is governed by two Bouc-Wen [22, 23] hysteretic models. The model 
carries out this simulation by artificially contaminating the measurements of 
displacement and force with the aid of several random sources. In addition, the 
imposition of displacement is delayed, where the amount of delay can be controlled by 
adjusting the means of random sources in the model multiplied by displacement 
increments. The amounts of actuator delay (12 and 8ms for lower and upper story 
actuators, respectively) and measurement noise have been selected based on actual 
experimental data and laboratory equipment information. 

The simulation results using Central difference explicit integration scheme provide an 
unstable simulation with the response spuriously dominated by the second mode. The 
simulation stopped when the top story displacement exceeded the preset limit of 50mm. 
In this simulation, the experimental instrumentation sampling rate was 1024Hz, and a 
time step of 10/1024 seconds was used for integration. 
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FIGURE 5 
DISPLACEMENT HISTORY AND ENERGY BALANCE ERROR OF SIMULATION USING COMBINED INTEGRATION 

METHOD 
 

Using the proposed integration scheme ( 0α = , 1 4β = , 1 2γ = ) with combined 
implicit or explicit steps, the simulation is observed to have improved stability and 
accuracy. As shown in Figure 5, the simulation is stable, and the energy balance error 
shows minimal dispersion from zero, despite the existence of a relatively high-frequency 
mode in the system. The energy balance is defined here as the difference between the 
input earthquake energy and energy stored (kinetic and strain energy) or dissipated 
(hysteretic or viscous damping) by the structural model. The fact that energy error 
remains close to zero ensures that the equation of motion is solved accurately throughout 
the simulation. This energy error is a particularly useful measure of accuracy in actual 
experiments, where no exact simulation is available for direct comparison of results. 
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During this simulation, 88.2% of steps were successfully completed using the implicit 
approach, while the remainder of the steps remained explicit. The majority of the implicit 
steps require 1 to 4 iterations to converge, and only in a few cases the convergence is 
achieved after 5 iterations. In several implicit steps the convergence is bidirectional, and 
the physical imposition of iterative displacements may result in spurious energy 
dissipation in nonlinear specimens during reversals. The maximum number of iterations 
was set to 20, and the algorithm chooses to leave explicitly-determined states unchanged 
if convergence is not achieved within these iterations. 

Effect of Experimental Mass Estimation Errors on Energy Balance 

As mentioned in previous section, experimental mass matrix eM  is needed for utilization 
of α -method. It was also mentioned that the amount of mass in experimental setup is 
attempted to be as small as possible to reduce power requirements and achieve better 
actuator performance. Although estimation of experimental mass is generally possible 
with an acceptable accuracy, the developed numerical models have been used for a 
sensitivity analysis in order to observe the effects of errors in mass estimation. 

As shown in Figure 6, two cases of two-degree-of-freedom simulation, in which the 
experimental mass are 1% and 5% of total mass, are considered. For each of these cases, 
experimental mass is slightly modified from its actual value, and overall energy balance 
of the system is considered. As shown, the alterations of energy balance are generally 
small, and more importantly, random. Therefore, one can conclude that the effects of 
experimental mass errors are small, comparable to the order of system randomness due to 
instrumentation noise and mistuning. However, this is only valid for small amounts of 
experimental mass, which is commonly the case in hybrid simulations. It should be 
mentioned that the effects of above-mentioned variations on displacement histories are 
insignificant. 
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FIGURE 6 
EFFECT OF MASS ESTIMATION ERROR ON THE OVERALL ENERGY BALANCE OF SYSTEM – LEFT: 

0.01e =M M , RIGHT: 0.05e =M M  

EXPERIMENTAL VERIFICATIONS 
Single- and two-degree-of-freedom test setups are considered for experimental 
verification of the developed integration procedure, as shown in Figure 7. The test 
specimens consist of short elastic columns, which are mounted on clevises. The coupons 
inserted in clevises are designed to be weaker than the columns, and provide a nonlinear 
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response for evaluation of test procedures in nonlinear experiments, without damaging 
the columns during each test. 

Single-Degree-of-Freedom Simulations 

The natural period of the system has been selected to be 0.5 seconds. With a measured 
stiffness of about 880 N/mm, the required mass is 5.59 kN s/mm, out of which 0.012 kN 
s/mm is estimated to be present in the experimental specimen. The entire stiffness also 
originates from the experimental specimen, while the entire 5% of critical damping is 
taken into account in the numerical model. The setup was identified to include 16 
milliseconds of delay, which is compensated using (17). 
 

     
 
FIGURE 7 
PICTURES OF SINGLE- AND TWO-DEGREE-OF-FREEDOM EXPERIMENTAL SETUPS 
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FIGURE 8 
DISPLACEMENT HISTORY OF LINEAR EXPERIMENTAL SIMULATION 0.5-SECOND PERIOD SYSTEM WITH 

INCREASED INTEGRATION TIME STEP – LEFT: EXPLICIT CENTRAL DIFFERENCE, RIGHT: COMBINED IMPLICIT-
EXPLICIT INTEGRATION 
 

Explicit or combined implicit-explicit simulations of a single-degree-of-freedom 
system with a 1024Hz experiment sampling rate and a 10/1024-second integration time 
step do not show any significant difference, thus linear and nonlinear simulations can be 
carried out using both methods. In order to demonstrate the advantages of the proposed 
integration method, the experiment was repeated using a larger integration time step of 
100/1024 seconds. The earthquake is also scaled down to 2.5% of the full record to 
ensure a linear response, thus providing similar responses in two experimental 
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simulations. As shown in Figure 8, while the result of explicit approach is on the verge of 
instability, the combined procedure has an acceptable accuracy, and more importantly 
remains stable, despite the large time step compared to the natural period of the system. 
In addition, the overall energy balance of the system is better maintained when the 
combined procedure is in use. Based on this observation, it can be concluded that the 
proposed approach shows significant improvement in terms of the selection of larger time 
steps, which is very beneficial for systems including high frequency modes and 
networked applications of hybrid simulation. In this test, 84.5% of the integration steps 
were successfully completed using implicit displacement corrections and state 
determination. 

Two-Degree-of-Freedom Simulations 

As shown in Figure 7, a two-degree-of-freedom setup has been built by mounting two 
single-degree-of-freedom setups as described in the previous section on top of each other. 
With two pairs of coupons in the lower clevis, and one pair in the upper one, static tests 
have been carried out for estimation of the stiffness matrix of the system: 

 
4.86 1.41

kN/mm
1.41 0.68

e −⎡ ⎤
= ⎢ ⎥−⎣ ⎦

K  (18) 

which is doubled to encompass both columns of a two-story structure as shown in Figure 
4. The mass matrix is then selected in such a way that the natural periods of the system 
are 0.50 and 0.13 seconds. For comparison purposes, and to keep the specimens in linear 
range, two simulations with 2.5% of Tabas earthquake has been carried out, one with 
explicit central difference method, and the other with the proposed combined implicit-
explicit integration. As shown in Figure 9, the explicit integration fails to remain stable, 
and results in the spurious excitation of the second mode of the system after a few 
seconds, while the proposed method is stable throughout the simulation. 
 

10 12 14 16 18 20
-3

-2

-1

0

1

2

3

4

Time, s

D
is

pl
ac

em
en

t, 
m

m

 

 

DOF 1
DOF 2

 
10 12 14 16 18 20

-3

-2

-1

0

1

2

3

4

Time, s

D
is

pl
ac

em
en

t, 
m

m

 

 

DOF 1
DOF 2

 
 
FIGURE 9 
DISPLACEMENT HISTORY OF LINEAR EXPERIMENTAL SIMULATION OF TWO-DEGREE-OF-FREEDOM SYSTEM – 

LEFT: EXPLICIT CENTRAL DIFFERENCE, RIGHT: COMBINED IMPLICIT-EXPLICIT INTEGRATION 
 

In order to demonstrate the effectiveness of the proposed integration method in 
nonlinear simulations, the internal forces have been increased by adding numerical mass 
and increasing earthquake scale factor. The displacement results of a two-degree-of-
freedom system with natural periods of 0.60 and 0.15 under 20% of Tabas earthquake are 
shown in Figure 10. In this simulation, 87.1% of integration steps were successfully 
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completed with implicit corrections. Figure 10 also shows that the energy balance error 
remains close to zero during the simulation. 

Another measure of accuracy is the hysteretic behavior of experimental substructure, 
compared to those observed by the numerical integrator. This comparison is shown in 
Figure 11 for the plastic hinge of the first story. The plastic hinge behavior is selected 
over the shearing behavior of columns due to the fact that the column in experimental 
setup is continuous past the first story, and hence, its behavior is essentially governed by 
bending and plastic hinge rotation rather than shearing of the column. 

Figure 11 shows three different hysteretic plots for the first story plastic hinge. The 
actual hysteretic loop of the presumed plastic hinge in the first story of experimental 
substructure is simply a plot of measured forces versus measured displacements. The 
observed hysteretic loop is a plot of feedback forces, which are down-sampled at 
integration time step, versus desired displacements, which are explicit displacements 
started from converged displacements using (9); the desired displacement may be 
different from command displacements due to the implementation of delay compensation 
procedures. Finally, the converged hysteretic loops demonstrate the force and 
displacements at the end of implicit iterations. The similarity of these graphs shows that 
fitted polynomials have been successful in capturing the actual behavior of specimen, and 
the integration method does not add any significant contamination to the system. 
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FIGURE 10 
DISPLACEMENT HISTORY OF NONLINEAR EXPERIMENTAL SIMULATION OF TWO-DEGREE-OF-FREEDOM 

SYSTEM AND ITS ENERGY BALANCE 
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FIGURE 11 
HYSTERETIC BEHAVIOR OF FIRST STORY PLASTIC HINGE 
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Experimental studies have also shown that the performance of the proposed 
integration scheme for small nonlinearities is comparable to what can be achieved using 
an operator-splitting method. However, this procedure does not utilize the initial stiffness 
matrix, and hence, is not restricted on the amount of nonlinearity in the system. In 
addition, it is not necessary to estimate the initial stiffness matrix of the system. Further 
experimental studies involving highly nonlinear experimental substructures are necessary 
for better comparisons of these two integration methods. 

CONCLUSIONS 

A new combined implicit-explicit integration scheme for real-time hybrid simulation has 
been proposed. The procedure uses measured forces and displacements in an iterative 
scheme, to eliminate the need for application of iterative displacements directly on 
experimental substructures. This method is closely comparable to a full implicit 
integration for single-degree-of-freedom substructures, while in multi-degree-of-freedom 
structures, the effect of off-diagonal terms of tangential stiffness matrix are ignored in the 
iterative scheme. However, through numerical simulations of multi-degree-of-freedom 
structures, it has been observed that the procedure has superior accuracy and stability 
compared to explicit integration methods. 

The implicit integration scheme is modified such that the states are updated similar to 
an explicit Newmark procedure. Therefore, in cases that accurate estimation of forces 
corresponding to iterative displacements is  not possible, the procedure automatically 
switches to the guaranteed-completion explicit scheme; i.e. the predicted displacement 
will remain unchanged, while the velocity and acceleration can be found using 
measurements corresponding to that displacement. Through numerical and experimental 
studies, it was observed that less noisy measurements can increase the percentage of 
implicit steps and improve simulation quality. 

When α -method is used with the proposed integration scheme, the formulation 
requires the knowledge of experimental mass matrix. Although estimation of mass is 
normally possible with acceptable accuracy, it was observed that as long as the 
experimental mass is small, which is commonly the case in hybrid simulations, the 
simulation quality does not show a significant and meaningful dependency on estimation 
accuracy. 

Compared to explicit procedures, the proposed approach was demonstrated to be able 
to eliminate spurious excitation of high frequency modes of the system. It was also 
observed that longer time steps can be utilized with this procedure, which can be useful 
for stiff systems, or networked applications of fast hybrid simulations. In addition, this 
integration method reduces the amount of required communications among numerical 
and experimental subsystems within an integration step, as the issuance of command 
displacements and acquisition of measurements occur only once within one integration 
step. 

The fact that the proposed procedure does not need any initial estimation of system 
stiffness matrix makes it easier to use than operator-splitting series of integration 
methods. In addition, as the instantaneous behaviors of experimental substructures are 
captured through the use of measurements, the performance degradation is expected to be 
insignificant for highly nonlinear experimental substructures. 
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