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ABSTRACT 

The increased need for experimental verification of the seismic performance of 

conventional and novel structural systems has resulted in highly sophisticated dynamic 

test procedures. Hybrid simulation, including pseudo-dynamic testing of experimental 

substructures, offers an efficient method for assessment of dynamic and rate-dependent 

behavior of large-scale structural systems subjected to earthquake excitation. Compared 

to earthquake simulations using shake tables, hybrid simulation may have significant 

advantages in terms of cost, scale, geometry, and required physical mass of structures 

and components that can be tested. However, recent hybrid simulations have been 

limited to simplified structural models with only a few degrees of freedom. This is 

primarily due to the fact that hybrid simulation is a relatively new test method that is 

still being improved through research. Currently, the major challenges for using hybrid 

simulation in large and complex structural systems are the lack of robust simulation 

algorithms, and the sensitivity of the results to experimental errors in the presence of 

high-frequency modes. The main motivation for this research is to develop reliable test 

procedures that can be easily applied to fast and real-time hybrid simulations of large 
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and complex structural systems. It is also attempted to develop test procedures that are 

effective for geographically distributed hybrid simulations.  

In this dissertation, recent developments to improve the accuracy and stability of 

hybrid simulation are described using the state-of-the-art pseudo-dynamic hybrid 

simulation system at the Structural Engineering and Earthquake Simulation Laboratory, 

University at Buffalo. In particular, delay compensation procedures are examined, and 

new methods are proposed. These methods are based on the correction of tracking 

errors in force measurement signal, and using the numerical integration procedure for 

prediction and compensation of command displacement signal. A new online procedure 

is proposed for estimation of delay during the simulation, and is shown to have better 

performance compared to existing online delay estimation methods. Furthermore, two 

numerical integration procedures are introduced for hybrid simulation, which are 

shown to improve the stability and accuracy properties of the simulation. The proposed 

integration algorithms use experimental measurements to iterate within implicit scheme 

and also take advantage of a new approach to estimate the tangent stiffness matrix of 

experimental substructures. For assessment of the reliability of hybrid simulation 

results, energy-based error monitors are proposed to examine the severity of 

experimental and numerical errors. These measures are then used to demonstrate the 

improved accuracy offered by new algorithms proposed here through analytical and 

numerical studies, and numerical and experimental simulations.  
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1 INTRODUCTION 

The increasing need for identification of seismic performance of novel and existing 

structural systems has resulted in highly sophisticated dynamic test procedures. Further, 

advanced design methods, such as performance-based design require a better 

understanding of the behavior of structures well into their nonlinear response range. As 

a result, various forms of hybrid simulation [1-5] and effective force testing methods [6-

8] have been of special interest in recent years, due to their appealing features for large-

scale dynamic testing of nonlinear and complex structural systems. 

Hybrid simulation, including real-time dynamic testing of substructures, is an 

efficient method for assessment of the dynamic and rate-dependent behavior of 

structural systems subjected to earthquake excitation. The method separates a structure 

into physical (experimental) and numerical substructures, only requiring the 

experimental simulation of parts of the structure that are difficult to model (Figure  1-1). 

By utilizing an incremental time-stepping solution technique and communication of 

interface forces and displacements, a parallel simulation can be carried out, which takes 
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advantage of numerical simulation for the well-identified parts of the structure, and 

experimental evaluation of complicated and nonlinear parts. 

 
Figure  1-1   Illustration of hybrid structural simulation. 

A real-time hybrid test may have significant advantages over an earthquake 

simulation test using a shake table in terms of the size, geometry, and required physical 

mass of structures that can be tested [4]. Substructure testing can also result in a better 

understanding of component behavior while interacting with the entire system, contrary 

to shaking table tests that provide information about the overall behavior of the test 

structure. This provides the opportunity to closely study the experimental behavior of 

structural components as well as the system-level response, and examine their 

effectiveness in achieving a better overall structural performance. 

Performing an accurate and reliable hybrid simulation can be a challenging task. For 

example, setting up realistic boundary conditions for experimental substructures may be 

difficult. Similar to shaking table tests, the gravity loads may not be realistic when the 

experimental masses are small, and no replacement gravity forces are applied to the test 
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specimens. Furthermore, hybrid simulation procedures are sensitive to experimental 

and numerical errors, and current testing algorithms need to be improved to reliably test 

large-scale structures with many degrees of freedom. It is the primary goal of this 

dissertation to develop enhanced test procedures applicable to complex structural 

systems that are effective for fast and real-time hybrid simulations. The effectiveness of 

these procedures for geographically distributed hybrid simulations is also considered in 

their development. 

1.1 PSEUDO-DYNAMIC HYBRID SIMULATION 

In a hybrid simulation, the equation of motion of the combined numerical and 

experimental structure model can be expressed as: 

 ιt gu+ −Ma +Cv +Kd r = M  (1.1) 

in which M , C  and K  are mass, damping, and stiffness matrices of the numerical 

substructure, tM  is the total mass matrix of the structural model (including 

experimental mass), ι  is the influence vector, d , v , and a  are displacement, velocity 

and acceleration vectors, respectively; gu  is the input ground acceleration and r  is the 

restoring force measured in the experimental substructures. The experimental restoring 

force vector may include strain-dependent, damping, or inertial forces, depending on 

the experiment rate and dynamic characteristics of the experimental substructure. 

This dissertation mainly focuses on displacement-controlled hybrid simulation. In 

such experiments, the displacements computed by the numerical model are applied to 

the physical specimen, and the resisting force is measured and fed back into the 
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numerical model, as shown in Figure  1-2. This figure also shows that the displacements 

are imposed using servo-hydraulic actuators. In order to reduce the cost of the 

experiments in terms of the required mass and hydraulic power demand, and to 

improve the dynamic performance of servo-hydraulic actuators, the majority of mass is 

often considered in the numerical model. That is, the dynamic forces are created through 

a “virtual” mass. For this reason, this test method is sometimes called pseudo-dynamic 

hybrid simulation [9, 10], which may be performed at slow (static) or fast and real-time 

rates. 

 
Figure  1-2   Block diagram of a typical displacement-controlled hybrid simulation. 

In hybrid simulations, the experimental substructures may also be distributed in 

several laboratories in order to take advantage of their equipment for testing large 

structural systems. In this case, this test method is called geographically-distributed 

hybrid simulation [11]. Effective force testing is another method of testing structural 

components, in which actuators are used to apply the inertial forces to the experimental 

substructure [6-8]. A combination of force-controlled excitation of masses using 

actuators and base excitation using shake tables can also be used for substructure testing 
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[5, 9]. This constitutes a general test method that can be reduced to the above-mentioned 

test procedures by manipulating the roles of actuators and shaking tables. 

Many of the components of a pseudo-dynamic hybrid simulation shown in the 

block diagram of Figure  1-2 are studied in this dissertation. As shown in this diagram, 

each step of a pseudo-dynamic experiment starts with the calculation of the desired 

displacement in the numerical simulation (integration) block. The numerical integration 

procedures are studied in Chapters  7 and  8. The desired displacement issued by the 

integration module is fed into a correction or compensation block (Chapters  5 and  6). 

This block may modify the desired displacement based on the expected dynamics of the 

test setup, in order to improve the agreement between the desired and achieved 

(measured) displacement signals. The output of this correction block is called 

compensated displacement, which is then used for generation of actuator command 

signal. The signal generation block re-samples the signal at the command update rate for 

the experimental setup, and its output is named command displacement signal. Only if 

the numerical integration and experiment command update rates are the same, the 

compensated and command displacement signals are identical. After conversion to 

analog form, the command displacement is fed into a controller, such as a proportional-

integral-derivative (PID) controller, to produce the command voltage signal for actuator 

servovalve (Chapter  4). The actuators then apply the command displacement to the 

experimental substructure with the aid of hydraulic power supplies. The restoring force 

and achieved displacement are then measured using transducers and load cells installed 

in the experimental setup, and converted to digital form for use by the numerical 
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simulator. Before using the measurements in the integration module, they may be 

modified in another correction or compensation block (Chapter  6). This compensator can 

correct the signals for the actuator tracking errors, i.e. the differences between desired 

and measured displacement signals. These differences normally exist even when the 

displacement signal is carefully compensated for system dynamics. Finally, the 

numerical simulation module updates the states and calculates the next desired 

displacements using the most recent measurements to continue to the next simulation 

step.  

1.2 MOTIVATIONS AND GOALS 

Hybrid simulation has significant potential for testing of large-scale structural 

systems. From this standpoint, using geographically distributed testing facilities has 

received close attention in recent years, as it provides the possibility of testing large 

structures with many experimental substructures – beyond what can be performed in a 

single structural laboratory. Performing hybrid simulation at fast and real-time rates has 

also been of interest, in order to capture the rate-dependent behavior of experimental 

components such as viscous dampers, and to prevent the stress relaxations that may 

occur in static tests. 

In order to utilize the hybrid simulation test method at its full potential, research in 

algorithm development and implementation techniques is still ongoing. To this day, 

real-time and distributed applications of hybrid simulations are very few, and the 

structures that are tested are commonly small, or considerably simplified. This is 
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primarily due to the limited robustness of error compensation or numerical simulation 

procedures that are sensitive to high natural frequencies, or have limited accuracy for 

testing highly nonlinear systems. 

A brief look at the literature on hybrid simulation technique (presented in Chapter 

 2) shows that in addition to the improvement of laboratory equipment and test 

hardware [9, 11-13], substantial enhancements of hybrid simulation procedures are 

necessary. Particularly, the test procedures need to be extendable to multi-degree-of-

freedom (MDF) experimental substructures, or systems that contain high-frequency 

modes. The simulation procedures should be able to capture highly nonlinear behavior 

of experimental substructures with reasonable accuracy. On the other hand, such 

procedures should have modest processing and communication requirements for real-

time or distributed applications. Simplicity of these procedures is another important 

factor that makes them feasible for widespread experimental applications. 

As a hybrid simulation includes both numerical and experimental errors, proper 

identification and compensation of these errors are critical. Hence, besides the essential 

simulation components, reliability measures should be established to assess the accuracy 

and reliability of simulation results. 

In addition to the development of a basic pseudo-dynamic test system at Structural 

Engineering and Earthquake Simulation Laboratory (SEESL) at University at Buffalo, 

this study is aimed towards the improvement of current procedures used in hybrid 

simulation to achieve the above-mentioned goals. It is attempted to develop simple, 

computationally effective and robust procedures that expand the capabilities of hybrid 
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simulation to real-time and distributed experiments of large and complex structural 

systems. In this dissertation, the most common procedures for identification of system 

dynamics, error and delay compensation methods and numerical integration algorithms 

are examined, and improved procedures are introduced. In addition, new and existing 

accuracy measures are studied to assess and demonstrate the accuracy and stability of 

hybrid simulations. 

1.3 DISSERTATION ORGANIZATION 

Following the state-of-the-art of hybrid simulation test method outlined in Chapter 

 2, the hybrid simulation test system at SEESL is presented in Chapter  3. The major test 

components and simulation subroutines are introduced, and the software environment 

for creating simulation models is described. The hybrid simulation test setup that has 

been used for verification of test procedures is also presented in Chapter  3. In addition, 

this chapter introduces the numerical models used for computer simulations of hybrid 

simulation. 

Chapter  4 is dedicated to an introduction of servo-hydraulic actuators and their 

control systems, since they play an important role in hybrid simulations. The mechanical 

principles governing the functions of these actuators are presented, and their numerical 

models are studied. This chapter also includes an introduction to PID controllers that are 

widely used with servo-hydraulic actuators. In Chapter  5, experimental and numerical 

error sources are explored, and methods for estimation and quantification of these errors 

are studied. Servo-hydraulic actuator delay, which is one of the most detrimental 
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experimental error sources in hybrid simulation, is studied in detail in this chapter. 

Sources and effects of delay, as well as its measurement methods are studied, and an 

improved online delay estimation procedure is introduced. Next, the experimental and 

numerical error indicators are studied, and an overall error measure based on energy 

balance is proposed. 

 Chapter  6 presents the existing and improved delay and error compensation 

methods for hybrid simulation. In this chapter, force correction methods are proposed 

for compensation of moderate delay and tracking errors, and displacement 

compensation is introduced using the numerical integration equations, as a better 

alternative to the widely-used polynomial extrapolation approach. 

Numerical integration procedures for hybrid simulation are studied in Chapters  7 

and  8. Chapter  7 presents the formulation of the most common numerical integration 

methods. The widely-used explicit and operator-splitting methods are also presented in 

this chapter. Chapter  7 serves as a foundation for the improved numerical integration 

methods that have been developed in this study and introduced in Chapter  8. The 

stability and accuracy properties of the numerical integration methods presented in 

Chapters  7 and  8 are compared analytically, numerically and experimentally, using the 

error indicators presented in Chapter  5. This dissertation is concluded in Chapter  9 with 

a summary of achievements, and a brief discussion of future research needs for further 

development of hybrid simulation. 
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2 HYBRID SIMULATION METHODS – STATE-OF-THE-ART 

Development of improved hybrid simulation testing methods has been the subject 

of vast research in recent years. Extensive attempts have been made to develop 

improved test algorithms and enhanced procedures for numerical simulation and 

compensation of system dynamics, to improve the robustness of this test method. The 

development of George E. Brown, Jr. Network for Earthquake Engineering Simulation 

(NEES), which provides researchers with advanced testing, processing and 

communication tools, has also contributed to the increased interest in fast and 

geographically distributed hybrid simulations.  

This chapter presents on overview of state-of-the-art research methods for hybrid 

simulation through a concise review of the literature. Existing publications are 

categorized into several groups based on their primary subjects, such as test algorithms, 

hardware, error estimation and compensation, and numerical integration methods. In 

this study, the physical components of hybrid simulation system, their configuration 

schemes and communication tools are termed the test hardware. Other simulation 



Hybrid Simulation Methods – State-of-the-Art  
  
  

 

 11 

components, such as test algorithms and computational subroutines for structural 

simulation, system identification, signal conditioning and error compensation are 

referred to as test procedures. 

2.1 DEVELOPMENT OF FAST AND DISTRIBUTED HYBRID SIMULATION 

PROCEDURES 

Fast and real-time hybrid simulation techniques owe their growth at early stages to 

the slow (quasi-static) pseudo-dynamic test procedures developed in past decades  [1-3, 

14-16]. The numerous shortcomings of static tests, such as their inability to capture the 

rate-dependent behavior of experimental components and problems with stress 

relaxation, have persuaded researchers to seek fast online implementations of this test 

technique. A real-time hybrid simulation, in which experimental substructures are 

loaded at realistic rates, has the ability to accurately identify the dynamic and rate-

dependent properties of experimental substructures [4]. 

The pseudo-dynamic method was shown to be an effective method for seismic 

testing of structural systems in 1970’s and 80’s in Japan and the United States [1, 17, 18]. 

It was demonstrated that the pseudo-dynamic method of structural testing can be as 

reliable as earthquake simulations using shaking tables [1], while providing full scale 

testing capability of structural components. Mahin et al. [2] summarized the basics of 

pseudo-dynamic tests, their capabilities and limitations, and advantages over shaking 

tables in testing large and heavy specimens. They introduced the concept of 
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substructuring to allow for economical and realistic testing of structural sub-

assemblages. 

The Japanese activities on online testing until mid 80’s have been summarized by 

Takanashi and Nakashima [18]. In addition to a summary of the development history of 

hybrid testing, they discussed the reliability issues of online tests, and extended the 

online test concept to fast online and substructure testing. They concluded that a fast 

online testing is necessary to capture the rate-dependent behavior of structural 

specimens and substructures. 

Nakashima and Masaoka [19] successfully conducted simulations of a 5-story base-

isolated building. Nakashima [4] studied the recent developments and limitations of 

online tests, and presented a test system for conducting such experiments. In that test 

system, the response analysis and signal generation tasks were separated in order to 

provide means for testing of complex structures; in each integration time step, the 

multitasking system continues to extrapolate the higher-rate command displacements as 

long as the lower-rate response analysis task is being completed. After that, an 

interpolation procedure calculates the command displacements for the rest of time step. 

Nakashima [4] identified an important advantage of hybrid simulation in reduction of 

the need for scaling (size and rate of loading), which can significantly affect the 

structural behavior. Nakashima also pointed out the need for further development of the 

procedures for stiff structures and application to structures loaded by multiple 

actuators. 
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2.1.1 GENERALIZED HYBRID SIMULATION METHODS 

Sivaselvan [10] presented a unified view of hybrid simulation algorithms, from 

which many existing algorithms can be derived as particular cases. Dynamic and 

pseudo-dynamic test methods were identified based on physical existence of mass, and 

hence, the inertia forces. It was shown that an adaptive Smith predictor can be used for 

control and error compensation of test system. The use of Smith predictor for 

compensation of system dynamics was also studied by Reinhorn et al. [20] and Shao et al. 

[5] in force-controlled hybrid simulations. 

Shao [9] introduced a unified approach to hybrid simulation by using shake tables 

and actuators for experimentation of substructures. A general formulation was 

developed that included the special cases of shake table, pseudo-dynamic, and effective 

force testing techniques. The development was verified using proof-of-concept 

experiments of a small linear test setup with uni-directional shake table and actuator. 

2.1.2 SOFTWARE FRAMEWORKS 

Recently, attempts have been made to develop general and flexible software 

environments for performing distributed hybrid simulations [21-24]. These software 

utilize object-oriented frameworks, and have been developed to connect general finite 

elements analysis software to local or distributed experimental subsystems. 

Development of generalized frameworks has been a challenging task for popularizing 

the use hybrid simulation test technique, due to the extensive diversity of laboratory 

equipment and complexity of the structures to be tested. For this reason, the source 
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codes of many of these software frameworks are open to the user, so that additional 

subroutines can be introduced for use in different laboratories. 

The Open-Source Framework for Experimental Setup and Control (OpenFresco) 

was developed at the University of California – Berkeley by Schellenberg et al. [21, 22]. 

This package includes a set of interrelated software classes based on object-oriented 

software design methodologies, which form a framework for integrating experimental 

testing with the object-oriented finite element analysis software OpenSees (Open System 

for Earthquake Engineering Simulation [25]). OpenFresco mediates the instructions 

between the numerical simulation computer and local or remote laboratory equipment 

in a highly structured manner. 

The Multi-Site Substructure Pseudo-Dynamic Simulation Coordinator (UI-SIMCOR) 

is another software package for this purpose that was developed at the University of 

Illinois at Urbana-Champaign by Kwon et al. [24]. This package uses a variety of 

communication protocols to integrate its numerical simulation with other analysis 

software or laboratory test equipment in local or remote sites. 

2.1.3 HYBRID SIMULATIONS MODELS 

Analytical models of hybrid simulation test systems have attracted the interest of 

several researchers. These models provide the potential for better identification of the 

complex dynamics of experimental subsystems, and hence, development of more 

effective compensation procedures. In addition, such numerical models can be used in 
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the preliminary evaluations of new test procedures on a computer, thus reducing the 

cost of such investigations and preventing potential damages to laboratory equipment. 

Williams et al. [26] developed a computer model for hybrid simulations, including 

actuator, PID controller and experimental specimen. By comparing their results to 

experimental simulations, they showed that the model is able to predict the global 

system behavior, although their results were shown to be very sensitive to bulk modulus 

of the oil. As a result, the authors suggested the use of this model for a wide range of oil 

bulk modules to capture the expected global behavior of the experiment. 

Jung and Shing et al. [27-29] introduced a transfer function for pseudo-dynamic test 

system. They demonstrated the necessity of removal of inertia effects from the 

experimental restoring forces in order to achieve the same resonance frequency as the 

exact solution. In fact, they did not consider the effects of experimental mass in the 

development of their transfer function, thus requiring the above-mentioned 

consideration. 

Zhao et al. [30] developed mathematical models for real-time large-scale structural 

testing methods such as effective force technique and pseudo-dynamic experiments. 

Mercan et al. [31] demonstrated the design of PID and state-space controllers, pointing 

out the advantage of the state-space form, especially in multi-input-multi-output 

systems. The state-space controller was designed using an analytical model of the test 

system. 
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2.1.4 SPECIAL TEST PROCEDURES 

Geographically distributed hybrid simulations have received close attention in 

recent years [11, 13, 32]. Using this approach, testing equipment in several laboratories 

can be utilized to test multiple experimental substructures of large structural systems. 

Mosqueda et al. [11] studied the implementation and accuracy of continuous hybrid 

simulations with geographically distributed experimental substructures. By comparing 

the results of geographically distributed experiments with those of conventional local 

tests, they demonstrated the effectiveness of this test method. 

Pan et al. [13] presented an internet online test system developed for the simulation 

of earthquake response of structures. They carried out this test between two universities 

in Japan, and demonstrated the effectiveness of internet communications for distributed 

hybrid simulations. Guo et al. [32] demonstrated the application of a collaborative 

hybrid dynamic testing software based on network structural laboratories (NetSLab) 

along with a network communication platform and testing software to a distributed 

hybrid simulation. They demonstrated the validity of geographically distributed tests 

through pseudo-dynamic experiments of bridge columns. Several software frameworks 

have also been developed for geographically-distributed hybrid simulations [21-24] that 

provide means for communication of different analysis and experimentation 

components in local or remote sites (Section  2.1.2). 

Nakata et al. [33] presented a mixed load-displacement control method for coupled 

multi-axial systems at static loading rates. They utilized Broyden formula [34] to update 

the stiffness matrix for use in their iterative integration scheme. The experimental 
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verification was carried out on reinforced concrete column specimens to demonstrate 

the effectiveness and robustness of their approach for highly inelastic systems. 

Effective force testing methods [6-8] have also been subject to extensive 

developments in recent years. The major difference between this test method and 

pseudo-dynamic testing is that it is based on a force-controlled loading system. In 

addition, since the structural mass can normally be well-identified, the loading history is 

known prior to simulation, unless mass is modeled virtually, and experiment feedback 

is used in determination of loading history [6]. 

2.2 HYBRID SIMULATION HARDWARE 

Mahin and Shing [1] pointed out that pseudo-dynamic experiments can be carried 

out with the basic equipment that is readily available in most structural simulation 

laboratories, implying the low cost of these experiments compared to shaking table tests. 

However, recent hardware designed especially for hybrid simulation has improved the 

speed and accuracy of testing over the past years. Digital controllers, servo-hydraulic 

actuators with enhanced tracking capabilities and reduced response lag, better 

measurement instrumentation, communication systems with extremely small delays in 

order of nanoseconds, faster processors and enhanced data storage equipment, along 

with other hardware improvements have enabled researchers to perform fast, real-time 

and geographically distributed hybrid simulations [11]. 

Mosqueda et al. [11] outlined a versatile hardware architecture for hybrid 

simulation with a distributed control scheme. Their improved hardware architecture 
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allows for a faster and continuous execution of hybrid simulations. By adopting multi-

tasking in real-time applications, they separated signal generation and integration tasks, 

thus facilitating the use of more sophisticated integration and compensation procedures 

for complex analytical substructures. They also introduced a three-loop hardware 

architecture consisting of the integrator, corrector, and servo-control loops. The middle 

corrector loop is an intermediate loop that buffers the exchange of data between the 

integrator and servo-control loops. This loop also guarantees continuous simulation by 

carrying out interpolation of data when the analysis results are ready, and extrapolation 

of results when the analysis is still in progress [19]. 

Mosqueda et al. [11] used a Shared Common Random Access Memory Network 

(SCRAMNet) interface [35-37] as a fast communication device among simulation 

components. They also extended their hardware architecture to the experiments over the 

internet by employing an event-driven simulation scheme [38]. 

In order to carry out low-cost nonlinear hybrid simulations, Mosqueda et al. [11] 

developed an experimental setup consisting of a column with a clevis at the base. Steel 

coupons at a weaker capacity than the column inserted at the clevis provided nonlinear 

response, while the column remained linear for further simulations. The experimental 

setup used in this dissertation is developed on the same basis, and will be presented in 

Chapter  3. 

Internet linkage of distributed test and analysis domains was studied by Yang et al. 

[12] and Pan et al. [13]. They demonstrated the architecture of simulation and 

experiment modules, equipment control and network communications, as well as data 
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acquisition and visualization systems. Reinhorn et al. [20] and Shao et al. [5, 9] designed a 

unified platform for an arbitrary state-of-the-art testing facility. The major components 

of platform were identified, and their functions were established. In their development, 

both actuators and shaking tables were used to apply dynamic forces on the 

experimental substructure. They demonstrated that their general test system can be 

simplified to the special cases of shake table, effective force, and pseudo-dynamic tests. 

The specific developments were based on the structural test facilities at University at 

Buffalo, which will be presented in Chapter  3. 

2.3 NUMERICAL AND EXPERIMENTAL ERRORS 

The random nature of physical experiments along with the imperfections of the test 

equipment, normally results in small but important differences among desired and 

achieved displacement histories. In an ordinary open-loop experiment, where the 

displacement or force history imposed by the actuators are previously known, these 

small differences may be tolerable, as the offline tools for processing experimental data 

generally make it possible to remove the majority of these errors. 

In feedback systems, however, these errors are included in the signals that will be 

used to generate next actuator command; as a result, the errors can accumulate and 

increasingly contaminate the simulation results. Several researchers in different fields of 

engineering have faced this problem, and it has been shown that it is essential for the 

stability and accuracy of simulations to make corrections and compensations on the 

signals being transmitted among numerical and experimental substructures. These 
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errors, if not properly addressed, may make the simulation results unreliable, or even 

unstable, resulting in premature damages to the experimental specimens and test 

equipment. 

The importance of errors and their potential effects on simulation results was 

recognized early on in slow pseudo-dynamic tests. Mahin and Shing [1] showed that 

both numerical and experimental errors can accumulate through simulation steps and 

contaminate the results, with the majority of errors originating from experimental 

sources. They also pointed out the difficulty associated with stiff (high-frequency) 

systems, which are extremely sensitive to experimental errors. 

Thewalt and Mahin [3] studied pseudo-dynamic testing as an alternative to shaking 

table tests. They demonstrated the importance of the removal of experimental errors to 

prevent error propagation, and spurious excitation of higher-frequency modes. They 

also proposed procedures for performing real-time, or close to real-time hybrid 

simulations. Thewalt and Roman [16] introduced several performance parameters for 

identification of systematic errors and quantifying the uncertainties. Those parameters 

could also be used to apply signal corrections during the testing. 

Monitoring the errors associated with hybrid simulations has been studied by 

Mosqueda et al. [11, 39-41]. In those studies, they introduced error indicators that help 

ensure the simulation quality during the experiment. The error measures are based on a 

comparison of the energy dissipated by the specimens and energy dissipation apparent 

to the numerical integrator. If large errors are detected early, the simulation can be 

stopped in order to prevent damages to the experimental specimens when the 
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simulation quality is not acceptable. Errors resulting mainly from uncompensated delay 

and their effects on the structural response were investigated, and it was shown that the 

accuracy of the simulation can be predicted based on these experimental energy error 

measures.  

In order to estimate the extent of numerical errors in nonlinear seismic analyses, 

Filiatrault et al. [42, 43] utilized energy balance error as a measure of simulation 

accuracy. They provided examples of the use of energy balance concept, and 

demonstrated that the energy balance formulation better detects the errors than 

conventional peak parameters, such as displacements. 

2.4 COMPENSATION OF SYSTEM DYNAMICS AND DELAY 

As mentioned in the previous section, control of experimental and numerical errors 

is crucial for stability and accuracy of hybrid simulation. Careful consideration is 

necessary to minimize such errors and improve the quality of hybrid simulations. 

However, it is impossible to completely eliminate all error sources and achieve an ideal 

signal tracking from the actuator, or perfectly smooth and accurate measurements. For 

this reason, other procedures have been developed that attempt to correct the remaining 

errors and reduce the experimental imperfections. 

One of the major sources of the above-mentioned errors is the dynamics and delay 

of servo-hydraulic actuators. Since the problem of control and delay compensation in 

feedback systems is faced in different engineering fields, including mechanical, chemical 

and electrical engineering, the research dedicated to this field is quite extensive. In the 
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field of structural engineering, the issue of actuator dynamics and delay has been 

extensively studied in active control of structures and hybrid simulations. These 

feedback systems mainly deal with extreme, transient and random effects of earthquake 

excitations. A concise review of the literature on delay compensation methods for 

structural applications is presented in the following sections. 

2.4.1 DELAY COMPENSATION FOR ACTIVE CONTROL OF STRUCTURES 

A number of recent and widely-used delay compensation methods for active 

control of structures in presented in this section. Agrawal et al. [44] studied the 

instability due to time delay and its compensation in active control of structures. They 

showed the dependency of maximum allowable time delay on the natural period of the 

structure and feedback gains. They presented upper limits on the time-delay to ensure 

the stability of the system. By considering the delay as transportation lag, the authors 

proposed a linear controller that compensates the delay by using the present states of the 

system and past control force information. Their method was shown to slightly increase 

the required energy for compensation of time-delay.  

Qi and Kuang [45] used an extended linear Kalman optimal filter to compensate the 

time delay in active closed-loop structural control. This approach, however, is difficult to 

apply to hybrid simulations, as Kalman filter requires closed-form information about the 

state equations of the system, which is normally unavailable in a hybrid simulation. 

Agrawal and Yang [46] presented a state-of-the-art review of available methods for 

time-delay compensation for control of civil engineering structures. Through numerical 
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simulations, they demonstrated the stability and control performance of several 

compensation procedures, including the recursive response method, state-augmented 

compensation, controllability-based stabilization, Smith Predictor, and Padé 

approximation. In addition, they evaluated the performance of phase shift method [47, 

48] to show that this approach is not reliable for larger delays or high-gain controllers 

(high damping in various modes), and may destabilize the system. On the other hand, 

they proposed the recursive response and state-augmented compensation methods with 

better stability and control performance. They also showed that the controllability-based 

compensation outperforms the phase shift method for larger time-delays. They stated 

that the Padé approximation method is always stable and capable of compensation of all 

delay values with minimal performance degradation. Finally, the guaranteed stability of 

Smith Predictor and its ability to compensate small time-delays without considerable 

performance degradation were also demonstrated. A number of these procedures used 

in active control of structures may have the potential to be used in hybrid simulation, 

and will be discussed next and in Chapter  6. 

2.4.2 DELAY COMPENSATION IN HYBRID SIMULATIONS 

As mentioned in the previous section, Smith Predictor is one of the delay 

compensation procedures in active control of structures that have been shown to be 

stable and able to compensate small time delays without significant performance 

degradation. Smith Predictor has also been used in linear force-controlled hybrid 

simulations [5, 20], where the numerically computed forces are commanded to the 

actuator, and displacements are measured and fed back into the numerical model. 
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However, the major drawback of this procedure is that it needs an accurate numerical 

model of the system. 

Compensation procedures for hybrid simulation should be able to eliminate the 

negative effects of actuator dynamics and delay without knowledge of a precise 

analytical model for the experimental setup. These models are normally unavailable in 

hybrid simulations, due to the complex servo-hydraulic test system and unidentified 

behavior of experimental substructures. For this reason, it is often impossible to directly 

implement active control compensation methods in hybrid simulation, and other 

procedures have been developed specifically for hybrid simulation. 

In order to reduce the systematic errors in pseudo-dynamic experiments, Yi and 

Peek [49] considered adjustments in time step. They demonstrated that this approach is 

particularly successful in the elimination of systematic errors of single-degree-of-

freedom (SDF) systems, as long the associated random errors are small, as the procedure 

may have an undesirable effect on them. They also showed that their approach 

improves the error propagation properties of MDF systems. 

Horiuchi et al. [50] demonstrated the importance of the delay in real-time hybrid 

simulations, and its effect as a negative damping, which may lead to instability of the 

system. They developed a hybrid simulation system with a delay compensation 

procedure, which predicts the required displacement at a time equal to one time step 

ahead of current simulation time. By comparing the results of their hybrid simulation 

with those obtained from shaking table tests, they verified the accuracy and reliability of 

hybrid simulation with delay compensation. Horiuchi and Konno [51] improved the 
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above-mentioned delay compensation method by including velocity and acceleration in 

their predictions. In this method, the acceleration was linearly extrapolated from the 

current step, which can then be used to implicitly determine the predicted displacement. 

Since in an explicit integration procedure, the acceleration and velocity are only 

available for the previous step, the delay has to be increased by one integration time step 

in this method. 

System dynamics and delay of displacement-controlled hybrid simulations were 

also studied by Zhao et al. [30]. They investigated the amplitude reduction and response 

delay phenomena in their simulations, and concluded that physical mass may result in 

amplitude reduction by limiting the maximum proportional gain. They also showed that 

first order phase-lead networks can be used to compensate system dynamics when 

hydraulic demands are small, while more advanced schemes are necessary to account 

for nonlinearities in servo-systems. 

Darby et al. [52-54] studied real-time substructure testing methods using hydraulic 

actuators and delay compensation procedures. They pointed out the dependency of the 

actuator delay on the stiffness of the specimen, and proposed a method for estimation of 

delay on a real-time basis. They demonstrated the accuracy of the estimated delay in 

single- and two-degree-of-freedom systems subjected to sinusoidal excitations. The 

delay compensation was then carried out using the prediction of the required 

displacement at a time equal to the one time step ahead [50]. 

Carrion and Spencer [55] used an adaptive experimental tangent stiffness matrix to 

predict the restoring force due to the desired displacement and compensate for time 
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delay of real-time hybrid simulations. They used Broyden formula [34] to update the 

stiffness matrix, and demonstrated that larger natural frequencies that can be tested than 

when polynomial extrapolation is used [50]. 

2.5 NUMERICAL INTEGRATION PROCEDURES 

Numerical integration procedures are time stepping algorithms to solve the 

equation of motion by updating the states (displacements, velocities, and accelerations) 

in each simulation time step. This is carried out in the numerical simulation module, and 

is one of the most challenging tasks in a hybrid simulation. 

The direct implementation of iterative implicit integration procedures may be 

difficult in hybrid simulations due to the involvement of physical substructures. 

Particularly, physical iterations should be avoided, as they may unexpectedly damage 

the experimental substructures in displacement reversals and steps with failed 

convergence, or alter the energy-dissipation properties of test specimens. Estimation of 

an updated tangent stiffness matrix may also be difficult due to the noise in 

measurements. These limitations have made the explicit integration procedures quite 

popular in hybrid simulations [11] for their efficiency and accuracy. These procedures 

do not include iterations, and the command displacements sent to actuator directly 

reflect the desired displacement of the current time step.  

Explicit central difference integration was originally used for implementation of 

online experiments by Takanashi et al. [17]. This method is considered as the basic 

integration method for relatively simple applications of hybrid simulations [19, 56]. 
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More recently, Bonnet et al. [57] used explicit Newmark method to avoid iterations in 

hybrid simulation. They proposed an outer loop control (a compensator) to eliminate the 

dynamics of displacement imposition system. In this controller, the desired command 

displacement is used in a numerical model of the loading system (reference model), to 

give an estimate of the restoring force. The control signal is then composed of two 

signals: the estimated restoring force and measured displacement, multiplied by their 

corresponding gains. These gains are constantly updated by an adaptation routine using 

three pieces of information: estimated restoring force, measured displacement, and the 

displacement error signal (difference between measured and desired displacements). 

This method was implemented in a multitasking environment. 

Despite their simplicity and applicability to hybrid simulations, explicit integration 

procedures are conditionally stable, and the maximum integration time step is restricted 

[58]. This stability limit is directly related to the highest natural frequency of the system 

and may require very small time steps, regardless of actual contribution of high-

frequency modes to structural response. This results in the necessity of very small time 

steps that are impractical for stiff (high-frequency) systems, or unsuitable for networked 

applications of hybrid simulations. In addition to increasing the length of non-real-time 

experiments, an increase in the number of time steps will increase the potential for error 

propagation. Further, time delay will be more problematic when the time steps become 

very small compared to the delay amount. For these reasons, extensive research has 

been dedicated to the development of integration procedures with better stability and 
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accuracy characteristics that take special precautions for imposition of iterative 

displacements on experimental substructures. 

Thewalt and Mahin [3] pointed out the difficulty associated with the estimation of 

tangent or initial stiffness matrix of experimental substructures. They used a modified 

Newmark integration method proposed by Hilber et al. [59], that includes a parameter 

that can be used to introduce additional damping in higher modes of the system. With 

this capability, the damping term of the equation of motion can be eliminated, and all 

required damping can be considered in the numerical damping of the integration 

procedure. This method, known as α -method, was used to determine the command 

displacement expression based on available data (explicit terms) and the restoring force 

of command displacement, which is not available before imposition of command 

displacement and digitization of force measurement. 

In order to address this issue, Thewalt and Mahin [3] introduced a valve command 

signal that is the result of analog summation of explicit terms of command displacement 

(which is determined by computer in digital domain) and a feedback term, which forms 

the implicit portion of command displacement. As the command displacement is being 

applied on the test specimen, the feedback signal automatically uses the new restoring 

force to update the command voltage (control signal), and finally, the command 

displacement will be completely applied including the implicit term. In this way, the 

effect of actual restoring force will be applied in the command displacement 

determination, although it is not known by the numerical integrator. 
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While the above-mentioned iterative implicit method is theoretically feasible, there 

are several issues associated with its implementation. First, the force measurements in 

experiments are generally highly oscillatory; use of low-pass filter will then add to the 

delay of force feedback, and the implicit displacement may not be fully achieved in the 

allotted step time. In addition, the displacement and force should both be measured at 

the end of step, and there is no means for ensuring their accuracy. Further, the 

convergence of this feedback system may be bi-directional, which can result in 

erroneous energy dissipation or damage to the substructures. Similar implicit 

integration methods with feedback loops involving experimental substructures have 

been developed in digital domain [28, 29, 60, 61]. Shing et al. [28] also imposed a fixed 

number of iterations to ensure the completion of integration task within the allotted 

time.  

Shing [61] proposed an implicit integration procedure, in which the iterative 

displacements imposed on substructures are not oscillatory; in other words, the 

convergence is attempted to be uni-directional by using a reduction factor on the 

iterative displacements of α -method in multi-degree-of-freedom systems. By 

implementing a large number of small increments in each step, the final convergence 

situation will be equivalent with the method proposed by Thewalt and Mahin [3] in the 

analog domain. They also completed this procedure by introducing easy-to-implement 

convergence criteria. The accuracy of this technique was demonstrated with error-

propagation analysis for linear systems; in addition, it was shown that the procedure 
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adds damping to higher-frequency modes of the system that could otherwise be excited 

by measurement noise and convergence error. 

The above-mentioned implicit integration procedure [61] was recently extended to 

MDF experimental substructures in real-time simulations by Jung et al. [62]. They 

adopted a fixed number of iterations in each integration step to ensure the completion of 

simulation task within the allotted analysis time. In order to avoid velocity fluctuations 

from one integration step to another, and to provide a smooth command displacement 

signal for the actuators, Jung et al. adopted the following procedure. In each iteration, 

the iterative displacement vector is calculated using an implicit formulation and the 

initial experimental stiffness matrix. Then, a fraction of the trial displacement at each 

experimental degree of freedom (computed using a quadratic interpolation) is applied to 

the test structure. Following the application of the trial displacement vector, the 

restoring force vector is measured and used for calculation of next trial displacements, 

starting from the last set of measurements. At the end of the iterative scheme of each 

integration step, an additional correction is made on the restoring force vector to account 

for actuator tracking errors, using the initial experimental stiffness matrix. 

Wu et al. [63] used the equivalent force method for solving the nonlinear equation of 

motion in a real-time substructure test. In their approach, the implicit iterations were 

replaced with force-feedback control loop. The equivalent force feedback was a 

combination of external force and the pseudo-dynamic effects of the previous 

integration step. They verified the effectiveness of their integration approach in 

experimental studies of a magnetorheological damper. 
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Shing et al. [28, 29] developed transfer functions for all components of hybrid 

simulation hardware, and used the iterative α -method with a fixed number of 

iterations, to ensure completion of calculations within a practical amount of time. 

Instead of physical application of iterative displacements, they used initial stiffness for 

estimation of iterative forces, which reduces the communication requirements of hybrid 

simulation. The use of initial experimental stiffness matrix results in exact simulations 

for linear systems, but possesses limited accuracy for testing highly nonlinear systems, 

where the experimental tangent stiffness matrix significantly differs from its initial 

value. 

In order to avoid physical iterations, Ghaboussi et al. [64] utilized an implicit 

integration method only in the numerical substructure; the interface forces between the 

numerical and experimental substructures were considered as external forces acting on 

the numerical model, which were assumed to remain constant throughout any step. As a 

result, there was no need for calculation of initial stiffness matrix, or application of 

iterative displacements to the experimental substructure. They presented a stability 

analysis of this approach and demonstrated its conditional stability, depending on the 

simulation time step normalized by the circular frequency of the highest natural 

vibration mode. Schneider and Roeder [65] utilized a similar approach using DRAIN-2D 

software and subtracting the incremental experimental restoring force from external 

excitation. 

Nakashima et al. [14] studied the integration algorithms developed for hybrid 

simulation, and proposed the operator-splitting method for substructure pseudo 
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dynamic tests. In operator-splitting method, the desired displacement at each step is 

based on the implicit Newmark method. However, the command displacement signal is 

composed only of the explicit terms. After measuring the restoring force due to this 

command displacement, a correction step is conducted that updates the displacements 

to satisfy the original implicit equation. The restoring forces are then updated according 

to this change in displacement vector using the initial experimental stiffness matrix. 

Nakashima et al. demonstrated the unconditional stability of this method for linear 

systems, and stated that the stability can also be achieved in nonlinear systems with 

softening behavior. 

Also using the initial experimental stiffness matrix, Chang [66] developed an 

integration method based on solving momentum equations. The momentum equations 

were adopted to eliminate the difficulties arising from the presence of high-frequency 

modes in online dynamic test signals, making explicit implementations of numerical 

integration effective. The improved error propagation properties of this method were 

demonstrated using linear analysis. Chang et al. [67-71] presented several other explicit 

integration procedures with unconditional stability. These procedures, which take 

advantage of the initial stiffness matrix of experimental substructures, were shown to 

improve the error propagation properties of the algorithm for displacement and force 

signals. However, the stability verifications were based on linear systems, and no 

discussions about stiffness matrix replacement were included in terms of applicability to 

highly nonlinear specimens. 
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Using the initial stiffness matrix approximation and α -method formulation, 

Combescure and Pegon [72] presented the α -operator-splitting integration scheme. 

They demonstrated the unconditional stability of this method for linear systems, and 

examined its error-propagation properties. Combescure and Pegon concluded that this 

method is effective for systems that do not lose a large portion of their initial stiffness 

during simulation. 

The predictor-corrector method of integration was considered by Zhang et al. [73] in 

state-space form, which is more common in the field of structural control. Although the 

main issue in the use of this method is the use of initial linear stiffness matrix instead of 

the tangential stiffness in the completion of corrector step, only linear verifications were 

carried out in the above-mentioned work. In the predictor step of this approach, the 

forces corresponding to next displacement were required and should be determined by 

a polynomial extrapolation. 

The correction of displacement and restoring force in operator-splitting family of 

integration procedures are generally based on the difference between the predictor (or 

measured) and corrector displacements. Wu et al. [74] extended this correction by 

considering the rate-dependent forces developed in the experimental substructures. In 

this approach, a predictor velocity is also determined, and after application of predictor 

displacement, the difference between the measured and corrector velocities is used for 

rate dependent restoring force correction. Through experimental simulations, the 

authors showed the improved performance of the procedure in comparison with the 

explicit central difference method, especially in cases that experimental substructures 
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exhibit a fair amount of damping. Wu et al. [75] later presented the discretized state-

space form of operator-splitting method, and studied the effects of delay and its 

compensation on the stability of this integration algorithm. 

In order to improve the accuracy of hybrid simulation for testing nonlinear systems 

while avoiding physical iterations, Pan et al. [13] introduced a method for estimation of 

tangential stiffness of SDF experimental substructures. For this purpose, they used linear 

functions fitted to most recent measured force and displacement data. As a result, the 

need for using the initial stiffness matrix was eliminated and no iterative displacements 

were applied to experimental substructures. 

2.6 OTHER PUBLICATIONS AND CASE STUDIES 

Applications of pseudo-dynamic test methods to specific cases of hybrid simulation 

have also been widely published. Through these example applications, the 

implementations of several test techniques were illustrated, and new procedures were 

introduced [13, 76, 77]. 

Fahnestock et al. [76] used the pseudo-dynamic testing method for a large-scale 

buckling-restrained braced frame and demonstrated their minimal strength and stiffness 

degradation. Elkhoraibi and Mosalam [77] conducted pseudo-dynamic experiments on 

reinforced concrete frame structures to study the effects of infill walls, using a mixed-

formulation implicit algorithm. They used secant stiffness in their integration algorithm, 

assuming a nonlinear elastic experimental model. 
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Tsai and Lin et al. [78, 79] presented the bi-directional pseudo-dynamic test of a full-

scale buckling-restrained braced frame, and evaluated the design and performance of 

gusset plates. Mercan and Ricles [80] described pseudo-dynamic testing of a 3-story steel 

moment resisting frame with elastomeric dampers in the first floor. They introduced a 

velocity feed forward controller in the servo-control system to minimize the time delay. 

Yang et al. [81] used OpenSEES simulation software to test the first story of a zipper 

frame as the experimental substructure. Both numerical and experimental nonlinearities 

were considered, and it was shown that the results were in agreement with those of 

analytical simulation. Yang et al. [12] presented a transnational pseudo-dynamic 

experiment on a double-skinned concrete-filled tube pier bridge system. The specimens 

were located in two universities in Canada and Taiwan. They described the use of 

simulation software, network operations and advanced data acquisition systems, which 

enable the visitors to simultaneously observe the experiment progress through their web 

browsers. 
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3 SEESL PSEUDO-DYNAMIC HYBRID SIMULATION SYSTEM 

In this chapter, the pseudo-dynamic test system at Structural Engineering and 

Earthquake Simulation Laboratory at University at Buffalo is described. First, an 

overview of the hybrid simulation system is provided and the software environment for 

the development of simulation models is introduced. The experimental setup and 

simulation model details are presented next, and a step-by-step guide for conducting a 

displacement-controlled hybrid simulation is provided. In Section  3.6, the PC simulation 

models of hybrid simulation are presented, which can be used to replace the 

experimental setup for preliminary analyses and development purposes. 

3.1 EQUIPMENT AND HARDWARE ARCHITECTURE 

Figure  3-1 shows the major components of SEESL hybrid simulation system [9]. As 

illustrated, the components are divided into three major groups: Data acquisition and 

streaming, hybrid simulation controllers, and testing controllers. The components of this 

test system are interconnected using Local Area Network (LAN) for model and data 



SEESL Pseudo-Dynamic Hybrid Simulation System  
  
  

 

 37 

transfer, and Shared Common Random Access Memory Network (SCRAMNetTM) [35-

37] for fast communications during real-time experiments. 

As the name suggests, the data acquisition and streaming subsystem handles the 

storage and communication of experimental measurements command signals. In 

addition to local communications of test components, the NTCP server provides internet 

communication channels for use in geographically distributed hybrid simulations. 

 
Figure  3-1   Hardware architecture of hybrid simulation test system at SEESL [9]. 

Hybrid simulation controllers, consisting of Host and xPC Target computers handle 

the numerical simulation and signal generation tasks. The host computers run 

MathWorks Simulink [82] software for development of simulation models and test 

procedures. These models will then be downloaded to real-time computers labeled xPC 

Targets for real-time online execution. The software and real-time environments are 

briefly described in the next section. 
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As shown in Figure  3-1, the test controllers consist of shake table and actuator 

controller computers, along with their graphical user interfaces (GUI). Note that the user 

interfaces of several components of the test system can be run on the same computer 

running a multimedia operating system such as Windows [83]. More information about 

these interfaces can be found in SEESL Laboratory Manuals [84]. 

The hardware arrangement in Figure  3-1 can be directly compared to the pseudo-

dynamic test block diagram shown in Figure  1-2. In Figure  1-2, the experiment 

subsystem corresponds to test controllers, analysis subsystem represents hybrid 

simulation controllers, and data acquisition system handles the communication of the 

measurements between numerical and experimental subsystems. 

3.2 SOFTWARE DEVELOPMENT ENVIRONMENT 

The simulation model and test procedures are developed in MathWorks Simulink 

environment [82]. Simulink is a tool for modeling, simulating and analyzing dynamic 

systems. Its primary interface is a graphical block diagramming tool and a customizable 

set of block libraries. It is integrated with the rest of the MathWorks MATLAB [85] 

package, providing access to its extensive range of tools for algorithm development, 

visualization, data analysis and access, and numerical computation. Simulink is widely 

used in control theory and digital signal processing for simulation and design. Coupled 

with Real-Time Workshop [86], Simulink can automatically generate C code for real-

time implementation of models.  
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For real-time1 simulations, the models built in Simulink should be downloaded to a 

real-time environment called xPC Target. xPC Target provides a prototyping 

environment that enables the user to connect Simulink models to physical systems and 

execute them in real time on PC-compatible hardware. For this purpose xPC Target 

supports the use of I/O interface blocks in simulation models. The use of a real-time 

kernel such as xPC is important in simulations involving physical systems, to ensure 

accurate development of rate-dependent effects in the experimental substructures. 

In order to improve the computational efficiency for real-time simulations, xPC 

Target uses a simple graphical interface that can be used for online visualization of only 

a few signals. For this reason, most of the simulation results need to be retrieved in the 

host PC for improved visualization and processing tools. That is, both pre- and post-

processing tasks are preferred to be carried out in the host PCs, while the real-time 

simulation itself is performed on xPC Targets.  

3.3 TEST SETUP 

Figure  3-2 shows the two-degree-of-freedom test setup at SEESL facilities at 

University at Buffalo. As shown, the experimental specimen consists of two short 

columns mounted on top of two clevises. The specimen is loaded at two points close to 

tip of each column. Replaceable steel coupons can be inserted in the clevises to provide 
                                                      

1 In this section, the term “real-time” has a different implication than that of real-time hybrid 

simulations. A real-time environment is able to execute simulation tasks with actual time intervals, and may 

be used to perform slow online, fast, or real-time hybrid simulations. 
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moment resistance at a weaker capacity than columns. As a result of lateral loading, the 

yielding first occurs in sacrificial coupons while columns remain elastic, providing the 

capability of low-cost nonlinear hybrid simulations.  

 
Figure  3-2   UB-SEESL two-degree-of-freedom experimental setup for hybrid simulation. 

Up to three pairs of coupons can be inserted in each clevis to provide the desirable 

lateral resistance. The test setup picture in Figure  3-3 shows the lower clevis with two 

pairs of coupons. The number of coupons should be selected not to exceed the 22-kN (5-
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kip) loading capacity of the actuators. Further, the excitation record should be scaled 

such that the expected displacements will not exceed the 76-mm (3-in) actuator stroke. 

As shown in Figure  3-4 a SDF experimental setup can be obtained by removing the 

upper actuator and column assembly. 

     
Figure  3-3   Pictures of two-degree-of-freedom test setup and the lower clevis. 

 
Figure  3-4   Single-degree-of-freedom experimental setup. 
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3.4 HYBRID SIMULATION MODEL 

A hybrid simulation model performs the numerical integration and signal 

generation tasks. The inputs to a hybrid simulation model are raw measurements from 

the experimental setup, and the outputs are the experiment command signals. All inputs 

and outputs to this model are sampled at the experiment measurement and command 

update rate, 1024 Hz. Hence, the base interrupt rate of the numerical simulation model 

has to be 1024 Hz (sampling period 1/1024tδ =  s). 

 
Figure  3-5   Combined Simulink model for numerical simulation and compensation. 

A typical numerical simulation model is shown in Figure  3-5. This model includes 

the numerical model, input signal conditioners, output signal generators, data storage 

and visualization blocks, as well as numerical models of experimental setups for purely 

numerical simulations. It is shown that all the measurements and commands are read 
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from or written to the SCRAMNet blocks. The details of most of these components will 

be further described in the following sections. 

As illustrated in Figure  3-5, the numerical model subsystem (the core of the 

simulation model) is located between input and output rate transition blocks. This 

shows the multitasking nature of the model, allowing for uninterrupted command 

signal generation task, which is of higher priority to ensure simulation continuity. The 

numerical simulation task is normally carried out at a rate slower than command update 

rate to improve computational efficiency for relatively large numerical simulations. The 

rate transition blocks ensure data integrity throughout the model by applying zero-

order-hold to the signals to be sampled at lower rates, and double-buffering to the 

signals to be sampled at higher rates. 

The proper execution of numerical simulation and signal generation tasks is 

ensured by using a flag variable. Depending on the integration time step tΔ  (normally 

integer multiples of command update time step tδ ), flag variable is increased by one 

each time the command signal is updated and decreased by the number of sub-steps, 

each time the simulation task is completed. The number of sub-steps is the number of 

command updates that should ideally occur during each integration time step: 

 s

t
n

tδ
Δ

=  (3.1) 

The flag variable is a positive integer, and will not exceed sn  unless the numerical 

simulation task fails to complete within one sampling period. In that case, larger-than- sn  

values of flag indicate of the necessity of command signal extrapolation until simulation 
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results become available [19]. A faster computer is recommended when the flag variable 

tends to increase beyond 2 sn . 

In order to increase the computational efficiency of the numerical simulation and 

signal generation tasks, these can be separated on two real-time computers, as shown in 

the hardware architecture of Figure  3-1. Dedication of separate processors to these tasks 

may allow for the use of more sophisticated simulation and compensation procedures. 

The separate models for signal generation and numerical simulation are called Controller 

and Simulator, respectively.  

 
Figure  3-6   Controller Simulink model. 

3.4.1 CONTROLLER 

As the name suggests, the Controller model handles the experimental control at the  

sampling and command update rate, 1024 Hz. The model shown in Figure  3-6 shows 

that Controller takes appropriate actions during each timer interrupt based on a counter 

variable. Counter is initialized with zero at the beginning of a simulation, triggering an 

initialization of the SCRAMNet. Then, this variable is constantly increased with each 

execution of Controller model until it reaches the number of sub-steps, sn , at which time 

it is reset to zero. Only when the counter is reset, the Controller runs a simulation step by 
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triggering the other hybrid simulation model, the Simulator. In any case, the Update 

SCRAMNet subsystem is executed, which handles the measurement signal conditioning 

and command signal generation tasks, as shown in Figure  3-7. 

 
Figure  3-7   Update SCRAMNet subsystem of Controller Simulink model. 

Figure  3-7 shows that the major difference of this subsystem with the combined 

simulation model shown in Figure  3-5 is that the numerical simulation subsystem is 

replaced by SCRAMNet read and write blocks, which can be accessed by Simulator. The 

Controller model contains all procedures for the tasks that have to be done at the 

experiment command update rate. These tasks include zero initialization and smoothing 

of measurements, signal generation, and numerical simulation of experimental setup. In 

addition, the selection of communication channels should be carried out by proper 

connections of shared memory blocks to the input and output blocks of this model. 

There are also safety measures that stop the simulation when flag variable becomes too 

large, or command displacement exceeds the actuator stroke. A saturation block also 

2

xPC MR

1

xPC HR

Target Scope
Id: 5

xPC Meas Force

Target Scope
Id: 2

xPC Meas Displ

Target Scope
Id: 4

xPC Flag

Target Scope
Id: 3

xPC Comm Displ

smoother

u smoother

term9

term8

term4

term3

term26

term25

term24

term23

term22

term21

term20

term2

term19

term18

term17

term16

term15

term14

term13

term12

term11

term10

-C-

tbl2 refs1

-C-

tbl2 refs

smoother

r smoother

master span

ctl modes

displ cmds

f orce cmds

dig outs

tbl1 ref s

tbl2 ref s

output to scramnet

-K-

nsubsteps

1

master span

master span

ctl modes

displ cmds

f orce cmds

displ f bks

f orce f bks

deltaP f bks

v alv e cmds

user ducs

dig inps

tbl1 master span

tbl1 ref s

tbl2  aux ref s

tbl2 aux f reqs

tbl1 displ f bks

tbl1 v eloc f bks

tbl1 accel f bks

tbl1 f orce f bks

tbl2 master span

tbl2 ref s

tbl1 aux ref s

tbl1 aux f reqs

tbl2 displ f bks

tbl2 v eloc f bks

tbl2 accel f bks

tbl2 f orce f bks

input from scramnet

-C-

force cmds

f 2ch in

-C-

displ  cmds

-C-

dig outs

d 2ch in

-C-

ctl modes

1/z
1/z

signalgen

Signal Generation Saturation

meas f orce

meas displ

SEESL SCRAMNet Write

act cmds

ev ent f lag

SEESL SCRAMNet Read

init

SC150 init

Force

Flag

zeroinit

F Zero Initialize
F Fake

Flag

Extreme
Extrapolation

Stop

u ac
r am

u am

Experimental Setup Models

EXPR CH

EXPR
FBK

DISPL
FORC

ACCEL
DPRES

zeroinit

D Zero Initialize
D Fake

Commands

Command Displacement
Emergency Stop

Command Displ

-K-

2ch out

Enable



SEESL Pseudo-Dynamic Hybrid Simulation System  
  
  

 

 46 

prevents the submission of large displacement commands to the command displacement 

memory block. 

3.4.2 SIMULATOR 

The Simulator model is shown in Figure  3-8. As mentioned in the previous section, 

the execution of the simulator block is triggered when counter variable in Controller is 

reset to zero. Hence, Simulator may have a slower execution rate than that of Controller. 

Figure  3-8 shows that the simulation block is essentially idle until the trigger signal 

reaches unity. This trigger signal can be taken from a memory block called master span 

that shows the status of servo-hydraulic actuators. Alternatively, this signal can be set by 

a timer that delays the application of ground excitation by a user-specified time period. 

The former is suitable for random or harmonic excitations with infinite length, and the 

latter is useful for earthquake excitations, where the ground motion is of a finite length 

and simulation should stop after that. In this case, the initial excitation delay should be 

enough to allow the actuators master span to reach 100%. 

 
Figure  3-8   Simulator Simulink model. 

The simulation subsystem of Simulator model, which essentially has the same 

components as the numerical model subsystem of Figure  3-5, is detailed in Figure  3-9. This 
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is the most important component of a hybrid simulation model, and contains blocks for 

numerical simulation, identification of system dynamics, signal correction and 

command preparation, as well as data streaming and visualization. The model 

communicates with the same memory partitions that are shown in Figure  3-7. 

 
Figure  3-9   Simulation subsystem of Simulator Simulink model. 

Like most of the blocks shown in Figure  3-9, the analysis core subsystem contains a 

Level-2 C S-Function1 that carry out the numerical integration of test structure. The 

inputs to this block include measured forces and displacements, corrected forces, and 

actuator delays. Each of these signals is a vector of size ACTN , which is the number of 

actuators involved in the simulation. The corrected force signal can be calculated using 

either of the force correction methods described in Chapter  6. As the name suggests, 

delay detection block estimates the delay of each dynamic actuator by comparing the 
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corresponding desired and measured displacement signals (Chapter  5). Another block 

determines the variable gain that should be applied to the command signal for reducing 

the undershooting of displacements in displacement reversals (Chapter  6). 

The output signals of the analysis core are global displacements (a vector of size N , 

the number of degrees of freedom of test structure), actuator desired and command 

displacements, cumulative energy components, normalized energy error (Chapter  5), 

hybrid simulation error monitor [39], and other diagnostic outputs. The desired 

displacement signal is used only when delay compensation is performed outside of 

analysis core using polynomial extrapolation. This can be selected through the 

appropriate switches in signal generation options block, which also contains procedures 

for the application of the variable command gain. The existence of switches in the 

presented simulation models allows for quick selection of identification and 

compensation procedures, as shown in  Figure  3-9. 

3.5 A GUIDE TO SEESL PSEUDO-DYNAMIC HYBRID SIMULATION 

In this section, the steps towards a pseudo-dynamic experiment using the available 

test procedures are outlined from an engineering standpoint. That is, the details of 

hybrid simulation operations, such as compensation methods and integration 

algorithms, are not discussed. Instead, only the minimum required information, data 

format, test preparation and execution, and result retrieval methods are presented. The 

currently available procedures allow for analysis of linear numerical substructures; 

hence, proper functions need to be developed for nonlinear systems. For this reason, a 
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brief discussion about possible extensions of current simulation models is provided for 

new and improved test procedures. 

3.5.1 TEST STRUCTURE INFORMATION 

The first step in performing a hybrid simulation is the selection of the test structure 

and its experimental substructure. The basic required information includes: 

• Number of degrees of freedom N , 

• Number of experimental degrees of freedom (number of actuators) ACTN , 

• Stiffness matrix of the numerical substructure K  (N N× ), 

• Total mass matrix tM , 

• Mass matrix of the numerical substructure M , 

• Inherent damping ratio of the test substructure ξ , 

• Numerical damping matrix C  (for supplemental damping devices, if any), 

• Dynamic influence vector ι  ( 1N × ), 

• Transformation matrix T  for displacements from global coordinate system 

to actuator coordinate system ( ACTN N× ), 

• Command displacement factor, 

• Measured force factor, 

• Earthquake record and its scale factor. 
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Additional information may be required for specific integration procedures; initial 

ACT ACTN N×  stiffness matrix eK  of experimental substructure for operator-splitting 

integration method, and PAR ACTN N×  displacement transformation matrix pT  from 

actuator coordinate system to intrinsic (parameter) coordinate system, where PARN  is the 

number of stiffness parameters to be estimated in each integration step. Details of these 

integration methods are presented in Chapters  7 and  8. 

3.5.2 PRELIMINARY ANALYSIS 

Similar to any other experimental study, it is necessary to perform pretest analyses 

to ensure proper structural response before the physical experiment. Any structural 

analysis program can be used for this purpose, and linear modeling of experimental 

substructure is normally sufficient. For this purpose, a rough numerical model of the 

experimental substructure is required based on its initial properties. 

The use of numerical models of experimental setup presented in Section  3.6 is very 

effective for anticipation of expected force and displacement levels, as well as the 

required measurement quality. Using those models, the simulation data can be used for 

physical experiment without any change, which is useful in reduction of preparation 

tasks necessary for the physical experiment. 

3.5.3 DATA PREPARATION 

In order to initialize and execute a hybrid simulation, the test structure data needs 

to be in a format usable by the hybrid simulation models. This can be done through a 

MATLAB m-file for initialization of structural properties. A sample file for initialization 
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of simulation model is shown in Figure  3-10 for a 4-story structure with 2 experimental 

degrees of freedom (Figure  3-11). This file essentially contains the information required 

in Section  3.5.1, and should be saved in the same directory as the hybrid simulation 

models. The file name should then be specified in the initialization module of the hybrid 

simulation model, aci.m. This file also contains options for selection of earthquake 

excitation and scale factor, as well as analysis options such as time step, integration 

method, convergence tolerance, and so on. 

 
Figure  3-10   Sample experimental setup data for initialization of hybrid simulation models. 

% *** General information 
NDOF=4; % number of degrees of freedom 
NACT=2; % number of actuators involved in the simulation 
  
% *** Numerical model data 
MT = [7 0 0 0; 0 5 0 0; 0 0 3 0; 0 0 0 1]*1.25/g; % Total mass matrix 
K = [30 -12 0 0; -12 20 -8 0; 0 -8 12 -4; 0 0 -4 4]; % Global analytical stiffness 
C=zeros(NDOF,NDOF); % Global analytical damping 
dr=0.05; % Damping ratio (stiffness proportional) 
L=-MT*ones(NDOF,1); % Influence vector 
% Coordinate system transformations 
TDGA=[-1 1 0 0; -1 0 1 0]; % Displacement from global to actuator cs 
TDAP=[1/l1 0; -l/l1/l2 1/l2]; % Actuator displacements to parameter cs 
FDGA=1; % Displacement factor from global to actuator coordinates 
FFAG=1; % Force factor from actuator to global coordinates 
  
% *** Basic experimental setup data 
ME=[0 0 0 0; 0 0.05 0 0; 0 0 0.025 0; 0 0 0 0]/g; % Experimental mass matrix 
  
% *** Additional experimental setup data 
    % 1. For explicit-implicit methods, the following data are not required. 
    % 2. For operator-splitting methods, TDAP'*KEP*TDAP is the initial 
    % stiffness of experimental substructure. Define TDAP as identity, 
    % and KEP as the experimental stiffness matrix in actuator coordinates. 
    % 3. For model-based integration, KEP is the parametric experimental 
    % stiffness in actuator coordinate system (initial), and TDAP is the 
    % transformation from actuator to intrinsic coordinate system. 
k1 = 5.543*2;   % DOF 1    STORY 1 (two pairs of coupons) 
k2 = 3.89;      % DOF 2    STORY 2 
l1=43; % length of first story (in) 
l2=46; % length of second story (in) 
l=l1+l2; 
NPAR=2; % number of important parameters for formation of stiffness matrix 
KEP = [k1*l1^2 0; 0 k2*l2^2]; % Parametric experimental stiffness in intrinsic 
coordinates system 
TDAP=[1/l1 0; -l/l1/l2 1/l2]; % Displacements from actuator to parameter cs 
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Figure  3-11   A 4-story structure and its corresponding experimental substructure. 

If this file is also used for pre-test numerical simulations using numerical models of 

Section  3.6, the properties of the experimental substructure should be provided as well. 

This information depends on the numerical model selected for simulation of 

experimental setup as described in Section  3.6. 

3.5.4 INITIALIZATION AND LOADING OF SIMULATION MODELS 

After preparation of test structure information in a format usable for the hybrid 

simulation model, the model should be initialized and loaded into local memory. It is 

recommended that a MATLAB clear command should be executed before this step, to 

ensure proper initialization of all variables. The loading can then be done by running 

MATLAB files initialize.m and aci.m, which initialize the SCRAMNet partitions and 

numerical model, respectively. This procedure is automated in another m-file, ml.m. 

3.5.5 DOWNLOADING MODELS TO XPC TARGETS 

For real-time execution, the simulation models should be downloaded to xPC 

Target computers. At this point, it is recommended to save the workspace to keep track 

LAB SETUP

TEST STRUCTURE
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of the simulation parameters and model properties as a part of the results. MATLAB 

rtwbuild command generates the C code for the simulation model, makes the executable 

file, and downloads it to the specified xPC Target. It should be noted that although 

Simulink supports the use of m S-Functions, as of version R2006b, all functions have to 

be written in C programming language for real-time execution. 

Since the structural properties are specified during the initialization of the 

simulation models, any change in these properties should be followed by a fresh 

download of the model to xPC Targets. This procedure is automated in an m-file named 

xb.m. 

3.5.6 TEST EXECUTION 

Running the simulation on host PC is possible through start command from 

simulation menu. This is useful for non-real-time numerical simulations, in which 

physical substructures are not involved. Models that are downloaded to xPC can be 

executed by target.start command, where target is the user-defined name of the xPC 

Target computer. If the simulation is of finite length, it will stop at the end of the 

specified period, otherwise it should be stopped using target.stop command. For separate 

simulator/controller models described in Section  3.4, these commands should be 

executed for each of the targets. In order to simplify this process, the necessary 

commands are automated in m-files xr.m and xs.m for running and stopping the 

simulation, respectively. 
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3.5.7 RETRIEVAL AND PROCESSING OF RESULTS 

After the simulation is completed, the results should be transferred to host PC for 

further analysis and processing. Depending on the selected data storage option, the 

results can be saved on xPC hard disk and then transferred to host using file transfer 

protocol (FTP) via LAN, or they can stream to host during the simulation. The transfer is 

carried out through LAN, which may not be fast enough for real-time data visualization 

on host PC. However it is sufficient for analysis of the results after the experiment, and 

does not have the 100-signal limit of the first data storage option on hard disk. 

The streamed data can be accessed through target.outputlog array, which contains all 

the signals sent to model output ports in order of the port number. The timer is also 

stored in target.timelog array. An automated script named xpcretr.m retrieves the signals 

from target logs and stores the result in a MATLAB mat file. 

The basic processing of the results, including plots of global displacements, 

command and measured displacements, measured and corrected forces, delay, energies, 

hysteretic behavior of experimental specimen, online estimated parameters and error 

indicators is available through an m-file named procexp.m. This script also calculates the 

final energy error and percentage of steps with specific properties, such as successful 

implicit iterations of stiffness corrections (see Chapters  6,  7 and  8 for more information). 

3.5.8 MODEL MODIFICATIONS AND CUSTOMIZED SIMULATION SUBROUTINES 

All the procedures that are currently available in the SEESL hybrid simulation 

models are designated for linear numerical substructure, although the formulations are 
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directly extendable to fully nonlinear systems. Hence, further development of 

integration procedures is necessary for application to nonlinear numerical systems. The 

majority of these procedures are located in the hybrid simulation analysis core file 

hsac.c, which is used by the block named analysis core (Figure  3-9). This function follows 

the MATLAB standard function format, which should be maintained throughout the 

modifications. Further, to avoid significant changes in the simulation models, the input 

and output structure of the blocks should remain intact. 

The same considerations should be followed for development of other procedures 

of the simulation model, such as delay estimation and compensation, and signal 

generation and conditioning. In addition, all automated procedures described in the 

preceding sections should also be adapted to comply with the modified simulation 

models. 

3.6 COMPUTER SIMULATIONS OF HYBRID EXPERIMENTS 

Numerical models of hybrid simulation systems have significant advantages for 

performing low-cost computer simulations. These numerical evaluations are useful for 

pre-test analyses mentioned in the previous section, as well as initial investigations for 

the development of new test procedures. One important characteristic of these models 

for performance evaluation of new procedures is that the “exact” solution can be 

obtained for the simulation by simply eliminating all uncertainty sources of the 

experimental model. A direct comparison of the results will then give a measure of the 

performance of the procedure under evaluation. In addition, the properties of the 
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“experimental setup” model can be easily altered in a numerical simulation to conduct 

further studies that may be very costly using an actual experimental setup in the 

laboratory. 

 
Figure  3-12   Simulink model for computer simulation of SEESL online hybrid simulation system. 

The Simulink model shown in Figure  3-12 is the PC Simulation model designed for 

SEESL hybrid simulation system [87]. As illustrated, this model consists of controller and 

model blocks. The controller block is a subsystem for communication with the STS1 

software (in simulation mode) shown as a test controller in Figure  3-1. The model block, 

detailed in Figure  3-13, consists of actuator and specimen models, along with the hybrid 

simulation subsystem. The hybrid simulation subsystem gets the measurements and 

calculates the command signals. The contents of this subsystem are essentially similar to 

the simulation subsystem shown in Figure  3-9. 

The details of a dynamic channel subsystem are shown in Figure  3-14. This subsystem 

receives the valve command from the STS, and calculates the piston displacement. The 

configuration of actuator/valve and payload blocks shown in this subsystem demonstrates 

that the piston displacement is actually the reaction of the attached specimen to the 

                                                      

1 Structural Test System by MTS Systems, Inc. 

SUNY PC Simulation

f unction()

inp out

model

mtsConnect

controller
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actuator force. It should be noted that in Figure  3-14 the force measurement is calculated 

based on differential pressure on actuator piston, while in practice, load cells provide a 

more accurate estimate of the applied force. More detail about the development of 

actuator force as a result of valve command is described in Chapter  4. 

 
Figure  3-13   Model subsystem of PC simulation Simulink model. 

 
Figure  3-14   Detail of each channel subsystem within model subsystem. 

Figure  3-15 shows the contents of a payload subsystem, which simulates the 

displacement response of a bilinear specimen to the force applied by the actuator. It is 

illustrated that the specimen restoring force may consist of inertia, strain and friction 
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forces. A viscous damping force can also be added by multiplying the velocity signal to 

a damping coefficient and subtracting the result form applied force. In addition, the 

bilinear model can be replaced by other hysteretic models that better simulate the 

response of the existing experimental setup. 

 
Figure  3-15   Payload subsystem with bilinear specimen. 

Instead of using complex servo-hydraulic actuator models that generally require 

many parameters, simplified models of experimental setup can also be used for 

numerical simulations [39]. These models have been integrated into the hybrid 

simulation models shown in Figures 3-5 and 3-7. 

The simplified model shown in Figure  3-16 simulates the response of a SDF 

experimental setup. The restoring force can be determined by any stiffness model, 

ranging from a linear one to complex and/or deteriorating inelastic models, such as 

those proposed by Sivaselvan and Reinhorn [88] or Bouc [89] and Wen [90]. In the 

present simulation model, a Bouc-Wen stiffness model is utilized, which is governed by 

the following relation: 

 ( ) ( ) ( ) ( )1 yr t ku t ku z tα α= + −  (3.2) 
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where ( )z t  can be calculated by solving: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )11 n n

y

z t u t u t z t z t u t z t
u

γ β−⎡ ⎤= − −⎢ ⎥⎣ ⎦  (3.3) 

In the above relations, α  is the post-yield stiffness ratio to the initial stiffness, β  and γ  

govern the shape of hysteretic loops by altering yield initiation point and elastic 

recovery sharpness, and n  modifies the rate of elastic-to-plastic transition of the model.  

 
Figure  3-16   Simplified Simulink model for computer simulation of a SDF experimental substructure. 

In order to include the dynamics of the experimental setup and measurement noise 

in the simplified models, a controlled error signal consisting of random and systematic 

error components is added to the displacement prior to being applied to the 

experimental model (Figure  3-17). The systematic error is generated by a normally 

distributed random number multiplied by the displacement increment, where the 

displacement increment serves as a first order approximation to velocity. The resulting 

errors are systematic with direction and magnitude proportional to velocity. 

Particularly, if the mean of the random number is less than zero, the added error signal 

will result in an apparent lag. Alternatively, the delay can be introduced by the integer 

delay block of Figure  3-16 as multiples of sampling period. 
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Figure  3-17   Simulink model for artificial introduction of systematic and random errors in displacement 

signal. 

In addition to the velocity-dependent systematic error, a second source from a 

normally distributed random signal is added to the error signal to mimic the random 

noise contamination in the simulated measurements. A similar approach is followed for 

introduction of experimental errors and noise in the force signal. This simple model, 

which has shown to provide reasonable results when compared to experimentally 

measured errors [39], is widely used in the numerical studies presented in this 

dissertation. The actuator delay and measurement noise simulated in the model have 

been calibrated to actual experimental data and laboratory equipment information. 

The simplified simulation models only require a few parameters, and can be easily 

modified for more complex and MDF experimental substructures. For instance, the 

current two-degree-of-freedom experimental setup at SEESL facilities (Figure  3-3) can be 

numerically modeled using the Simulink block diagram illustrated in Figure  3-18. In this 

model two SDF experimental models introduce delay and measurement noise in 

displacement and force signals. The experimental restoring force is governed by two 

Bouc-Wen stiffness models that are coupled using appropriate force and displacement 

coefficients based on the geometric properties of the experimental setup. The parameters 

of the Bouc-Wen model can be altered to achieve the desired experimental response. 
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Figure  3-18   Simulink model for computer simulation of two-degree-of-freedom experimental setup at 

SEESL. 
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4 SERVO-HYDRAULIC ACTUATORS AND CONTROL TECHNIQUES 

In hybrid simulations, servo-hydraulic actuators are widely used for the application 

of displacements and forces to the experimental substructures. As described in Chapter 

 1, feedback systems such as hybrid simulation are very sensitive to measurement and 

control errors that can propagate through the simulation and result in inaccurate or even 

unstable simulations. Actuator performance plays a central role in this regard, as the 

actuator tracking errors are known to be significant contributors to experimental errors 

in a hybrid simulation. An accurate understanding of the behavior of servo-hydraulic 

systems is essential for reduction of these errors through proper design of control 

systems and compensation procedures. In this chapter, the principles governing the 

functions of servo-hydraulic actuators are briefly presented and numerical models are 

described. The most common mechanical control techniques for servo-hydraulic 

actuators are also reviewed in this chapter. 
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4.1 MECHANICAL PRINCIPLES 

The major components of servo-hydraulic actuators are a servovalve, a cylinder and 

a piston that slides in the cylinder. The servovalve controls the flow of the fluid from 

accumulators to actuator cylinders for driving the piston. An overall sketch of 

servovalve and actuator combination is shown in Figure  4-1. In summary, the input 

electric current to the servovalve results in the rotation of an electromagnetic flapper 

mechanism that displaces the spool from its neutral position. As a result of spool 

movement, the orifice sizes change and alter the fluid flow to the actuator cylinders. The 

resulting pressure difference between the two sides of the piston, known as the load 

pressure, drives the actuator piston [91]. 

 
Figure  4-1   A schematic view of a servovalve actuator. 

4.2 ORIFICE FLOW, PRESSURE AND FORCE RELATIONS 

The details of the functions of a servo-hydraulic actuator are described in this 

section, and the governing physical relations are provided. 
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For turbulent flows, which hold for most of valve openings except for very small 

ones, the flow from side i  to side j  of an orifice is given by: 

 ij v ij i jq K A p p= −  (4.1) 

in which ip  and jp  are the pressures upstream and downstream of the orifice, 

respectively. ijA  is the orifice area, and vK  is flow coefficient depending on the orifice 

geometry and fluid density. The flow is therefore dependent on the orifice area and 

geometry, which vary with the spool position, x . This relation is often linearized by 

substituting a truncated Taylor expansion of the square root term in Equation (4.1). This 

simplification therefore becomes more inaccurate with increment of spool displacement 

from its zero position. 

Orifice flow coefficients with respect to the spool position can also be described by a 

relation such as that used in MTS PC Simulation models [87] developed in Simulink [82] 

environment: 

 
( )2 2 21 1

2

n
v

r
ij n r

q
K

p
A q q

=
⎡ ⎤+ ⋅ −⎢ ⎥⎣ ⎦

 (4.2) 

in which nq  and rq  are nominal and rated flows of the actuator ports, respectively, and 

rp  is the rated oil pressure. The port flow entering into each actuator cylinder is then 

determined by subtracting the corresponding servovalve chamber return flow from 

supply flow: 

 supply return i i iq q q= −  (4.3) 
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in which i  is the actuator cylinder or servovalve chamber number. 

Many servovalves, including Moog servovalves [92] that are widely used in MTS 

actuators [84], are manufactured with symmetrical orifices, and the orifice areas are the 

same at any moment. The area varies linearly from zero at spool zero position (which 

generally includes an overlap) to a maximum when orifices are fully open. However, the 

flow may not be exactly zero even when the orifices are fully shut, as leakage flow 

occurs, and reaches its maximum when valves are closed. Williams et al. [26] introduced 

a nonlinear function to capture this behavior. At zero position, when the leakage flow is 

maximum, the orifice areas are assumed to be nonzero, which results in two equal 

leakage flows from supply to servovalve and then to return chambers on each side of 

servovalve. As the flows were assumed to be equal, equal pressure drops should then 

exist, and the pressure inside the actuator and servovalve will be: 

 supply return
closed 2

p p
p

+
=  (4.4) 

Therefore, the leakage area when the spool is at zero position is given by: 

 
( )

max leak
leakage
closed supply return

1

2v

q
A

K p p
=

−
 (4.5) 

where max leakq  is the maximum leakage flow, which occurs when the valves are fully 

closed, and should be measured experimentally. Williams et al. then admitted a 

piecewise linear function to describe the overall orifice area as a function of spool 

displacement (Figure  4-2). 
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Figure  4-2   Orifice area as a piecewise linear function of spool displacement [26]. 

In MTS PC Simulation models, the leakage flow is simply related to the differential 

pressure of the orifice sides by a leakage factor: 

 ( )leak 1 2l C Cq c p p= −  (4.6) 

in which 1Cp  and 2Cp  are oil pressures in servovalve chambers 1 and 2, respectively, and 

lc  is the experimentally-calibrated leakage factor (flow/pressure). 

In addition to leakage, the compressibility of fluid results in a volume change of oil 

that can be considered as a virtual compressibility flow. If the kinematic flow is assumed 

to be multiples of cylinder internal cross-sectional area and piston velocity, as in: 

 kin pistoni iq Av=  (4.7) 

then the compressibility flow is simply the result of subtraction of leakage and kinematic 

flows from the port flow: 

 comp kin leak i i i iq q q q= − −  (4.8) 

This compression flow can then be converted to oil velocity by dividing it by 

cylinder area. Finally, oil displacement due to compression can be determined by 

integration of velocity: 
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 comp 
comp 

i
i

i

q
v A=  (4.9) 

 ( ) ( ) ( )comp comp comp i i id t t d t v t tδ δ+ = + ⋅  (4.10) 

This virtual oil displacement can then be used to determine the oil pressure in actuator 

cylinder: 

 oil comp oil comp i i i
i

i

K d C v
p

A

⋅ + ⋅
=  (4.11) 

In the above equation, oilC  is oil damping coefficient, and oil iK  is the axial stiffness 

of oil column in cylinder i . The damping coefficient has been used to compensate the 

reduced damping observed in simulations, compared to actual behavior of physically-

tested actuators. This damping parameter is multiples of a given damping ratio, mass 

and oil column radial frequency. The stiffness of oil column can be determined by: 

 bulk
oil 

i
i

i

K A
K

L
=  (4.12) 

in which bulkK is the bulk modulus of oil, and iL  is the oil column length, which is equal 

to the sum of cylinder and end cushion lengths. 

The piston force therefore develops as a result of pressure difference in actuator 

cylinders: 

 1 1 2 2f p A p A= −  (4.13) 

This force is applied on the specimen, and depending on its stiffness, mass and 

damping, piston displacement occurs (see Section  3.6 for models showing interaction of 
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actuator and test specimen). The control system then compares this displacement to the 

command displacement and issues the next valve command. 

4.3 NUMERICAL MODELING OF SERVO-HYDRAULIC ACTUATORS 

Early models of actuators have adopted the linearized form of system dynamics, 

such as those proposed by Merritt [93] and Stringer [94]. In these approximate models 

displacement of the servovalve spool is assumed to be a linear function of drive current, 

the linearized form of orifice flow relation is utilized, the effects of leakage flows are 

often simplified as additional damping, and the effect of piston movement on the 

cylinder volumes are not taken into account. These models do not consider the complex 

nonlinearities due to the torque motor dynamics, flow forces on the flapper and spool, 

dynamics of the armature/flapper assembly, spool dynamics, and oil compressibility. 

Sixth order models incorporating the above-mentioned nonlinear effects have been 

proposed by Nikiforuk [95] and Wang [96] and compared with experimental results. 

They demonstrated that all nonlinear phenomena can be neglected without loss of 

accuracy in the frequency range 0-100Hz , except for the armature/flapper dynamics. 

This frequency range is well beyond those needed for structural simulations. For this 

reason, a second-order model was proposed by Williams et al. [26] that only included 

nonlinearities due to armature/flapper dynamics. As shown in Figure  4-3, this model 

converts the drive current to spool velocity, which can be integrated to give 

displacement. The servovalve model requires only two parameters, namely the gain svK  

and time constant, svT . 
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Figure  4-3   Block diagram of the servovalve model proposed by Williams et al. [26]. 

The MTS PC Simulation models use a simpler approach to consider the effect of 

servovalve on the response. In these models, the servovalve only introduces a delay in 

the control signal. The valve opening is otherwise linearly related to the control signal 

after removal of overlap displacement of spool. In this approach, an array of control 

signals is formed, and at each simulation step, this array moves forward by one element; 

the first element is the valve position, while the last one is the new control signal. The 

number of elements of this array is equal to the servovalve delay divided by the 

simulation step size. 

Zhao et al. [30] provided another approach for consideration of three-stage 

servovalve dynamics by using a second order equation: 

 ev ev evv m x x k xβ= + +  (4.14) 

in which x  is spool position, v  is the command voltage, and evm , evβ , and evk  are the 

equivalent mass, damping and stiffness of the servovalve, respectively. The authors 

stated that the second order dynamics is highly damped and rolls off at approximately 

30 Hz . In their numerical studies, however, they admitted a linear relation given by: 

 evv k x=  (4.15) 
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for a narrow frequency range of 0-10 Hz . Then the effect of amplitude reduction of 

higher frequencies was compensated using a first-order phase-lead network, whose 

transfer function is: 

 1

1
d

LD
d

T s
H

T sα
+

=
+

 (4.16) 

in which dT  is a time constant and 0.1α = . 

Although many linear [93, 94, 97] and more complex nonlinear numerical models 

[26, 28-30, 95, 96] have been developed for systems involving servo-hydraulic actuators, 

the simpler linear models have been more widely used. This is primarily due to the 

complex dynamics of the system that may be sensitive to parameter uncertainties. In 

addition, the unidentified dynamic properties of test structures in hybrid simulations 

make it more difficult to establish a closed-form formulation for the entire test system. 

As a result, it is often attempted to develop test procedures that are independent of 

experimental setup dynamics. 

4.4 CONTROL TECHNIQUES FOR SERVO-HYDRAULIC ACTUATORS 

The servovalve command signal is generated by a controller that compares the 

position of actuator piston with the command displacement. A controller normally 

converts the command displacement to a voltage signal for the servovalve. In order to 

achieve an acceptable tracking performance, the controllers should be able to 

compensate the majority of system dynamics. In addition, the controllers should be 
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robust enough to make the actuators usable in a wide range of applications, such as test 

specimens with different static and dynamic properties. 

In the design of mechanical control systems, existence of an analytical model of the 

servo-hydraulic system (the plant) is very beneficial. This analytical model is 

particularly useful for reduction of the effects of system dynamics. However, as 

mentioned in the previous section, a complete mathematical model of experimental 

setup is difficult to find due to the complex and diverse test system dynamics and 

unidentified properties of experimental substructure. For this reason, robust controllers 

have been the primary choice for control of servo-hydraulic actuators. These controllers 

often need to be tuned before the experiment for the intended range of application. 

One of the most common controllers that are used with servo-hydraulic actuators 

are PID (proportional-integral-derivative) controllers. This type of controller is briefly 

studied in the following section. The discussion also includes its most common 

modifications, such as anti-integral windup, delta pressure stabilization, and 

feedforward control, which are made to enhance the tracking performance of the 

actuator. 

4.4.1 PID CONTROLLERS 

PID controllers are very common in mechanical engineering, due to the fact that 

they are able to control complex plants without the need for precise identification of 

their dynamics. The Controller compares a measured signal (actuator piston position) 

from a plant (the actuator) with the reference signal (command displacement). The 
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difference (the error signal) is then used to calculate a control signal value for the plant 

that brings the measured value of the plant back to its desired value. Unlike simpler 

control algorithms, the PID controller can adjust process outputs based on the history 

and rate of change of the error signal, which results in a more accurate and stable 

control. It can be shown mathematically that a PID control loop will produce accurate 

and stable control in cases where a simple proportional control would either have a 

steady-state error or would cause the process to become unstable. Unlike more 

complicated control algorithms based on optimal control theory, PID controllers do not 

require advanced mathematics to design and can be easily adjusted (tuned) to the 

desired application. 

 
Figure  4-4   A Simulink model for PID controller with feedforward control and delta-pressure stabilizer. 
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The PID loop adds corrections to the control signal, removing errors from the 
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displacement of an actuator. The error is calculated by subtracting the measured 

quantity (actuator piston position) from the reference value (command signal). The error 

signal is then used to generate a control signal adjustable by proportional, integral, and 

derivative gains. “PID” is named after its three correcting calculations, which add up 

and adjust the controlled quantity: 

Proportional - To handle the present requirements, the error is multiplied by a 

constant P and added to the control signal. P  is only valid in the band over which the 

controller output is proportional to the error of the system. When the error is zero, a 

proportional controller output is zero. The greater the proportional gain, the more the 

servovalve opens for a given error. As proportional gain is increased, the error 

decreases, resulting in a closer tracking of reference signal and reduced response time. 

On the other hand, increasing the gain decreases the stability margin of the system and 

increases the frequency of oscillation. If the proportional gain is set too high, unstable 

system operation and ringing can result. Consequently, proportional gain should be set 

as high as possible while maintaining stable system operation. Figure  4-5 shows the 

effect of proportional gain variation on the actuator response to a unit step input. 

  
Figure  4-5   Effect of proportional gain on the actuator step response (only proportional control) – left: 

low gain, right: high gain. 
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Integral - To handle the past requirements, the error is integrated (added up) over a 

period of time, multiplied by a constant I , and added to the control signal. A simple 

proportional system may result in oscillatory response, as the overshooting errors are 

not removed by any other means. By adding a proportion of the average error from the 

plant input, the average difference between the process output and the reference value is 

always being reduced. As a result, the output of a plant controlled by a well-tuned PI 

loop will converge to the reference signal (zero steady-state error), leading to a reduced 

error between command and feedback. Integral adjustments affect system accuracy 

during static or low-frequency operation when the actuator cannot keep the commanded 

position (Figure  4-6). 

  
Figure  4-6   Effect of integral gain on the actuator step response (PI control) – left: zero gain, right: high 

gain. 

Derivative - To handle the future requirements, the first derivative of the error (the 
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larger the derivative term, the more rapidly the controller responds to changes in the 

process output. Its D  term is the reason a PID loop is sometimes called a predictive 

controller. The D  term is reduced when trying to dampen the controller response to 

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

Time, s

D
is

pl
ac

em
en

t, 
cm

 

 

Command Displacement
Measured Displacement

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

Time, s

D
is

pl
ac

em
en

t, 
cm

 

 

Command Displacement
Measured Displacement



Servo-Hydraulic Actuators and Control Techniques  
  
  

 

 75 

short term changes. Practical controllers for slow processes can even be utilized without 

D  signal.  

Derivative adjustments also affect the servo control loop dynamic stability as it 

reduces the overshoot at higher proportional gain settings. In addition, it can reduce the 

system bandwidth, closing the servovalve in anticipation of achieving the commanded 

position through the rate of change in feedback. Addition of derivative gain to a 

controller that has already been adjusted for proportional control results in oscillation 

effects shown in Figure  4-7. 

  
Figure  4-7   Effect of derivative gain on the actuator step response (PD control) – left: zero gain, right: 

high gain. 

Transfer function - A PID loop can be characterized as a filter applied to a complex 

frequency-domain system. This form is commonly used for stability analysis of the 

process. The generic transfer function of a PID controller is as the following: 

 ( )

2Ds Ps I
H s

s
+ +

=  (4.17) 

or sometimes, when P  is used as a master gain, can be written as: 

 ( )

2Ds s I
H s P

s
+ +

=  (4.18) 
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In this configuration, the larger the proportional gain, the faster the response, as the 

control signal will be larger due to a given error signal with a higher master gain. 

 
Figure  4-8   PID Controllers window of STS for adjusting control parameters [84]. 

In addition to the above components, the control signal may be filtered by a low-

pass filter to remove the existing noises and improve the frequency content of valve 

command. The above-mentioned control gains can be adjusted through PID Controllers 

window of STS software, shown in Figure  4-8. 

4.4.1.2 Anti-Integral Windup 

One of the most common problems in using PID controller is integral windup. It 

may take too long for the output value to ramp up to the necessary value when the loop 

first starts up. For example, actuator may fail to achieve a target displacement by a large 

margin. This increases the integral share of the control signal, which can result in a large 

overshoot. Sometimes this can be fixed with a more aggressive differential term, or by 

preloading the control loop with an initial output. Another option is to disable the 
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integral function until the measured variable has entered the proportional band. That is, 

to avoid overcompensation of the integral component of control signal, the contribution 

of the integrated error to the control signal must be limited. This can be achieved using a 

saturation function as shown in Figure  4-4. In STS software, the integral term is limited 

by a percentage of full scale valve command, %FS. This is called the integral authority in 

STS controller parameters (Figure  4-8). 

4.4.1.3 Feedforward Control 

Feedforward control signal introduces a derivative of the command signal in the 

valve command. The feedforward component is used to minimize following errors or 

phase lag, which is of high importance in feedback systems. Feedforward control is 

especially useful because it does not affect the control loop stability. As illustrated in 

Figure  4-9, higher settings reduce following error during a sinusoidal command. 

However, extremely large values of this gain can result in a leading error, or large 

oscillations. Hence, this approach can only partially reduce the response lag of the servo-

hydraulic system, and the remainder is often handled by using supplementary 

compensation procedures (Chapter  6). 

  
Figure  4-9   Effect of feedforward gain on the actuator sinusoidal response– left: zero gain, right: adjusted 

gain. 
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4.4.1.4 Delta-Pressure Stabilization 

Oil column resonance is one the major problems that may arise in the control of 

servo-hydraulic actuators. The stiffness of the oil column coupled with the mass of the 

actuator piston and moving parts of the specimen create a resonant frequency that is 

normally outside the operational frequency range. However, this mode can be excited 

by the measurement or digitization noise, or oscillatory command displacements. 

Delta-pressure gain uses the filtered signal from pressure differential in actuator 

cylinders to damp oil column vibration, as shown in Figure  4-4. The delta-p signal first 

passes through a high-pass filter, which intuitively should pass oil column and higher 

frequencies, and then is amplified and added to the control signal. Oil column frequency 

can be obtained by: 

 oil 1 oil 2
oil

K K

M
ω

+
=  (4.19) 

where oil iK  is the oil axial stiffness in thi  actuator cylinder given by Equation (4.12), and 

M is the moving mass, including piston and moving parts of the experimental specimen. 

The effect of delta-pressure control is illustrated in Figure  4-10. It can be observed that 

less high-frequency oscillations occur when a nonzero gain is used for this control 

signal. It is important to note that the excitation of oil column frequency does not occur 

for all PID and feedforward parameter configurations, and is more serious for longer 

actuators that have lower oil column frequencies. Differential pressure (delta-p) 

stabilization is often used in MTS actuators to improve the fidelity of system 

performance (Figure  4-8).  
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Figure  4-10   Effect of delta-pressure control on the actuator sinusoidal response – left: zero gain, right: 

adjusted gain. 

4.4.1.5 Other Modifications and Limitations 

When PID loops control a valve or similar mechanical device, the plant may not 

respond to small command signals as a result of wear of the valve or device. Replacing 

the valve can be a major maintenance cost. In these cases, the PID loop may have a 

deadband to reduce the frequency of activation of the mechanical device. This is 

accomplished by designing the controller to hold its output steady if the changes are 

small (within the defined deadband range). The calculated output must leave the 

deadband before the control signal changes. Then, a new deadband will be established 

around the new output value. 

One problem with the differential (D ) term of the control signal is that small 

amounts of noise can cause large amounts of change in the output. Sometimes it is 

helpful to filter the measurements, with a running average, or a low-pass filter. 

However, low-pass filtering and derivative control cancel each other out; therefore, a 

much better choice would be to reduce the measurement noise through improved 

instrumentations. Alternatively, the differential term can be turned off in many systems 

with little loss of control (a PI controller). 
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Digital implementations of a PID algorithm may have limitations owing to the 

sampling rate of the data, and the limits of internal calculation and precision. Another 

problem faced with PID controllers is that they are linear. As a result, they cannot 

completely eliminate the dynamics of nonlinear systems, or systems of higher order. For 

this reason, often PID controllers are tuned for a limited range of nonlinear operation of 

the plant, over which the plant can be approximated as linear. 

4.4.1.6 Controller Tuning 

Tuning a control loop is the adjustment of its control parameters to the optimum 

values for the desired system response. Generally stability of response is required and 

the process must not oscillate for any combination of plant conditions and reference 

signals. The response time of the process is another important factor, and the controller 

is normally tuned to minimize response lag of the system. 

There are several methods for tuning a PID control loop. The choice of the proper 

method largely depends on whether or not the loop can be taken offline for tuning, and 

the response rate of the system. If the system can be taken offline, the best tuning 

method often involves subjecting the system to a step change in input, measuring the 

output as a function of time, and using this response to determine the best control 

parameters. 

If the system must remain online, one tuning method is to first set the I  and D  

values to zero. P  should then be increased until the output of the loop starts to oscillate. 

Then I  gain is increased until oscillation stops. Finally, D  should be increased until the 
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loop is acceptably quick to follow its reference signal. A fast PID loop tuning usually 

overshoots slightly to reach the reference signal more quickly; however, not all systems 

can tolerate response overshoot. The effect of PID control parameters on the response 

are listed in Table  4-1. 

Table  4-1 Effect of control parameters on the performance of PID Controllers. 

Parameter Rise Time Overshoot Settling Time Steady-State Error 
P  Decrease Increase Small Change Decrease 
I  Decrease Decrease Increase Eliminate 
D  Small Change Decrease Decrease Small Change 

 

Another tuning method is formally known as the Ziegler-Nichols method [98]. It 

starts in the same way as the method described before: first I  and D  gains are set to 

zero and then P  is increased until the output of the loop starts to oscillate. This gain is 

called the critical gain, cK , and the oscillation period is termed cP . Then P , I  and D

controls can be adjusted using the parameters listed in Table  4-2. 

Table  4-2 Ziegler-Nichols method parameters. 

Control P  IT  DT  
P  0.5 cK  - - 
PI  0.45 cK  1.2cP  - 

PID  0.6 cK  2cP  8cP  

 

In the above table, IT  and DT  are called integral time and derivative time, respectively, 

and are related to PID control parameters by the following relations: 

 I

P
T

I
=  (4.20) 
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 D

D
T

P
=  (4.21) 

 Most modern industrial facilities no longer tune loops using the manual calculation 

methods described above. Instead, PID tuning and loop optimization software are used 

to ensure consistent results. These software packages will gather data, develop process 

models, and suggest optimal tuning parameters. As an example, the STS software 

includes a spectrum analyzer and an FRF (frequency response function) plotter, which 

shows the average transfer function of the actuator in the setup for the specified 

frequency range. The control parameters can then be adjusted in order to achieve a unity 

transfer function magnitude over the designated frequency range, and a phase plot with 

minimal slope that implies minimum delay. The reference signal in this tuning process is 

generally a band limited white noise with small amplitude to keep the specimen in 

linear range [84]. 
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5 ERRORS IN HYBRID SIMULATIONS 

Hybrid simulation takes advantage of analysis of the numerical substructures 

combined with the physical testing of experimental substructures. Hence, both 

numerical and experimental errors are expected to occur during a hybrid simulation. 

Usually, numerical errors can be reduced beyond the desired precision for results, by 

following certain modeling and analysis guidelines. The errors in experimental 

substructures can also be reduced by proper tuning and calibration of test equipment 

and using high-performance instrumentation, although it is virtually impossible to 

entirely eliminate experimental errors.  

In feedback systems like hybrid simulation, even small errors can accumulate 

during the experiment and significantly alter the simulation outcome, yielding 

inaccurate or unstable results. This is due to the fact that in time-stepping integration 

algorithms, experimental measurements contaminated by errors are used to compute 

subsequent commands. Hence, it is imperative to recognize the most important sources 

of error in hybrid simulation and seek ways to minimize and compensate these errors. 
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In this chapter, the major errors in hybrid simulation are briefly described and their 

most important sources are identified. In particular, the issue of actuator delay (a 

systematic experimental error) is discussed in detail; the sources and effects of delay are 

explored, and the offline and online methods for estimation of delay are studied. An 

improved online procedure for accurate and fast estimation of delay during hybrid 

simulations is introduced, and its performance is compared to the existing methods. The 

assessment of the reliability and accuracy of hybrid simulation results is discussed next, 

and quantitative error indicators are suggested for this purpose. This chapter concludes 

by examining the overall energy balance error for assessment of numerical and 

experimental errors in hybrid simulations. 

5.1 SOURCES OF ERROR 

In a hybrid simulation, errors are introduced from several sources: the structural 

model idealizations, the approximate numerical methods used to solve the equation of 

motion, and the experimental setup. A brief summary of these error sources follows. 

5.1.1 MODELING AND IMPLEMENTATION TECHNIQUES 

The ability of hybrid simulation to accurately capture the structural characteristics 

of the prototype structure is highly dependent on the selected numerical and 

experimental models. Approximations leading to idealized lumped-mass models, spatial 

discretization of elements, and characteristics of the utilized time integration procedure, 

all affect the simulation results. Most of the resulting errors are well identified, and it is 

often possible to minimize these errors by following certain guidelines in numerical 
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modeling, such as proper selection of finite element mesh size and geometry. In addition 

to modeling errors, the utilized simulation algorithm also influences the accuracy of the 

results; for example, simulations scaled in time may contain errors in rate-dependent 

forces developed in experimental specimen, or result in stress relaxations in ramp-and-

hold-type experiments.  

A number of the modeling errors resulting from the above-mentioned 

simplifications are sometimes admitted to exist in simulation, in order to alleviate the 

difficulties associated with physical testing, such as test equipment limitations, slow 

processing tools, and cost. As a result of these issues, often highly simplified numerical 

models are used in fast hybrid simulations. Simplification of boundary conditions for 

numerical and experimental substructures is another example of such errors. It is 

normally difficult to produce seamless boundary conditions between numerical and 

experimental substructures, mainly due to the limitations of testing equipment. From 

this standpoint, the separation of numerical and experimental substructures should be 

carried out carefully, to minimize the number of constraints on the boundaries of the 

physical test setup. It is expected that these errors can be reduced with the use of 

enhanced processing tools and improved testing equipment. 

Another potential error source is the utilized numerical integration method. These 

algorithms offer various stability and accuracy characteristics along with different levels 

of difficulty in terms of implementation, which should be considered in their selection 

for hybrid simulation. Numerical integration errors have been extensively studied by 

Shing and Mahin [58, 99]. They pointed out that errors in numerical integration may 
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result in frequency distortions, which in turn may lead to significant errors in the 

response of linear undamped structures. This is primarily due to the sensitivity of 

maximum response amplitude of these structures to their natural period T . 

Nonetheless, the errors can be significantly reduced if the selected integration time step 

tΔ  is considerably smaller than the natural period. In addition, when viscous damping 

exists, or when inelastic deformations occur, the sensitivity of the structural response to 

frequency distortions greatly reduces. Since structural components are usually loaded 

into their nonlinear response range in hybrid simulations, and viscous damping is often 

included, small frequency distortions can often be neglected. 

Commonly, the selection of proper integration time step for numerical simulations 

should follow these criteria: (i) it should satisfy the stability conditions of the utilized 

integration algorithm, (ii) it should be small enough to avoid large frequency distortions, 

and (iii) it should be small enough to accurately capture the nonlinear behavior of the 

test structure. It should be noted that the accuracy limits on /t TΔ  ratio are generally 

more stringent than stability limits, and ratios selected for accuracy normally satisfy 

stability conditions for most integration methods. It should be noted that the limitations 

of hybrid simulation may impose additional restrictions on the simulation time step. For 

example, the time step may need to be larger than a lower limit to meet the available 

communication capacity for the intended experiment rate, or to mitigate the error 

propagation problems in the simulation. 
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5.1.2 EXPERIMENTAL SETUP 

The experimental setup introduces various sources of error in a hybrid simulation 

that can influence the computed structural response. These errors include actuator 

tracking errors and mistuning, calibration errors of instrumentation, and noise 

generated in measurement instrumentation and A/D converters. Experimental errors 

are known to have the most substantial impact on the simulation results, as they are 

unidentified before the simulation, and may be large in improperly tuned test setups. 

The experimental errors can be classified as random or systematic. Random errors 

have no distinguishable pattern, while a regular pattern of occurrence can be identified 

for systematic errors. As an example, the lag in the displacement response of an 

actuator, can produce systematic uncertainties, as the resulting displacement errors have 

a magnitude and direction proportional to the velocity demand [11]. The effects of delay 

become more significant when it is considerably larger than the simulation time step. 

Hence, selection of very small time steps that may be required by the numerical 

integration component for acceptable simulation accuracy, may degrade the overall 

results, and is not always advisable for hybrid simulation. Due to the importance of 

delay in hybrid simulation, the sources, effects, and estimation and compensation 

procedures for this error are studied in detail in the following sections and Chapter  6. 

Errors in tuning and calibration of instrumentation are also categorized as 

systematic, as their direction and magnitude follow a regular pattern. These errors 

should be minimized in hybrid simulations before the experiment, as they can directly 

affect the simulation results. When a full elimination of these errors is impossible, proper 
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compensation methods should be employed to prevent their accumulation during the 

simulation (Chapter  6). Other systematic errors can occur in experimental elements 

scaled in size, or as a result of nonrealistic gravitational forces from reduced 

experimental masses.  

The measurement noise resulting from the instrumentation and A/D converters can 

be classified as random. Actuator tracking errors also include random components in 

addition to the systematic components described above. Random errors are an integral 

part of all experiments, and reasonable amounts of these errors are normally acceptable 

in the results of ordinary open-loop experiments. However, their effects are more 

pronounced in hybrid simulation as a feedback system; these errors can be considered as 

an external source of high-frequency excitation signal that may potentially amplify and 

destabilize the system through the excitation of higher-frequency modes and unmodeled 

dynamics. 

5.2 DELAY 

Delay in the experimental hardware is one of the most important systematic errors 

in feedback systems. In the field of structural engineering this issue has been faced in 

active structural control and hybrid simulations, due to the inherent delay of servo-

hydraulic actuators. The importance of delay and its effects on hybrid simulation results 

are discussed in this section. 
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5.2.1 SOURCES OF DELAY 

Delay in a hybrid simulation may result from lags in computation, communication, 

and servo-hydraulic system dynamics. Computational delays occur when the processing 

tools are too slow to complete the numerical integration task of the numerical 

substructure within one sampling period. Delays in communication are more important 

in geographically distributed hybrid simulations, where data transmission between 

numerical simulation and experiment sites takes a finite amount of time. 

Communication delays normally fluctuate and may occasionally be large. Event-

oriented simulation methods have been developed to handle these situations [11, 22]. 

 Delay in servo-hydraulic actuators is known to be the most important part of 

overall system delay; the actuator always follows the command displacement with a lag. 

Actuator delay may be reduced by proper selection of control parameters. However, it 

cannot be completely eliminated due to its tradeoff with control loop stability as was 

discussed in Chapter  4. 

5.2.2 EFFECTS OF DELAY 

In order to demonstrate the effect of delay in hybrid simulation, a linear SDF 

experimental specimen is considered. The hysteretic graph (force-displacement 

diagram) for a linear specimen should be a line, whose slope is equal to the stiffness. 

However, in the presence of delay, the measured force mr  corresponds to the measured 

(achieved) displacement mu , which has a delay compared to the command displacement 

cu  (Figure  5-1). As a result, the apparent (observed) behavior of the specimen (command 
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displacement versus measured forces) is similar to a viscoelastic material with negative 

damping that tends to add energy into the system. The additional energy is indicated as 

a shaded area within a reverse hysteretic loop shown in Figure  5-1. If this negative 

damping is greater than the total damping of the system, the system may become 

unstable. Delay is also shown to reduce the hysteretic energy dissipation of nonlinear 

substructures in Figure  5-1. In this case, the instability occurs when the negative 

damping effect of delay is greater than combined hysteretic and damping energy 

dissipation capacities of the system. Note that delay always introduces errors in hybrid 

simulation through the negative damping effect, regardless of simulation stability. 

 
Figure  5-1   Effect of delay as negative damping in linear and nonlinear simulations. 

To examine the effect of delay in the equation of motion (1.1), it is assumed that the 

experimental force vector r  is delayed by a delay τ . The equation of motion for a linear 

SDF system with purely experimental restoring force will then be: 
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where ek  is the stiffness of the experimental specimen, and ( )f t  is the output excitation 

term at time t , and is equal to ( )t
gm u t−  for an earthquake excitation. Defining the 

natural frequency E
n k mω =  and damping ratio 2

n
c mξ ω= , Equation (5.1) can be 

expressed as: 

 ( ) ( ) ( )
( )22 n n

f t
u t u t u t

m
ξω ω τ+ + − =  (5.2) 

By using Laplace Transform, the transfer function of the system between the input 

force and displacement response will be: 

 ( )
( )

( ) 2 2

1

2d s
n n

mU s
T s

F s s s e τξω ω −= =
+ +

 (5.3) 

This transfer function can be converted to frequency domain by substituting s iω=  with 

ω  being the excitation frequency of a harmonic load of the form ( ) ( )0 sinf t f tω=  [39]: 

 ( )
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( ) ( )

2

2 22

cos 2 sin1
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βφ β ξβ βφ
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⎡ ⎤ ⎡ ⎤− − −⎣ ⎦ ⎣ ⎦=
⎡ ⎤ ⎡ ⎤− + −⎣ ⎦ ⎣ ⎦

 (5.4) 

in which d nφ τω=  is the phase delay and nβ ω ω= . Comparing Equation (5.4) with the 

transfer function of a SDF system without time delay: 
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β ξβ

⎡ ⎤− −⎣ ⎦=
⎡ ⎤− +⎣ ⎦

 (5.5) 

one can observe that the delayed system is equivalent to the SDF system with the 

following effective damping ratio: 

 ( )2 sin 1 cos 2eff d dξ ξ ξ φ φ= − − −  (5.6) 
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which is calculated by comparing the resonant peaks of the two transfer functions at 

1β =  [39]. 

The transfer function given by Equation (5.4) for 5% damping is plotted against the 

frequency ratio β  for different values of phase delay, dφ  in Figure  5-2. These plots 

demonstrate the effect of delay as a phase delay, whose value is proportional to the 

natural vibration frequency. Therefore, a small delay can significantly reduce the 

effective damping ratio of higher-frequency modes, and possibly result in instability of 

the simulation. Consequently, more artificial damping in the numerical integration 

algorithm may be required to suppress the spurious excitation of higher-frequency 

modes in the presence of delay. 

 
Figure  5-2   Amplitude and phase of system transfer function with delay (5% inherent damping). 

In order to have a stable transfer function, the poles should be on the left half of the 

complex plane, i.e. the required damping ratio in Equation (5.4) should satisfy: 
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The maximum values of the above equation occur for small values of β , where 

( )sin d dβφ βφ  and the condition can be simplified as1: 

 
2
d

req

φ
ξ >  (5.8) 

It is important to note that the above-mentioned stability condition is developed for 

a continuous system, and does not consider the effects of time discretization and 

numerical integration algorithm. More stringent stability ranges for damping and/or 

time step size may exist when those considerations are taken into account. 

In order to further demonstrate the effects of delay, a hybrid simulation is carried 

out for a SDF system shown in Figure  5-3. The natural period of the system is selected to 

be 0.5 seconds. The complete restoring force of the system is modeled experimentally 

using a vertical cantilever loaded by a transverse actuator (Figure  3-4) with a fairly 

constant delay of 15 milliseconds. The majority of the mass and the entire 5% of critical 

damping of the system are modeled numerically. The simulation is carried out for 1978 

Tabas earthquake (a near-fault record with peak ground acceleration of 0.85g) scaled in 

amplitude by 2.5%. Low-level excitation is used to ensure a linear response in the 

experimental substructure, and prevent damage. 

                                                      

1 Equation (5.8) can also be found from Equation (5.3) with a truncated Taylor Series expansion of 

exponential term in the denominator. 
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Figure  5-3   A single-degree-of-freedom structure. 

The displacement history shown in Figure  5-4 demonstrates the unstable system 

response that triggers a system shut-down after the preset displacement limit of 5mm is 

exceeded. Note that a linear numerical simulation of the same system without delay 

produces a peak displacement less than 2.5mm. However, the simulation with delay 

becomes unstable even before strong earthquake shaking begins. The energy artificially 

added to the simulation can be clearly observed by comparison of measured or actual 

hysteretic loops (measured force versus measured displacement) of the experimental 

specimen with that observed by the numerical integrator (feedback force versus desired 

displacement) in Figure  5-4. The differences between the two hysteretic plots represent 

the errors introduced into the hybrid simulation as a result of actuator tracking errors. In 

this case, the behavior of the specimen observed by the numerical integrator consists of 

reverse hysteretic loops (negative damping) in the observed hysteresis.  

 
Figure  5-4   Displacement history of SDF hybrid simulation with delay, and actual and observed 

hysteretic loops. 
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Figure  5-5   Actual and observed energy dissipation histories in SDF hybrid simulation with delay. 

The negative damping effect of delay can also be observed in the energy histories 

shown in Figure  5-5. In this figure, the energy histories show the energy stored (in the 

forms of kinetic or elastic strain) or dissipated (through damping or inelastic strain) in 

the experimental substructure. It is illustrated that although the experimental 

substructure is actually dissipating energy, the observed energy plot shows that energy 

is being added to the system as a result of delay. The difference between these two 

histories shows the net energy added through negative damping as a result of delay 

errors. In Section  5.4 it will be shown that this difference in energy dissipation histories 

can be normalized by input energy and used as a measure of simulation accuracy [40]. 

 
Figure  5-6   Two-degree-of-freedom system with columns modeled as experimental substructures [11]. 
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Table  5-1. Each experimental substructure represents the story shear versus story drift. 

The inherent damping is selected to be 5% of critical, which is assumed to be entirely in 

the analytical model. The majority of the mass is also assumed to be in the numerical 

model. The natural periods of this system are selected to be 0.42 and 0.16 seconds. The 

2DF structure was subjected to 50% of Tabas earthquake. SDF numerical models 

described in Chapter  3 are used to replace the experimental substructure. The exact 

simulation result of this system can therefore be determined by eliminating all artificial 

error sources and utilizing a small-time-step implicit Newmark integration procedure. 

Table  5-1 Structural properties of 2DF model. 

 Weight (kN) Stiffness (kN/mm) Yield Displacement (mm) 
Story 2 222.5 6.57×2 20 
Story 1 222.5 6.57×2 20 

 

The delays in the simulated actuators of the first and second story setups were 

selected to be about 15 and 7 milliseconds, respectively. Figure  5-7 shows the simulated 

results with delay, when no delay compensation or signal correction procedure is used. 

By observing the top floor displacement of the system, it is evident that the response is 

spuriously dominated by the second natural mode of vibration. In a simulation without 

errors, the actual contribution of this mode to the response is considerably smaller. This 

comparison confirms that the effective damping of the second mode is highly reduced as 

a result of delay in the actuator models. The hysteretic loops for the specimens of the 

first and second stories also show that significant amount of energy is being added to 

the system through reverse hysteretic loops. 
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Figure  5-7   Simulation results of 2DF system without delay compensation – top floor displacement and 

observed hysteretic loops of experimental specimens. 

5.3 DELAY ESTIMATION 

Accurate estimation of actuator delay is essential for compensation and correction 

of signals to minimize the effects on simulation results. In most hybrid simulations, 

delay can be assumed constant throughout the simulation and can be calibrated offline. 

However, when delay is expected to significantly change during a simulation, online 

estimation is recommended for proper compensation.  

5.3.1 OFFLINE ESTIMATION 

Offline estimation of delay can be easily carried out by considering the system 

transfer function (Bode gain and phase plots) for a band-limited white noise excitation 

with small amplitude. In the system block diagram (Figure  1-2), time delay can be 

thought of as an extra block in the forward path that adds phase to the system but has 

almost no effect on the gain. That is, a time delay can be represented as a block with 

magnitude of 1 and phase ( ) ( )rad/s sω τ× . Therefore, Bode phase plot has the following 

simple relationship with system delay, τ : 
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 phase (degrees)
360 frequency (Hz)

τ =
×

 (5.9) 

In a physical test setup, the phase plot should be averaged for a relatively long excitation 

period to result in a fairly constant delay over the considered frequency range. 

Also in Bode frequency plots, the phase margin1 [100] can be used to measure the 

system tolerance to time delay. If there is a time delay greater than 180 pcω  (where pcω  is 

phase crossover frequency, corresponding to a phase shift of 180˚), the system will 

become unstable in closed loop control. 

5.3.2 ONLINE ESTIMATION 

Although offline calibration is the easiest and most accurate way of measuring 

delay, the actual delay may not remain constant during a simulation. For example, the 

dependency of servo-hydraulic actuator delay on specimen stiffness was demonstrated 

by Darby et al. [54]. Hence, specimens with large stiffness variations due to buckling, 

fracture, or semi-active stiffness devices may require variable time delay compensation 

during the simulation. 

Darby et al. [54] proposed an online procedure to measure the delay τ  at step n  

during a simulation by multiplying constant proportional gains weighted by the velocity 

                                                      

1 The phase margin is the difference in phase between the phase curve and -180˚ line at gain crossover 

frequency, gcω  (the frequency corresponding to a gain of 0dB). 
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to the difference between the desired displacements ( du ) and measured displacements (

mu ): 

 ( )1
1 1 1tanh

d d
d mn n

n n p v n n

u u
C C u u

t
τ τ −

− − −

⎛ ⎞− ⎟⎜ ⎟= + −⎜ ⎟⎜ ⎟⎜ Δ⎝ ⎠
 (5.10) 

The constants pC  and vC  should be determined experimentally by a tuning process, 

in which the delay history is considered during linear simulations involving the 

designated earthquake record and the actuator [54]. The multiplication of delay estimate 

at each step by the velocity increases the weights of the higher-velocity points of 

displacement history, where delay can be determined more accurately. As shown by 

Darby et al. [54], larger gains result in faster delay adjustments, but with larger 

oscillations. 

In a numerical simulation of the 0.5-second-period SDF system described in Section 

 5.2.2 subjected to 50% of Tabas earthquake record, with 0.01pC =  and 10 0.1v pC C= = , 

the estimated delay history is shown in Figure  5-8. The delay converges to the actual 

delay of 15ms after a few seconds and remains fairly constant for this model. Note that 

there are small oscillations close to the peak earthquake excitation. 

  
Figure  5-8   Actuator delay history estimated using Equation (5.10) and corrected simulation results. 
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 The displacement history of the simulation using a variable delay compensation 

procedure (described in detail in Chapter  6) is also shown to be stable. However, in the 

beginning of the simulation, the estimated delay is significantly smaller than the actual 

delay, resulting in spurious response during the first 5 seconds in this 30-second 

simulation. In order to reduce this initial instability, it is necessary to increase the values 

of the constants pC  and vC , which in turn, increases the amplitude of oscillations in the 

estimated delay near the peak earthquake excitation. The delay history is plotted in 

Figure  5-9 for 0.04pC = . While it takes more than 3 seconds for the estimation procedure 

to reach the actual delay value, the oscillations are considerably large, ranging from 

negative values to several multiples of actual delay. Thus, the values of pC  and vC  need 

to be carefully selected for proper implementation of this method. 

 
Figure  5-9   Estimated delay history using Equation (3) with higher gains ( 0.04pC = ).  
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procedure. This approach directly measures the delay from the desired and measured 

displacement histories in the actuator coordinate system. As shown in Figure  5-10, the 
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the points are equally spaced in time, the fit can be carried out with minimal 

computational effort. The delay estimated in step n  can then be obtained from: 

 1
2

2
ad am
n n

n n m m
n n

u u
G t

u u
τ τ −

−

−
= + Δ

−
 (5.11) 

where: 

 1 2 1 2;   
3 3

d d d m m m
ad amn n n n n n
n n

u u u u u u
u u− − − −+ + + +

= =  (5.12) 

 
Figure  5-10   Direct estimation of delay using desired and measured displacement histories.  

 
Figure  5-11   Estimated delay history using the procedure proposed in Equation (5.11). 
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been observed in most numerical and experimental simulations carried out in this study. 

Therefore, this relatively simple estimation procedure shows improved characteristics 

for fast and accurate adjustments of delay during a hybrid simulation, compared to 

Equation (5.10). 

 
Figure  5-12   Effect of learning gain on rise time and standard deviation of the estimated delay after rise 

time. 

Similar to the calibration constants in Equation (5.10), the learning gain G  in 

Equation (5.11) should be properly selected, based on the quality of measurements and 

amount of expected delay variation. For this purpose, low-level physical simulations can 

be carried out to select the best value for G , while avoiding damage to the experimental 
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oscillations through the simulation. Hence, the best value for G  is the largest value that 

does not result in highly oscillatory estimations. Figure  5-12 shows the variation in rise 
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gain of 0.1, which has been selected for the numerical and experimental simulations 

presented here with different ground motions. The selection of G  may be dependent on 

the instrumentation used and on the quality of measurements, and should be calibrated 

for each experimental setup. In order to ensure delay estimation based on quality data, 

velocity of the step can also be used as a part of this gain as suggested in [54], or one can 

turn this adjustment off if the detected velocity is less than some limit, say, 50% of the 

maximum expected velocity. 

As shown in the delay estimation history in Figure  5-11, delay can be considered 

constant during this particular experiment since the yielding of the specimen was 

limited. In this case, it is preferable to assume a constant delay to eliminate the extra 

computational effort associated with the estimation procedure. In addition, noise in 

delay estimation can lead to additional noise in the command displacement signal, 

which in turn can lead to contaminated measurements. Hence, it is recommended that 

online estimation of delay only be used in experiments involving significant stiffness 

variations, such as semi-active stiffness devices or fracturing specimens. 

In order to reduce the initial time necessary for estimation procedures to converge 

to the actual delay value, a reasonable initial value for delay can be specified based on 

previous experience or pre-test calibrations. This is particularly useful in cases where the 

strong motion of the earthquake record starts after a few seconds of initial low-

amplitude acceleration – the period in which accurate estimation of delay is difficult. 

The amount of delay in most of experimental and numerical simulations carried out 

in this study was known, from offline calibrations and previous experiments. However, 
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Equation (5.11) is always used for online estimation with all compensation methods 

presented in Chapter  6, starting with zero delay estimation. This has been done to 

further evaluate the efficiency of the proposed method in experiments with little a priori 

information about the test setup. In these studies, it has been observed that it is often 

unnecessary to adjust the learning gain value before each test conducted using the same 

experimental setup, regardless of amplitude of testing and earthquake excitation. This 

shows the relatively low sensitivity of the proposed delay estimation procedure to small 

variations of the learning gain value.  

5.4 ASSESSMENT OF ACCURACY 

Before using the results of a hybrid simulation, their accuracy and reliability should 

be verified. As mentioned earlier, hybrid simulation is prone to both numerical and 

experimental errors; hence, the accuracy assessment procedures should consider both of 

these error sources. 

It is often difficult to extend the numerical accuracy and stability limits of individual 

test procedures to hybrid simulations due to system nonlinearities and experimental 

errors. Particularly, simulation instability may occur well before reaching the stability 

limits that are calculated analytically for linear SDF systems. For example, when the 

negative damping resulting from delay in a linear numerical simulation becomes greater 

than the structural damping, instability occurs. However, instability may occur in a 

linear hybrid simulation with smaller delays due to measurement noise that acts similar 

to a high-frequency excitation signal. On the other hand, a nonlinear hybrid simulation 
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with larger delay may remain stable (but inaccurate) as a result of hysteretic energy 

dissipation. These nonlinearities and experimental errors also affect the analytical 

stability limits of numerical integration procedures. For this reason, it is important to 

develop error indicators that include nonlinearities and experimental errors, preferably 

without dependency on the numerical and experimental models. 

Unlike purely numerical simulations, repeating a hybrid simulation due to 

unacceptable accuracy can be very costly, as the experimental substructures may sustain 

damage during the experiment and need to be replaced. To avoid these situations, 

excessive accumulation of errors should be detected at initial experiment stages to stop 

the experiment and investigate the underlying problems. For this purpose, online error 

indicators can be used for early detection of the errors [40], possibly before damaging 

the experimental substructure. These error indicators provide real-time information 

about proper functioning of simulation components such as experimental setup, 

numerical analysis, and compensation and correction of signals. 

The hybrid simulation error indicators are discussed in the next two sections. In 

Section  5.5, an energy-based experimental error monitor is examined that indicates the 

proper detection of the behavior of the experimental substructure in the simulation. 

Next, an overall energy balance error is introduced in Section  5.6 for the assessment of 

combined numerical and experimental errors in hybrid simulations.  
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5.5 RELIABILITY MEASURES FOR EXPERIMENTAL ERRORS 

One of the main goals of a hybrid simulation is the accurate identification of 

structural properties of the experimental substructure. It is important to ensure these 

properties are correctly captured in the simulation. 

One way of assessing the accuracy of the captured behavior of experimental 

substructure is through the observed hysteresis; that is, the hysteretic behavior of the 

experimental substructure that is used in the numerical simulation. This hysteretic 

behavior should be in agreement with the actual behavior of the experimental 

substructure. In a hybrid simulation, the closest hysteretic behavior of an experimental 

specimen to the actual one is the measured hysteresis, which is a plot of measured forces 

versus measured displacements. For this reason, the actual hysteresis and measured 

hysteresis terms are used interchangeably in this study. 

Delay is the most important experimental error that can lead to significant 

discrepancy between actual and observed behaviors of the experimental substructure. 

This was shown in the simulation of a linear SDF system in Section  5.2.2. Figure  5-4 

shows that the observed hysteretic behavior significantly differs from actual behavior as 

a result of uncompensated delay. The difference can be evaluated by comparing the 

energy dissipated through these hysteretic loops [40]: 

 ( ) ( )T Terr O m d m m
E E EE E E= − = −∫ ∫r du r du  (5.13) 

in which r  and du  are experimental restoring force and incremental displacement 

vectors, and superscripts d  and m  denote the desired and measured values, 
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respectively; EE  is the energy stored in, or dissipated by the experimental substructures, 

O
EE  is that observed by the numerical analysis subsystem, and err

EE  is the experimental 

energy dissipation error. This equation takes into account the difference between the 

desired and measured displacement, but does not account for the corrections made in 

the measured force vector, if any. This energy error term can be normalized by input 

energy to give a non-dimensional error indicator that is merely dependent on the 

experimental errors (hybrid simulation error monitor, HSEM) [40]: 

 
err
E

max
I E

HSEM
E

E E
=

+
 (5.14) 

where: 

 ( )ι
Tt

I gE u t⎡ ⎤= − ⎣ ⎦∫ M du  (5.15) 

is the input energy from earthquake excitation, and: 

 max T e
E 0 0

1
2

E = u K u  (5.16) 

is the maximum experimental strain energy and is used to prevent large values of error 

indicator in the beginning of simulation, when the input energy is very small. eK  is the 

initial stiffness matrix, and 0u  is an experimental displacement vector, which can be 

roughly selected as the maximum expected displacement, or the yield displacement of 

the experimental substructure. The choice of this displacement vector depends on the 

available information, and since it is used in the normalization of energy error, it should 

be considered in the selected limit for error indicator. Mosqueda et al. [39] showed that 
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one can limit the displacement and force errors of a hybrid simulation by limiting the 

amount of the above-mentioned error indicator. 

Since the majority of errors in a hybrid simulation are likely from experimental 

sources, the above-mentioned HSEM can be a suitable choice for monitoring the 

simulation quality. As an example, the effect of delay compensation in the simulation of 

the two-degree-of-freedom structure (Figure  5-6) is shown in Figure  5-13. The negative 

value of HSEM shows a significant amount of energy is being added to the system when 

the delay is not properly compensated. 

 
Figure  5-13   Effect of delay compensation on energy error monitor value. 

A number of compensation procedures and integration methods that will be 

described in the following chapters apply corrections on the measured force, or modify 

desired displacements and measured forces to improve the stability. In order to observe 

the effects of those modifications on the accuracy of the captured experimental 

hysteresis, the energy error between the experimental and analytical subsystems can be 

defined as: 

 ( )Terr C T m m
EA E EE E E= − = −∫ ∫r du r du  (5.17) 
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in which r  and du  are the final force and displacement values used in numerical 

analysis. These values are found at the end of each integration step (possibly after some 

modifications or iterations), and are used to calculate the next state values for continuing 

the simulation. For this reason, the hysteretic behavior using these values is called 

corrected or converged hysteresis, and the corresponding energy dissipation is termed 

C
EE . 

In order to ensure proper identification of experimental substructure properties, the 

energy error err
EAE  should be monitored rather than err

EE , since the latter only considers 

the errors that may occur outside of numerical simulation module. Hence, it is important 

to note that not all errors in err
EAE  have experimental sources, and part of them may be 

originating from numerical simulation module. This error can also be normalized by a 

relation similar to Equation (5.14) for online monitoring of simulation errors. 

5.6 OVERALL ENERGY BALANCE FOR EVALUATION OF TOTAL ERRORS 

Experimental studies are often accompanied with analytical models that are used to 

verify the results, or models that are developed based on the results obtained from the 

experiment. In any case, the discrepancies between analytical and experimental results 

cannot be fully eliminated. Furthermore, a hybrid simulation is carried out partially due 

to lack of accurate numerical models for experimental substructure, and analytical 

results most probably are not available during the simulation. For this reason, a 

comparison between fully analytical results and those of hybrid simulation may not be a 

suitable accuracy measure in most cases. In this section, an energy-based error measure 
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is introduced for hybrid simulation that includes both numerical and experimental 

errors, and does not require a numerical model of the test system. 

Filiatrault et al. [42, 43] proposed the use of energy balance equation to estimate the 

extent of numerical errors in nonlinear seismic analyses. They showed that the energy 

balance is a better accuracy measure than a comparison among peak response 

parameters, such as displacements and accelerations. The error index introduced in this 

section also uses the energy balance for online assessment of simulation accuracy. In 

order to include both numerical and experimental errors in this index, the energy 

balance evaluation procedure is slightly modified as described below. 

The energy balance equation of a simulation can be obtained by integrating the 

equation of motion (1.1) over displacement: 

 C
K D S E IE E E E E+ + + =  (5.18) 

in which KE  is the kinetic energy of numerical mass, DE  is the energy dissipated 

through viscous damping in numerical substructure, SE  is the strain energy stored or 

dissipated in numerical substructure: 

 T
K

1
2

E = v Mv  (5.19) 

 T
DE = ∫ v Cdu  (5.20) 

 T
SE = ∫ u Kdu  (5.21) 
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and C
EE  is the energy stored or dissipated in the experimental substructure from an 

analytical standpoint, as discussed in the preceding section. 

Both numerical and experimental errors affect how well the energy balance is 

maintained. For example, experimental errors make experimental energy EE  differ from 

C
EE  used in numerical analysis to satisfy the equation of motion. On the other hand, 

numerical truncation errors or relaxed convergence tolerances may result in small 

differences between left- and right-hand sides of Equation (5.18). Hence, an overall 

energy error can be defined as: 

 ( )err
I K D S EE E E E E E= − + + +  (5.22) 

Within the engineering precision requirements, and if the convergence tolerance is 

sufficiently small, the energy error obtained from Equation (5.22) will be very close to 

err
EAE  from Equation (5.17). That is, it essentially includes the difference between actual 

experimental and converged energies1. Particularly, it cannot capture the errors of 

numerical integration procedure, since all integration methods satisfy the equation of 

motion and its integral form, Equation (5.18). However, perfect satisfaction of equation 

of motion is not sufficient for an accurate and stable simulation; the numerical 

                                                      

1 This is based on the assumption that experiment and numerical analysis are in phase. Later, it will be 

shown that some integration procedures may load the experimental substructure beyond current integration 

step, which results in some additional energy error. Unlike other errors, the errors resulting from this phase 

difference do not add up during the simulation, and should reduce to zero at the end of excitation, when the 

system stops oscillating. 
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simulation procedure should also maintain proper kinematic relations between 

displacement, velocity and acceleration. To include the kinematic errors that may occur 

in the numerical simulation module of hybrid simulation, it is proposed to replace the 

velocity in Equations (5.19) and (5.20) by the first derivative of displacement: 

 T
K

1
2

E = u Mu  (5.23) 

 T
DE = ∫ u Cdu  (5.24) 

With this modification, any error in the kinematic relation between displacement and 

velocity (and hence, between displacement and acceleration) will be reflected as a 

discrepancy of kinetic and damping energies from those satisfying Equation (5.18). 

The energy terms of Equation (5.22) in incremental form are: 

 ( ) ( ){ }ι
Tt

I, I, 1 1

1
2n n g n g nE E u t u t− −

⎡ ⎤= − + Δ⎣ ⎦ nM u  (5.25) 

 
( )

( )TK, 2

1

2
n n nE

t
= Δ Δ

Δ
u M u  (5.26) 

 ( )TD, D, -1

1
n n n nE E

t
= + Δ Δ

Δ
u C u  (5.27) 

 ( )TS, S, 1 1

1
2n n n n nE E − −= + + Δu u K u  (5.28) 

 ( )Tm m
E, E, 1 1

1
2n n n n nE E − −= + + Δr r u  (5.29) 

where 1n n n−Δ = −u u u . Similar to Equation (5.14), a normalized error index can be 

calculated based on overall unbalanced energy: 
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err

max
I E

EEI
E

E E
=

+
 (5.30) 

The energy error index given by Equation (5.30) has been extensively used to 

evaluate the effectiveness of compensation and integration procedures in the following 

chapters. In the calculations leading to the above-mentioned energy balance error, 

velocities are derived from displacements, and the actual energy dissipation of the 

experimental substructure EE  is considered. Hence, the resulting error is expected to 

include the effects of the numerical integration errors and kinematic inconsistencies, as 

well as the differences between the observed and actual behaviors of the experimental 

substructure. 
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6 DELAY COMPENSATION METHODS 

It is virtually impossible to eliminate all experimental errors from a hybrid 

simulation. Examples of these errors are random noise in measurements and systematic 

errors like delay. In an ordinary open-loop experiment, small experimental errors are 

tolerable, as they can be easily removed after the experiment by a variety of offline 

correction procedures, such as baseline correction and gain adjustment, and signal 

smoothing using moving window averaging or low-pass filters. However, since hybrid 

simulation is a feedback system with direct use of measurements, it can be extensively 

affected by these errors, and their correction cannot be left until post-experiment data 

processing. 

Hence, in addition to the attempts to minimize experimental errors, online 

correction and compensation procedures are employed to mitigate the effects of leftover 

errors on hybrid simulation results and prevent their accumulation. This is normally a 

challenging task, since the corrections should be carried out online within a short 

analysis time, with only available data belonging to the previous steps of the 
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experiment. Furthermore, it is difficult to establish a complete analytical model of the 

test system to use in compensation procedures. 

Servo-hydraulic actuator delay is one of the most critical sources of errors in a 

hybrid simulation. It was demonstrated in Chapter  5 that the effect of time delay in a 

feedback system is similar to negative damping that may result in an unstable 

simulation. In this chapter, different approaches for compensation of delay in feedback 

systems used in structural engineering are presented. The procedures that are most 

widely used in hybrid simulations are studied, and new methods are introduced. The 

performance of the compensation methods are then compared using analytical studies 

and energy errors in numerical and experimental simulations. 

6.1 DELAY COMPENSATION METHODS FOR ACTIVE STRUCTURAL CONTROL 

The problem of delay has been faced in feedback systems used in many areas of 

engineering. In structural engineering, the first real-time feedback control systems were 

developed for active control of structures [101, 102]. Since an active control process 

involves structural response measurement, computation of control forces, and 

transmission of command signals to actuators, a time-delay always exists in the 

application of control forces to the structure. Similar to hybrid simulations, the negative 

damping introduced by delay may significantly degrade the performance of active 

control systems.  

An important difference between active control of structures and hybrid simulation 

is the availability of a fairly complete numerical model of the feedback system. Often, a 
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reasonably accurate numerical model is available in control problems that allows for 

prediction of states [45, 103-105]. With a numerical model for the system, the effects of 

delay can also be formulated and augmented into the system equations [104, 106], or 

added to the feedback system as a new subsystem [44, 107]. The effects of delay can then 

be considered in the design of control system. Further, it has been shown that an 

appropriate choice of delay can be beneficial for active control (time-delayed control of 

structures) [108, 109]. 

By comparing the transfer functions of closed-loop systems with and without delay, 

Smith [110, 111] proposed a novel method of time-delay compensation, known as Smith 

Predictor method. In this approach, the compensator is designed such that the 

characteristic equation of the delayed system with Smith Predictor is the same as that of 

the ideal system without delay. Hence, the stability of the structure using the Smith 

Predictor can be analytically guaranteed. An accurate analytical model of the structure is 

essential for Smith Predictor to adequately compensate small to moderate delays. 

In addition to the above procedures, delay compensation methods have been 

developed for control problems that do not explicitly use the numerical model of the 

system. Using the past measurements in a Taylor Series expansion for prediction of 

states [47], and fitting curves to sampled response quantities and extrapolating for 

compensation of delay [112] are examples of these methods. The phase shift method is 

another way of delay compensation [47, 48, 113, 114] based on the idea of changing the 

phase angle between the control force and structural response to obtain an acceptable 

response reduction. For this purpose, dominant frequency of vibration is necessary to 
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modify the gain matrix. To extend this method to MDF systems, the mode shapes and 

natural frequencies of the open-loop system are also required [113, 114]. 

6.1.1 APPLICABILITY TO FAST HYBRID TESTS 

A wide range of delay compensation procedures have been developed for active 

control of structures that take advantage of the numerical model of the feedback system. 

The performance of these methods is highly dependent on the accuracy of the utilized 

mathematical model. A hybrid simulation, however, is carried out for identification of 

the structural behavior of complex or highly nonlinear experimental components. In 

addition, it involves complex dynamics of servo-hydraulic test system. Hence, the 

properties of the feedback system are often unavailable during the experiment for use in 

delay compensation procedures. For this reason, mostly methods that require less 

information about the numerical model of the system have been adapted to hybrid 

simulation. An example of these procedures is the curve fitting method that does not 

need a numerical model of the system, and has been widely used in hybrid simulations. 

More detail about this compensation procedure is presented in the next section. 

Smith Predictor is another active control delay compensation method that has been 

applied to force-controlled hybrid simulations [5, 20, 115]. However, as an accurate 

numerical model of the system is required for this compensator, it has only been applied 

to linear systems. The implementation strategy consists of an ordinary feedback loop 

plus an inner loop that introduces two extra terms directly into the feedback paths. The 

first term is an estimate of the process variable in the absence of time delay, and the 

second is an estimate of process variable with time delay. Subtracting the estimated 
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process variable from the actual process variable yields an estimation error, which can 

be added to the predicted process variable to create a feedback signal without time 

delay. As a result of using Smith Predictor, the system becomes a closed loop feedback 

control system with the time delay term outside the loop. 

As illustrated in Figure  6-1 [10], it is expected that the model imperfections result in 

a signal named modeling error, which is used to modify feedback and compensate for the 

imperfections. If the actuator model is perfect, this model is able to completely remove 

its dynamics from simulation results. Regarding the delay effect, Figure  6-1 shows that 

the majority of the interface force feedback is taken from a numerical model with minimal 

delay, and the servo-hydraulic actuator delay only exists in the error portion of the 

feedback signal to the computational substructure. 

 
Figure  6-1   Displacement-controlled hybrid simulation with Smith Predictor. 

The block diagram in Figure  6-1 does not provide any means for updating the 

substructure model; in other words, the experimental substructure is modeled using an 

invariable transfer function. As a result, any change in the properties of the physical 

substructure during the simulation leads to an increase in the modeling error signal, and 

degrades the performance of compensation system. To account for specimen 

nonlinearities, the modeling error signal can be used to modify the parameters of the 

physical substructure model, as illustrated in Figure  6-2 [10]. This configuration 

COMPUTATIONAL
SUBSTRUCTURE ACTUATOR PHYSICAL

SUBSTRUCTURE

PHYSICAL
SUBSTRUCTURE

MODEL
ACTUATOR

MODEL

EXTERNAL EXCITATION

INTERFACE
FORCE

MODELING
ERROR

INTERFACE
DISPLACEMENT

+-

++



7BDelay Compensation Methods  
  
  

 

 119

resembles a classic problem of model reference adaptive control. Instead of modifying 

the feedback force, the modeling error is used to update the parameters of the numerical 

model and improve its performance. The model update can be carried out at the 

numerical integration rate, which is normally slower than the experiment command 

update and measurement rate, to reduce the computational costs [116]. 

 
Figure  6-2   Displacement-controlled hybrid simulation with adaptive Smith Predictor. 

One problem in using the Smith Predictor is its sensitivity to the actuator model 

used in the simulation. It is evident that this compensator cannot eliminate the non-

modeled dynamics of the actuator. Further, if the amount of delay in the model is 

different than the actual delay present in the actuator an incorrect error signal results. 

Another challenge is that the adaptation laws and learning rates should be carefully 

selected to ensure the use of quality data in updating the model parameters. The 

learning rates should be fast enough to enable the model to capture rapid changes in 

system behavior while avoiding the instabilities that may occur using large learning 

gains.  

6.2 DELAY COMPENSATION METHODS FOR FAST HYBRID TESTS 

In this section, the most widely-used compensation procedures for hybrid 

simulation are reviewed, and new methods are proposed. The performances of these 

methods are also examined through numerical and experimental studies. 
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Based on the way the correction procedures modify hybrid simulation signals, the 

compensation methods can be categorized in two major groups [117]: i) procedures that 

modify or compensate the command displacement signal, and ii) procedures that correct 

the force measurement signal. These two approaches appear as two 

correction/compensation blocks in Figure  1-2, one before sending the commands to the 

actuator controller, and the other before returning the measurements to numerical 

integration block. 

6.2.1 COMMAND DISPLACEMENT MODIFICATION METHODS 

In a typical command displacement delay compensation procedure shown in Figure 

 6-3, the command displacement at time t , denoted by nd ′ , is predicted ahead of the 

desired displacement nd  by the expected delay, τ . Since a predicted command 

displacement is sent to the actuator, the actuator response is then expected to be close to 

the desired displacement nd  at the end of the numerical integration time step, tΔ . Based 

on this nomenclature, the desired and command displacement signals in Figure  1-2 ( du  

and cu , the output signals of the simulation and the first correction/compensation 

blocks) consist of nd  and nd ′  values, respectively. 

The most-widely used delay compensation procedure for hybrid simulation was 

introduced by Horiuchi et al. [50]. In their recommended procedure, a third order 

polynomial is fitted to the last four desired displacements, and used to predict the 

command displacement ahead of simulation time by extrapolation on the fitted 

polynomial. In addition to the simplicity of this approach, the fitted polynomials can 
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also be used to generate command signal at time intervals equal to tδ  using desired 

displacements calculated by integration module at tΔ  intervals [19]. Further, the 

polynomial extrapolation can continue in case of computation or communication delays, 

until the next numerical integration results become available [11]. 

 
Figure  6-3   General extrapolation problem for command displacement signal. 

Horiuchi and Konno [51] proposed another prediction algorithm by assuming a 

linear variation of acceleration, which also provides third order displacement variation. 

Since most of the integration procedures that are currently being used in hybrid 

simulation are explicit (e.g. Newmark’s Beta method [118]), the velocity and acceleration 

at desired displacement time t τ−  remain unknown until the force feedback at the 

desired displacement is available. Therefore, the command displacement can be 

determined based on the states at times t tτ− −Δ  and 2t tτ− − Δ , using the following 

equations: 
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 ( ) ( ) ( )2 2
1 1 1

1 1
3 6n n n n nd d t v t a t aτ τ τ− − −′ ′= + Δ + + Δ + + Δ +  (6.2) 

In the above relations, subscripts denote the integration step number, and primed 

variables denote a predicted quantity. 

The command displacement delay compensation procedure proposed herein, is 

based on the modification of time step in the numerical integration procedure. In this 

method, the delay-compensated command displacement nd ′  is determined using the 

same numerical integration equations used to determine nd  from the available states at 

time t tτ− −Δ . For example, many numerical integration procedures use an explicit 

Newmark’s method ( 0β = ) to determine the desired displacement at step n : 

 ( )21 1 1

1
2n n n nd d t v t a− − −= +Δ + Δ  (6.3) 

which is a finite difference kinematics equation assuming constant step acceleration. The 

compensated displacement can then be predicted by simply increasing the integration 

time step: 

 ( ) ( )21 1 1

1
2n n n nd d t v t aτ τ− − −′ = + Δ + + Δ +  (6.4) 

Since the desired and command displacements are determined in the same way in 

the proposed method, it can be incorporated in the numerical simulation module. Note 

that the increased time step is only used in Equation (6.4) for calculation of command 

displacement, and should not affect the integration algorithm time step tΔ . 
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It should be noted that Equation (6.4) can be derived from Equation (6.2) for the case 

of constant acceleration. That is, Equation (6.2) has an additional term given by: 

 ( ) ( )3 31 2
n, Horiuchi n, Proposed [ 1, 2]

1 1
6 6

n n
n n

a a
d d t t a

t
τ τ− −

− −

−′ ′− = Δ + Δ +
Δ

 (6.5) 

which is a third-order term, resulting from the assumption of linear variation for 

acceleration. 

6.2.2 FORCE CORRECTION METHODS 

As an alternative to command displacement modification procedures, corrections 

can be applied to the measured force signals. From an analytical standpoint, correction 

of forces can be as effective as correction of displacements, because force measurement 

signal is the main feedback to the numerical model for continuing the simulation. The 

force corrections can also be carried out in combination with displacement extrapolation 

procedures to correct the actuator tracking errors, which may exist even when 

displacements are carefully compensated for delay. 

One method of delay compensation in force measurements is using the same 

polynomial extrapolation procedures described in the preceding section. If this force 

extrapolation is accompanied by a displacement extrapolation procedure, care should be 

taken not to compensate for delay twice; force extrapolation should compensate for the 

portion of delay that was not previously compensated in displacement signal. For this 

reason, the online delay estimation task should yield two values as shown in Figure  3-9. 

The first output is delay that should be compensated in displacement signal, and the 

second is uncompensated delay, which should be corrected in force signal. The former is 
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calculated cumulatively using Equation (5.11), and the latter reflects the instantaneous 

delay between desired and measured displacement signals. Delay output increases until 

the time lag between the desired and measured displacements diminishes and remains 

constant afterwards; at this point, the uncompensated delay reduces to zero and force 

extrapolation stops until a change in system delay disturbs this condition. 

A major problem in polynomial extrapolation of force measurements is the noise 

contamination, which is often worse than in displacement signals. As a result, force 

predictions often have a reduced quality compared to displacement predictions. 

Another issue that further supports the use of displacement extrapolation methods is 

that the actuator follows the desired displacement signal more closely when command 

displacement is properly compensated, than when only force is corrected. 

 
Figure  6-4   Estimation of force corresponding to the desired displacement using measurements. 

A different approach is considered for correction of measured force by seeking the 

time at which the desired displacement is achieved and its corresponding force within 



7BDelay Compensation Methods  
  
  

 

 125

the measured data. As shown in Figure  6-4, two second-order polynomials are fitted to 

the latest few force and displacement measurements in actuator coordinate system, as: 

 ( ) 2
r r rr t a t b t c= + +  (6.6) 

 ( ) 2
u u uu t a t b t c= + +  (6.7) 

By using the displacement polynomial, the time corresponding to the desired 

displacement nd  can be determined as: 

 
( )2 4

2
u u u u n

d
u

b b a c d
t

a

− ± − −
=  (6.8) 

from which the value closer to current step time will be chosen. The force can then be 

found by replacing the above-mentioned time into the force polynomial given by 

Equation (6.6). Note that if delay in a displacement-controlled test is overcompensated 

in displacement signal, this procedure will only interpolate on the measured force data. 

This procedure eliminates the need for exact estimation of delay since it directly seeks 

the force corresponding to the instant the desired displacements is achieved. As a result, 

it can be combined with a displacement extrapolation procedure to compensate for 

tracking errors before the estimated delay reaches the actual value. Such correction can 

improve the stability of the simulation in initial low-amplitude excitation periods, such 

as the one shown in Figure  5-8. After the estimated delay reaches the actual value, this 

force correction procedure attempts to reduce the effects of remaining random actuator 

tracking errors. 
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The use of time to relate the two fitted polynomials has several advantages. First, 

since the measured data points are equally spaced in time, determination of fitted 

polynomial coefficients is computationally efficient. In addition, the effects of specimen 

nonlinearities will be less pronounced on time histories compared to force-displacement 

curves, providing better quality curve fitting. Clearly, the prediction error using the 

fitted polynomials increases when extrapolating further from the fitted points. To 

minimize errors, limits can be imposed on the variation of time parameter within one 

step to avoid extremely large extrapolations. The extrapolation limit should be selected 

sufficiently large for compensation of maximum expected delay in a simulation. 

One problem in using force compensation procedures is that Equation (6.8) can 

result in a complex time value, particularly during undershooting of displacement at 

displacement reversals. This occurs when the desired displacement nd  does not satisfy 

24 4u n u u ua d a c b≥ −  (Figure  6-4). Inserting the resulting complex-valued time in the fitted 

force polynomial then results in a complex force value. If the desired displacement 

remains close to the measured displacement peak, the imaginary part of the resulting 

complex force is small, and its real part increases proportionally beyond the force peak. 

Consequently, the absolute value of the complex force, which is approximately equal to 

its real part, provides an adequate estimate of the force. Application of this force 

correction procedure in steps with small imaginary force components has shown to be 

advantageous in minimizing experimental errors compared to simulations without 

corrections in steps with complex-valued time.  
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As each of the peaks of the command displacement will be achieved with a delay, at 

which time the command has already reduced from its maximum, an undershooting is 

more likely to happen during displacement reversals. In order to mitigate the systematic 

undershooting of displacements during displacement reversals, a variable gain can be 

applied to the delay compensated command displacement. The gain can be calculated 

online based on previous comparisons of desired and measured displacement peaks 

with moving window averaging to smoothen the results. Since the restoring force from 

the attached specimen tends to move the actuator piston back to its equilibrium point, 

the command signal gain is applied to the position of the piston with respect to the this 

point, termed zero displacement. The equilibrium can be found by seeking the zero-

force feedback from the actuator load cell. As the zero displacement of a nonlinear 

specimen may drift from its original position, it should also be determined online during 

the simulation. 

It has been observed that the use of a variable gain on command displacements may 

increase the number of simulation steps with successful force correction in SDF 

experimental substructures. An example of the variable gain and zero displacement 

history estimated online in an experiment is presented in the next section. For MDF 

experimental substructures, however, determination of zero displacement is difficult 

due to the interaction of actuators on the experimental substructure. As a result, the gain 

estimations become oscillatory and ineffective in MDF experimental substructures.  

As mentioned earlier, force measurements may contain a significant amount of 

noise. The majority of this noise can be removed by using conventional low-pass filters 
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at the expense of additional system delay. In any case, the use of the minimum number 

of points to fit polynomials is likely to result in a fit highly contaminated by the noise 

present in the measurements. To avoid this situation, it is recommended that additional 

points be used to fit the polynomial. The extra computational effort for using more 

points is small, since normally the measured points are equally spaced in time. In the 

numerical and experimental studies presented in this dissertation, quadratic 

polynomials are fitted to the four most recent measurements (one more than minimum 

required points), to obtain an adequate fit. 

6.3 COMPARISONS OF COMPENSATION PROCEDURES 

In this section, the above-mentioned delay compensation procedures are compared 

analytically, numerically and experimentally. These comparisons also include a number 

of existing delay compensation methods that are widely used in hybrid simulations. 

6.3.1 DISPLACEMENT EXTRAPOLATION METHODS 

The performances of displacement extrapolation methods are studied by examining 

their ability to predict a sinusoidal displacement history. This analytical approach is 

similar to that used by Nakashima and Masaoka [19] in evaluating the polynomial 

extrapolation method. Assuming a sinusoidal displacement signal with frequency ω  and 

amplitude A , the exact displacement at time t  is given by: 

 sind A tω=  (6.9) 
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It is assumed the command (predicted) displacement is sought at time t , while the 

displacement, velocity and acceleration of time t t τ−Δ −  and prior steps are given by: 

 { }sin     1n id A t i t iω τ− = − − Δ ≥  (6.10) 

and its derivatives. Further, only the displacement nd  at time t τ−  is assumed to be 

known through an explicit Newmark’s kinematics equation (6.3). After some 

manipulations, the predicted displacement at time t  can be expressed in the form: 

 sin( )nd m A tω θ′ ′ ′= +  (6.11) 

which is different from the exact displacement given by equation (6.9) by an amplitude 

magnification m ′  and phase shift θ ′ . 

  
Figure  6-5   Amplitude magnification and phase errors for different displacement prediction methods. 

The resulting phase and amplitude errors are plotted in Figure  6-5 for a normalized 

integration time step tωΔ  with 0.01stΔ = , 0.001stδ = , and 0.009sτ = . It can be observed 

that all procedures give a minimal dispersion when 0.25tωΔ < . For larger values of tωΔ

, different procedures offer various advantages and disadvantages. However, it is 

evident that with selection of higher order procedures, better precision can be achieved 

for small tωΔ  (less than 0.3), but for mid-range values, lower order procedures appear 

to perform relatively better. 
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Although Figure  6-5 suggest that polynomial extrapolation procedures have a 

comparable performance to procedures assuming constant or linear acceleration, the 

latter methods show significant advantage in force measurements during earthquake 

simulations. As an example, Figure  6-6 shows close-up views of displacement histories 

for a 0.5-second-period SDF subjected to Tabas earthquake using different compensation 

methods. It is evident that the kinked command displacements from polynomial 

extrapolation result in small oscillations in the displacement measurement, which in 

turn, lead to significant noise in the measured force signal. The Fourier amplitude plot of 

force measurements in Figure  6-7 confirms that polynomial extrapolation procedure 

results in larger amplitude noise in the higher frequency range. The results provided 

here are based on numerical simulations where other sources of uncertainty are better 

controlled. Similar benefits to using kinematics expressions have been observed in actual 

hybrid tests. 

 
Figure  6-6   Comparison of command displacement signals using polynomial extrapolation and 

numerical integration ( 2Hzf = , 0.12tωΔ = ). 

6.3.2 PERFORMANCE IN NUMERICAL AND EXPERIMENTAL SIMULATIONS 

Numerical and experimental simulations have also been used to verify the 

effectiveness of the compensation procedures described in this chapter. A few examples 
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of simulation results are presented and the energy error indicators introduced in 

Chapter  5 are used to compare the performance of these compensation procedures. 

 
Figure  6-7   Fourier amplitude of the force measurements resulting from numerical simulations with 

different displacement extrapolation methods. 

    
Figure  6-8   Simulation results of 2DF system with delay compensation using kinematics equation – top 

floor displacement and observed hysteretic loops of experimental specimens. 

Figure  6-8 shows the numerical simulation results for the two-degree-of-freedom 

structure described in Section  5.2.2, using the explicit kinematics equation (Equation 

(6.4), assuming constant step acceleration) for compensation of delay. Compared to 

Figure  5-7, it is evident that this compensation procedure eliminates the majority of the 

energy errors and suppresses the erroneous second mode response. The hysteretic loops 

demonstrate minimal change in energy dissipation without the negative damping effect. 

The second story behaves in the elastic range during the entire simulation and the first 

story yields slightly. The variation of HSEM for this simulation shown in Figure  5-13 
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also confirms the effectiveness of this compensation procedure. This comparison 

demonstrates that in absence of compensation procedures, the majority of the energy 

input into the simulation originates from systematic actuator delay errors as opposed to 

the earthquake excitation. 

The estimated actuator delays using Equation (5.11) were also observed to quickly 

converge to the actual values during this simulation, as shown in Figure  6-9. Since the 

delay values assumed for the actuator models were constant and independent from the 

specimen behavior, no significant oscillations were observed in the estimated delay 

histories. 

 
Figure  6-9   Estimated delay history in the simulation of 2DF structure using the proposed online delay 

estimation method. 

The simulation results using other compensation procedures, namely, the force 

correction based on desired displacement and delay compensation in measured force 

signal have also been observed to be effective in minimizing the negative damping 

effects. For large delay values (larger than 20ms for the structure in question), however, 

the force correction procedures fail to produce acceptable results, which can be 

attributed to the noise in force measurements. Another reason can be the fact that with a 
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large delay, the desired and measured displacements are significantly different, and 

larger extrapolations may be necessary to estimate the force corresponding to the 

desired displacements.  

The SDF experimental setup shown in Figure  3-4 is utilized for the experimental 

verification of correction and compensation procedures examined in this study. The 

natural period of the system has been selected to be 0.5 seconds. With a measured 

stiffness of about 880 N/mm, the required mass is 5.59 kN·s2/mm, out of which 0.01 

kN·s2/mm is estimated to be present in the experimental specimen. The stiffness is 

completely modeled in the experimental specimen, while the entire 5% of critical 

damping is modeled numerically. In these experimental studies, the measurement and 

actuator command update rate and integration time step were 1024Hz and 10/1024s, 

respectively. The explicit form of Newmark’s Beta integration procedure is used to solve 

the equation of motion in the numerical simulation module. 

A 16-millisecond delay in actuator response was measured, which is considerably 

larger than other published amounts of delay [39, 50, 51, 54] and delays that have been 

recently measured at SEESL using newer actuators and servovalve models. Figure  6-10 

shows the estimated delay history using Equation (5.11) in a nonlinear experiment with 

delay compensation using kinematics displacement equation. As illustrated, the delay 

estimate quickly converges from zero to values close to the actual delay with minor 

oscillations in the initial low level excitation. This and other experiments have shown 

that the proposed delay estimation procedure provides reliable results.  



7BDelay Compensation Methods  
  
  

 

 134

 
Figure  6-10   Estimated delay history using Equation (5.11) in a nonlinear experiemental simulation. 

  
Figure  6-11   Hybrid simulation results with polynomial extrapolation of command displacements – 2.5% 

Tabas erthquake. 

All delay compensation procedures discussed in this chapter were observed to be 
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the 0.5-s period system subjected to Tabas earthquake record with different amplitude 

scales for linear and nonlinear response. As demonstrated, these compensation 

procedures effectively compensated the delay to achieve stable simulations. The actual 

hysteretic behaviors of the specimen (measured forces versus measured displacements) 

are also compared to those observed by the numerical integrator (feedback forces 

corrected by compensation procedure versus displacements required by the numerical 

integrator). These comparisons demonstrate good agreement between actual and 
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observed specimen behavior, and imply minimal energy alteration of the system due to 

delay.  

  
Figure  6-12   Hybrid simulation results with extrapolation of displacements using kinematics equation – 

20% Tabas erthquake. 

  
Figure  6-13   Hybrid simulation results with delay compensation in force signal – 2.5% Tabas erthquake. 

  
Figure  6-14   Hybrid simulation results with correction of force mesurements based on desired 

dispalcements – 25% Tabas earthquake. 
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failed to effectively compensate for larger delay, while displacement correction 

procedures provide reasonable results. If the specimen is not sensitive to the rate of 

loading, time scaling may be necessary to carry out the simulations with large delay in 

actuator response. 

Table  6-1 Final energy error value using different compensation procedures (linear experiments). 

Compensation Method Energy Error (% of Input Energy) 
Tabas 1978 El Centro 1940 

Kinematics Equation 0.22 0.20 
Displacement Polynomial Extrapolation 0.26 0.35 
Force Polynomial Extrapolation 1.15 1.84 
Force Estimation Based on Desired 
Displacement 2.53 2.09 

 

Numerical and experimental simulation results also support the implementation of 

delay compensation procedures on the displacement signals. This can be partially 

attributed to the higher amounts of noise in force measurements that make large 

extrapolations difficult, as mentioned earlier. In order to further explain the advantage 

of displacement modification procedures over force correction methods, it should be 

noted that in the latter methods, the force feedback corresponds to a displacement that 

may not be physically applied to the experimental substructure. As a result, the actual 

energy dissipation will progressively differ from the feedback amount as the delay 

increases. 

It should be noted that the energy error values listed in Table  6-1 are obtained using 

small-amplitude excitations (2.5% Tabas earthquake and 7.5% El Centro Earthquake). 

With these small excitations, the force measurements will be small, and the effect of 

noise in them will be more significant. As a result, the force-based correction methods 
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are considerably less effective in these simulations. These differences will be smaller in 

higher-amplitude excitations. For example, the final energy error in a higher-amplitude 

simulation with force correction based on desired displacement (Figure  6-14, 25% Tabas 

earthquake) reduces to 0.97% of input energy. This is closer to 0.63% error that resulted 

from a similar nonlinear experiment with the use of kinematics displacement equation 

for delay compensation (Figure  6-12, 20% Tabas earthquake). 

 
Figure  6-15   Gain and zero displacement histories estimated during a nonlinear simulation. 

A typical gain and zero displacement history (introduced in Section  6.2.2 for 

reduction of actuator undershooting) estimated online in a nonlinear simulation (Figure 

 6-12) is shown in Figure  6-15. The zero displacement history is in agreement with the 

plastic drifts that can be observed in Figure  6-12. The gain history shows some large 

oscillations in the beginning of the simulation, where the excitation amplitude is small. 

After the initial low-level excitation, the gain takes values very close to unity, showing 

small tracking errors at displacement reversals. Proper tuning of the actuator with 

constant control parameters is always of priority, as variable control gains may increase 

the noise level in the command signal and lead to the excitation of high-frequency 

modes of the system. 
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6.3.3 DETAILS OF SIGNAL CORRECTION PROCEDURES 

In order to illustrate the complete conditioning process of displacement signals, a 

short period of a typical displacement history of an experimental degree of freedom is 

shown in Figure  6-16. As illustrated, the desired displacement is first compensated for 

delay to give the compensated displacement signal. Next, this signal is re-sampled at 

experiment command update rate to generate the command displacements. This signal 

is then sent to the actuator, and the achieved displacements are measured and fed back 

to the numerical integrator. The feedback displacement signal is sampled at numerical 

simulation rate from normally-higher-rate measured displacement signal. As shown in 

Figure  6-16, the feedback displacement may further be modified by a force correction 

procedure, or by the numerical simulation module to give the converged displacement 

signal. 

 
Figure  6-16   A typical displacement history in a hybrid simulation with displacement compensation. 

Typical displacement and force histories for a hybrid simulation with force 

correction are shown in Figure  6-17. This figure shows that in this case, the command 

displacement signal is directly calculated from the desired displacement signal and sent 

to the actuator. The measured force and displacement signals are then fed into a 
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correction module after re-sampling at numerical simulation rate, for correction of 

actuator tracking errors. Note that the feedback signals may also be filtered to reduce 

measurement noise and produce smoother signals. The corrected force and 

displacement signals are finally fed back to the numerical simulation module. 

 

 
Figure  6-17   Typical displacement and force histories in a hybrid simulation with force correction. 
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restriction on the similarity of delay or dynamic behavior of actuators. On the other 

hand, the interaction of actuators makes the determination of zero-force displacement 

and hence, the variable gain difficult. As a result of off-diagonal terms in the stiffness 

matrix of MDF experimental substructures, the equilibrium point of each actuator 

constantly drifts even in linear systems. Hence, the tangent stiffness of the experimental 

substructure is necessary for detection of zero-force displacement, which is normally 

unavailable in most hybrid simulations. In this study, no variable gains were applied to 

most of the numerical and experimental simulations involving MDF experimental 

models. 

  
Figure  6-18   Hybrid simulation results with extrapolation of displacements using kinematics equation – 

25% Tabas erthquake, with coupon fracture during the experiment. 

Through several numerical and experimental simulations, it has been observed that 

the delay compensation procedures studied in this chapter have low sensitivity to the 

nonlinearities of the experimental substructure. This can be attributed to the fact that 

these procedures do not use any numerical models of the test system. Furthermore, the 

compensation procedures act within small time intervals, within which the 

nonlinearities are only pronounced mildly. As an example, Figure  6-18 shows the results 

of a nonlinear simulation, in which one of the coupons was fractured (Figure  6-19). The 
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hysteretic loops show abrupt strength reduction at the 5.9 second of the simulation, and 

a distorted behavior afterwards. The simulation stops at 11th second, when the command 

displacement exceeds the preset limit of 63.5 mm (2.5 in). 

  

 
Figure  6-19   Fractured coupon during an experiement. 

  
Figure  6-20   Delay history and HSEM during a simulation involving specimen fracture. 
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Figure  6-20 shows the delay history estimated using Equation (5.11) and the values 

of hybrid simulation error monitor introduced in Section  5.5. The delay history shows 

some oscillations during the low-amplitude excitation period at the beginning of the 

simulation. As the strong motion of earthquake begins, another local maximum can be 

recognized in the delay history, which coincides with an abrupt increase in the HSEM 

value. These phenomena can be attributed to the increase in the excitation amplitude, 

which results an increase in all simulation signals. It should be noted that the coupon 

fracture occurred about 1.5 s after the beginning of earthquake strong motion, and no 

significant change is observed in the error monitors or delay history as a result of this 

fracture. Note that in this simulation, the experimental restoring force remains smaller 

than 5 kN, which is about 25% of actuator capacity. After the fracture, the restoring force 

in the positive displacement range drops to values less than 2 kN, while in the negative 

side the force peaks at about 3 kN. That is, the actuator force demand drops to about 

15% of its capacity as a result of coupon fracture. This reduction, however, did not lead 

to a significant and meaningful change in the estimated delay as observed by Darby et al. 

[54], which can be attributed to the relatively small force demands compared to actuator 

capacity. 
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7 FORMULATION OF NUMERICAL INTEGRATION METHODS 

Numerical integration algorithms are time stepping procedures used to solve the 

equation of motion that update the states (displacements, velocities, and accelerations) 

in the numerical simulation module (Figure  1-2). Similar integration methods are used in 

both hybrid and purely numerical simulations. In a hybrid simulation, they are also 

used to calculate the desired displacement vector of each simulation step. The 

application of numerical integration procedures to hybrid simulations is often more 

challenging due to the involvement of nonlinear experimental substructures and 

experimental errors. 

This chapter presents the numerical integration methods that are widely used in 

hybrid simulations and their accuracy and stability characteristics. The general 

formulations of common numerical integration methods are presented first, and the 

modifications required for their implementation to hybrid simulation are discussed in 

Section  7.2. This chapter also presents a formulation for the separation of rate-dependent 

effects and extension to nonlinear numerical models. This chapter concludes with a 
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short discussion on the actual performance of integration methods in hybrid simulations 

including nonlinearities and experimental errors. Later in Chapter  8, new numerical 

integration procedures are proposed with improved accuracy and stability properties 

that utilize the formulations presented in this chapter. 

7.1 NUMERICAL INTEGRATION FORMULATIONS 

Formulations of the most common numerical integration methods are presented in 

this section. These methods are primarily developed to solve the following equation of 

motion: 

 ι gu= −Ma +Cv +Kd M  (7.1) 

where t=M M  (the total mass matrix) for a purely numerical simulation. This equation 

is developed for a linear system response; nonlinear numerical models will be 

considered in Section  7.2.3. The Newmark’s Beta method, and Hilber, Hughes and 

Taylor’s Alpha method are described in the following sections. 

7.1.1 NEWMARK’S BETA METHOD 

One of the most widely used numerical integration method was introduced by 

Newmark [118]. This method adopts the trapezoidal integration rule, and attempts to 

satisfy the following equations at the thn  integration step: 

 ( )ιn n n g nu t+ + =Ma Cv Kd M  (7.2) 

 ( ) ( )2 2
1 1 1

1
2n n n n nt t tβ β− − −

⎛ ⎞⎟⎜= +Δ + − Δ + Δ⎟⎜ ⎟⎜⎝ ⎠
d d v a a  (7.3) 
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 ( )1 11n n n nt tγ γ− −= + − Δ + Δv v a a  (7.4) 

in which t  is time and parameters β  and γ  define the variation of acceleration over a 

time step and affect the stability and accuracy of the algorithm. Selection of 1 2γ =  and 

1 6 1 4β≤ ≤  are normally recommended to achieve the best stability and accuracy from 

Newmark’s method [119]. Unless β  is selected to be zero (explicit integration scheme), 

iterations are normally required to solve the implicit equations, as the unknown 

acceleration vector na  appears at the right side of Equation (7.3). Only in linear systems, 

it is possible to avoid iterations by rearranging these equations to directly give the 

unknown states at step n . Newmark’s method is stable if: 

 2

2n tω
γ β

Δ ≤
−

 (7.5) 

where nω  is the largest natural frequency of the system. Selection of 1 2γ =  and 1 4β =  

results in an unconditionally stable implicit solution scheme with the assumption of 

constant acceleration in each integration step. For linear acceleration variations within a 

time step the parameters should be 1 2γ =  and 1 6β = . In this case, the stability 

condition becomes 3.46n tω Δ ≤ . For an explicit scheme equivalent to the central 

difference method ( 1 2γ =  and 0β = ), the time step should satisfy 2n tω Δ ≤  for 

stability. In order to achieve adequate accuracy in the results, it is generally required to 

restrict the time step to about one-tenth of the natural period, which is generally more 

restrictive than the above-mentioned stability conditions for SDF systems. In MDF 
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systems, however, large natural frequencies of higher modes often make it necessary to 

use unconditionally stable schemes. 

7.1.2 HILBER, HUGHES AND TAYLOR’S ALPHA METHOD 

It is generally considered that the contribution of higher natural vibration modes to 

seismic structural response is significantly smaller than the first few modes. However 

small truncation errors in numerical simulation may lead to spurious excitation of 

higher modes, which in turn, may result in instability of the simulation. This issue 

becomes more important in hybrid simulations, where the experimental errors and 

measurement noise introduce high-frequency error signals in the system. Introduction of 

numerical damping in high-frequency modes is an effective way to improve the stability 

of the simulation by preventing spurious high-frequency excitations.  

Numerical damping can be introduced in the Newmark method at the expense of 

degrading the order of accuracy [120]. The Alpha-method, introduced by Hilber et al. 

[59], overcomes this limitation. In this method, the time-discrete equation of motion is 

modified as follows: 

 ( ) ( ) ( )ι1 1n n n n n n n g nu t tα α− −
⎡ ⎤+ + + − + − = + Δ⎣ ⎦Ma Cv Kd C v v K d d M  (7.6) 

where α  is a parameter that controls the numerical damping. Other finite difference 

formulas, Equations (7.3) and (7.4), are retained in this integration method. Selection of 

1 3 0α− ≤ ≤ , ( )1 2 2γ α= −  and ( )21 4β α= −  results in an unconditionally stable, 

second-order accurate scheme. With the selection of 0α =  this formulation reduces to 

that of the Newmark’s Beta method. Decreasing α  from zero increases the amount of 
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numerical energy dissipation in higher modes, with small effects on lower-frequency 

modes of the system. 

7.2 NUMERICAL INTEGRATION FOR HYBRID SIMULATION 

Existence of an experimental restoring force slightly changes the equation of motion 

from purely numerical form of Equation (7.1) to the hybrid form of Equation (1.1), 

repeated here: 

 ιt gu+ −Ma +Cv+Kd r = M  (7.7) 

The experimental restoring force vector r  may include strain-dependent, damping, 

or inertial forces. As a result, the time-discrete equation of motion in Alpha method will 

be modified as follows: 

 
( ) ( ) ( ) ( )ιe t

1 1 1 1

n n n n

n n n n n n n n g nu t tα α− − − −

+ + +

⎡ ⎤+ − − − + − + − = + Δ⎣ ⎦

Ma Cv Kd r

r r M a a C v v K d d M
 (7.8) 

where e t= −M M M  is the experimental mass matrix. The equivalent time-discrete 

equation of motion for Newmark’s method can be obtained by setting 0α =  in the 

above equation. Other finite difference equations for updating displacement and 

velocity vectors (Equations (7.3) and (7.4)) can be used without change in numerical and 

hybrid simulations.  

Note that in Equation (7.8) the inertial force contribution of the experimental mass 

to the measured restoring force should be removed from the increments multiplied by α

. This requires the knowledge of the experimental mass matrix when α  is non-zero. The 

mass present in experimental substructures is generally selected to be very small 
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compared to total mass, to reduce the power requirements and achieve better actuator 

performance. A series of numerical simulations to study the effects of mass estimation 

errors on the simulation results is presented in Section  7.2.2. 

7.2.1 SEPARATION OF RATE-DEPENDENT PROPERTIES 

In Equation (7.8), matrices M , C  and K  (without superscripts) are properties of the 

numerical substructure in real-time simulations. When non-unity time scales are used, 

the experimentally developed rate-dependent forces will also be scaled. To account for 

this change in the components of the experimental restoring force, the rate-dependent 

numerical matrices should be modified. For example, the total inertial force in a fast 

simulation with a time scale tS  is: 

 t e
inertia 2

tS
= +

a
f Ma M  (7.9) 

which is equivalent to a real-time simulation with the following experimental mass 

matrix:  

 e e
actual2

1

tS
=M M  (7.10) 

where e
actualM  is the actual physical mass. As a result, the numerical mass matrix should 

also be modified: 

 e
actual actual2

1
1

tS

⎛ ⎞⎟⎜ ⎟= + −⎜ ⎟⎜ ⎟⎜⎝ ⎠
M M M  (7.11) 
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in which t e
actual actual= −M M M  is the actual numerical mass. The above equations suggest 

that the effect of experimental mass quickly diminishes as the time scale increases. As an 

extreme case, the analytical mass should be equal to the total mass in a slow 

(conventional pseudo-dynamic) test. A similar consideration should be taken into 

account for damping if present in the experimental substructure of a simulation with a 

reduced time scale: 

 e
actual actual

1
1

tS

⎛ ⎞⎟⎜ ⎟= + −⎜ ⎟⎜ ⎟⎜⎝ ⎠
C C C  (7.12) 

where actualC  and e
actualC  are actual numerical and experimental damping matrices, 

respectively. One problem in using Equation (7.12) is that accurate estimation of 

experimental damping properties of the experimental substructure may be difficult. In 

these cases, a real-time hybrid simulation ( 1tS = ) eliminates the need for estimation of 

this damping matrix, and best captures the rate-dependent behavior of the experimental 

substructure directly in the measurements. 

7.2.2 EFFECTS OF EXPERIMENTAL MASS ESTIMATION ERRORS 

In the Alpha-method, the experimental mass matrix is necessary if Equation (7.8) is 

used with non-zero α , even in real-time simulations. Accurate estimation of 

experimental mass is often possible through free vibration tests or direct measurements 

of the experimental setup. In order to assess the effects of mass estimation errors, the 

numerical models of hybrid simulation described in Chapter  3 have been used to 

examine the sensitivity of simulation results to these errors. 
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Figure  7-1 shows the final energy balance errors of two separate sets of simulations 

of a two-degree-of-freedom model (shown in Figure  5-6) with 1 3α = − , in which 1% 

and 5% of total mass is considered as the experimental mass. For each of these 

simulations, experimental mass in numerical analysis is slightly modified from its actual 

value. As shown, the alterations of energy balance are generally small, and more 

importantly, random. Hence, it can be concluded that the estimation uncertainties of 

experimental mass have small effects on the simulation, comparable to the order of 

system randomness in instrumentation noise and other experimental errors. However, 

this is only valid for small amounts of experimental mass, which is commonly the case 

in hybrid simulations. It should be mentioned that the effects of above-mentioned 

variations on displacement histories are negligible. 

 
Figure  7-1   Effect of mass estimation error on the overall energy balance of simulation for cases of 

e 0.01=M M  and e 0.05=M M . 
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substructure, the stiffness-dependent force in Equation (7.7) can be replaced by a generic 

force vector, as in: 

 ιa t
gu+ −Ma +Cv+ r r = M  (7.13) 

where ar  is the numerical restoring force. Adopting a piecewise linear behavior for 

numerical substructure, the restoring force can be obtained from an incremental relation, 

such as: 

 ( )a a
1 1n n n n n− −= + −r r K d d  (7.14) 

with nK  being the tangent stiffness matrix of numerical substructure in step n . 

Substituting the above in Equation (7.8), the time-discrete equation of motion becomes: 

 
( )

( ) ( ) ( ) ( )ι

a
1 1

e t
1 1 1 1

n n n n n n

n n n n n n n n n g nu t tα α

− −

− − − −

+ + + −

⎡ ⎤+ − − − + − + − = + Δ⎣ ⎦

Ma Cv r K d d

r r M a a C v v K d d M
 (7.15) 

Given that only a force vector a
1n−r  that remains constant in step n  is added to the 

equation of motion, the above modification does not have a significant effect on the 

solution algorithm. Only the numerical tangent stiffness matrix should be updated in 

each step based on element internal forces and plasticity states. Based on this fact, and to 

simplify the formulations presented in this dissertation, numerical substructure is 

always assumed to be linear. The above procedure can be followed to modify these 

relations for application to hybrid simulations with nonlinear numerical substructures. 
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7.3 EXPLICIT INTEGRATION 

Explicit integration methods have been widely used in hybrid simulations due to 

their simplicity. As mentioned earlier, setting 0β =  in Equation (7.3) results in an 

explicit scheme, in which the calculation of desired displacement at step n  does not 

require the knowledge of acceleration vector at this step: 

 ( )21 1 1

1
2n n n nt t− − −= +Δ + Δd d v a  (7.16) 

The displacement vector given by Equation (7.16) is transformed to the actuator 

(local) coordinate system using displacement transformation matrix T : 

 l
n n=d Td  (7.17) 

and applied on the experimental substructures. The measured experimental restoring 

force can then be transformed to global coordinates: 

 T l
n n=r T r  (7.18) 

and used in Equations (7.4) and (7.8) to calculate velocity and acceleration vectors of step 

n . Note that a superscript l  denotes quantities in actuator local coordinate system. 

Equations (7.4) and (7.8) can be combined to directly give the new acceleration vector: 

 

( )

( )

( )( ) ( )

t

1
1 1

e
1 1 1

1
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1
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n n n

n n n n n
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α
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α α

−
− −

− − −

⎧ ⎫⎪ ι + Δ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎡ ⎤⎛ ⎞Δ⎪ ⎪⎟⎜⎢ ⎥= + +⎨ ⎬⎟⎜ ⎟⎜⎢ ⎥⎪ ⎪⎝ ⎠−⎪ ⎪⎢ ⎥⎪ ⎪⎪ ⎪⎢ ⎥+ + + + − −⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

M

a A C v a

Kd r M a Kd r

 (7.19) 

where 
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 ( ) e1
2
t

α α
Δ

= + + −A M C M  (7.20) 

The above acceleration vector can then be used in Equation (7.4) to find velocity. The 

simulation continues to the next step by calculating the next displacement vector using 

Equation (7.16). A simulation algorithm using an explicit integration method is 

summarized in Table  7-1. Note that the procedures to minimize the experimental errors 

(such as identification of system dynamics, signal generation, delay compensation, and 

signal conditioning and correction) are not included in the concise algorithm of Table  7-1 

and all other integration algorithms presented in this and the following chapters. 

Table  7-1 Explicit integration algorithm. 

Simulation Steps 
Equations and Other 

Information 
• Calculate desired displacement vector at step n  Equation (7.16) 
• Transform displacements to actuator coordinate system Equation (7.17) 
• Apply desired displacement vector on experimental substructure  
• Measure experimental restoring forces  
• Transform measured forces to global coordinate system Equation (7.18) 

• Calculate the acceleration and velocity of step n  Equations (7.4) and (7.8), 
or (7.4), (7.20), and (7.19)  

• Set 1n n+ →  and go to the next integration step  
 

7.3.1 CHARACTERISTICS 

Explicit integration methods do not require iterations, and have the least 

communication requirements: the communication of interface forces and displacements 

occurs only once in each integration step. With small integration time steps, the accuracy 

of explicit methods can be comparable to implicit ones for structures with a few degrees 

of freedom. Further, since these integration algorithms directly use the measurements 

without any modifications, they do not have the potential to erroneously alter the 
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observed behavior of the experimental substructure; that is, the observed and converged 

hysteretic behaviors of the experimental substructure are identical in this approach (see 

Section  5.5). 

However, in large MDF structures the stability condition of 2n tω Δ ≤  for the 

Newmark explicit method becomes very restrictive due to the existence of high-

frequency modes. This stability condition may also require very small time steps in stiff 

systems. Use of very small time steps is not normally desirable in hybrid simulations, 

since it increases the communication needs, intensifies error propagation problems, and 

increases the sensitivity of the system to delay. Furthermore, small time steps may lead 

to small displacement increments that are within the actuator noise level. For this 

reason, conditionally stable integration methods such as Newmark‘s explicit approach 

are not suitable for hybrid simulations of complex structural systems with high-

frequency modes. 

Using Equation (7.8) in the above-mentioned explicit integration algorithm ensures 

the satisfaction of equilibrium in each integration step. Hence, its integral form, the 

energy balance equation is also satisfied throughout the simulation. In order to 

understand the nature of errors introduced by an explicit integration algorithm, it 

should be noted that Equation (7.16) is exact only when the acceleration remains 

constant throughout the integration step. That is, the kinematic relationship between 

displacement and acceleration is correct only if the acceleration na  obtained from 

Equation (7.8) is equal to  1n−a , which is rarely the case. As a result, the kinematic 

relations among displacement, velocity and acceleration are not exactly maintained 
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using an explicit procedure, and kinematic errors may increase in consecutive 

integration steps. 

In order to take the kinematic relations into account in the energy balance of the 

simulation, the velocity vectors should be replaced by the derivatives of the 

displacement vector, as described in Section  5.6; that is, damping and kinetic energies (

DE  and KE ) should be calculated using Equations (5.23) and (5.24). This formulation will 

be used later to examine the accuracy and stability of explicit integrators. 

7.4 OPERATOR-SPLITTING METHOD 

The use of operator-splitting integration method in hybrid simulation was 

introduced by Nakashima et al. [14]. The general form of the procedure for alpha-

method formulation is based on Equations (7.3), (7.4) and (7.8), solved using a predictor-

corrector formulation. In the predictor step, the displacement vector is first obtained 

from Equation (7.3) by temporarily eliminating the terms that are dependent on the new 

acceleration vector na : 

 ( )21 1 1

1
2n n n nt tβ− − −

⎛ ⎞⎟⎜= +Δ + − Δ⎟⎜ ⎟⎜⎝ ⎠
d d v a  (7.21) 

The predictor displacement vector is transformed to actuator coordinate system and 

applied on the experimental substructure. The restoring force l
nr  is then measured in 

actuator coordinate system. Next, in the corrector step, the displacement vector is 

updated to satisfy the implicit expression of Equation (7.3): 

 ( )2n n ntβ= + Δd d a  (7.22) 
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As a result of this change in displacement vector, the restoring force vector should also 

be modified. Since estimation of a tangent stiffness matrix of experimental substructure 

may be difficult in an online simulation, the initial stiffness matrix of experimental 

substructure e,lK  is used in this correction: 

 ( )l l e,l l l,m
n n n n= + −r r K d d  (7.23) 

in which l,m
nd  is the measured displacement vector in local coordinate system. Equation 

(7.23) not only updates the force vector due to the displacement correction of Equation 

(7.22), but also attempts to correct for actuator tracking errors by using l,m
nd  in place of 

l
nd .  

Combining Equations (7.4), (7.8), (7.22) and (7.23), the acceleration vector at step n  

can be calculated from: 

 
( ) ( )( )

( ) ( ) ( )

ιt 1 1
1

e T e,l l l,m
1 1 1

1 1

1

g n n n

n

n n n n n n n

u t t tα α γ

α α

− −
−

− − −

⎧ ⎫⎡ ⎤⎪ ⎪+ Δ − + + − Δ⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎪ ⎪= ⎨ ⎬⎪ ⎪⎡ ⎤⎪ ⎪+ + − − + + + −⎢ ⎥⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭

M C v a
a B

r Kd M a r Kd T K d d
 (7.24) 

where: 

 ( ) ( )( )e 2 e1 1t tα γ α β α= − + Δ + + Δ + +B M M C K K  (7.25) 

can be evaluated prior to simulation. In the above relations, eK  is the initial 

experimental stiffness matrix in global coordinate system. This stiffness matrix can be 

obtained from the local stiffness matrix of the experimental substructure using 

displacement transformation matrix T : 

 e T e,l=K T K T  (7.26) 
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After calculation of acceleration vector from Equation (7.24), Equations (7.22), (7.23), 

and (7.4) can be used to determine nd , nr  and nv . The next integration step begins with 

calculation of next predictor displacement using Equation (7.21). A summary of this 

integration algorithm is listed in Table  7-2. 

Table  7-2 Operator-splitting integration algorithm. 

Simulation Steps 
Equations and Other 

Information 
• Calculate predictor displacement vector at step n  Equation (7.21) 
• Transform displacements to actuator coordinate system l

n n=d Td  
• Apply predictor displacement vector on experimental substructure  
• Measure experimental displacements and restoring forces  

• Calculate the acceleration vector of step n  Equations (7.24) and 
(7.25)  

• Calculate new displacement, velocity, and force vectors Equations (7.22), (7.23), 
and (7.4) 

• Set 1n n+ →  and go to the next integration step  
 

7.4.1 CHARACTERISTICS 

By modifying the predictor displacement in Equation (7.22) or (8.2) to satisfy the 

implicit formulation, the operator-splitting integration method ensures accurate 

kinematic relationships among displacement, velocity and acceleration. This 

improvement over the explicit integration methods have been shown to result in better 

stability properties. In particular, this integration method is considered unconditionally 

stable as long as the experimental nonlinearity is of softening type [14]. It has also been 

shown that acceptable accuracy can be obtained by selecting an integration time step 

sufficiently shorter than the dominant natural periods of the test structure. It is not 

necessary to consider the high-frequency modes with negligible contributions to the 

response in the selection of time step. 
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The operator-splitting integration method also does not require iterations, and has 

basic communication needs, which greatly facilitate its implementations. These features, 

along with its improved stability in test structures with many degrees of freedom, have 

made this method very popular in hybrid simulations. The only additional requirements 

of this integration method in comparison with the explicit approach described in Section 

 7.3, are the need for initial stiffness matrix of the experimental substructure, and slightly 

increased computational cost. The initial stiffness can normally be measured using low-

amplitude static tests before the main simulation. The increased computational cost is 

also small compared to the capabilities of currently-available processing tools. 

 
Figure  7-2   Comparison of the use of initial stiffness and tangent stiffness for correction of the restoring 

force. 

In addition to establishing proper kinematic relationships among displacements, 

velocities and accelerations, the operator-splitting integration method satisfies the 

equation of motion in each integration step. Hence, the energy balance (Equation (5.18)) 

is also maintained throughout the simulation. However, the force correction is only 

approximated using initial stiffness (see Figure  7-2), and hence, the experimental energy 

dissipation conceived by the equation of motion will be different than the actual energy 
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dissipated in the experiment. Consequently, when the actual experimental energy term 

EE  is used in energy balance equation, the effects of this approximation will be reflected 

in the energy error given by Equation (5.22). This is an important error, as one of the 

major goals of a hybrid simulation is the identification of the actual behavior of the 

experimental substructure. 

It should be noted that the correction of the restoring force vector in Equation (7.23) 

does not account for experimental rate-dependent forces. This limits the applications of 

operator-splitting method to experimental substructures that are not essentially rate-

dependent. Moderate rate-dependencies can still be handled by this integration 

algorithm, as the experimental damping is ignored only in the corrector step, and 

predictor and corrector displacements are normally close. An extension of this method 

to highly rate-dependent experimental substructure is studied in [74]. Such an extension, 

however, requires an accurate knowledge of experimental damping properties. 

7.4.2 OTHER INTEGRATION METHODS USING INITIAL STIFFNESS MATRIX 

Existence of a tangent stiffness matrix greatly facilitates the integration task by 

eliminating the need for iterative solution of equation of motion and finite difference 

kinematics equations. However, due to the difficulties associated with online estimation 

of experimental tangent stiffness matrix, often initial stiffness matrix has been used as an 

approximation in many other integration methods [66-71, 73]. It has been shown that 

these integration algorithms have better error propagation and stability properties 

compared to explicit methods. However, one important problem in deriving these 
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conclusions is that they are based on conventional stability and error propagation 

analyses, which normally do not consider the nonlinearities and experimental errors. In 

addition, admitting the initial stiffness matrix instead of the tangent stiffness clearly 

reduces the accuracy of the algorithm in nonlinear systems. The errors resulting from 

initial stiffness approximation, along with the effects of system nonlinearities and 

experimental errors are further studied in Sections  7.6 and  8.4.3. 

7.5 IMPLICIT INTEGRATION METHODS FOR HYBRID SIMULATION 

Implicit integration methods have also been proposed in literature for hybrid 

simulation as discussed in Chapter  2. A number of these methods utilize implicit 

formulations by introducing feedback loops involving SDF experimental substructures 

[3, 28, 29, 60, 61], and more recently, MDF substructures [62]. These procedures have 

onerous communication requirements between experimental and numerical 

substructures, and require specialized control strategies to avoid unwanted 

displacement reversals during iterations on experimental substructures. For these 

reasons, implicit integration methods with physical iterations have not been widely used 

in hybrid simulations. In order to mitigate these difficulties, other integration methods 

have been introduced that apply implicit iterations only in numerical substructure by 

assuming the interface forces as constant external forces [64, 65]. These methods can be 

compared to operator-splitting method, but without correction of the experimental 

restoring force to account for the changes in displacement vector. More advanced 

procedures such as one introduced by Pan et al. [13] measure the instantaneous behavior 

of the test specimen to estimate the tangent stiffness for full implementation of implicit 
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integration equations. This procedure was developed for SDF experimental 

substructures. A more complete discussion on these integration methods is available in 

Chapter  2. 

7.6 PERFORMANCE OF NUMERICAL INTEGRATION METHODS – 

EXPERIMENTAL ERRORS AND NONLINEAR PROBLEMS 

In numerical problems, the accuracy and stability properties of integration methods 

are usually carried out for linear SDF problems. However, hybrid simulations are 

usually carried out to evaluate the nonlinear and complex behavior of the experimental 

substructures. It can be shown that numerical integration methods with unconditional 

stability can become unstable when applied to nonlinear problems with large time steps 

[58]. This can occur due to the approximate solution schemes such as iterative methods, 

and the discrepancy between the actual nonlinear structural behavior and the piecewise 

linear behavior detected by the integration algorithm. These errors increase as longer 

integration time steps are selected, and may render the simulation unstable by adding 

erroneous energy to the system. 

In addition to the above-mentioned nonlinearities, the experimental errors in hybrid 

simulations significantly affect the stability and accuracy properties of the numerical 

integration procedures. Experimental errors may destabilize the simulation well before 

reaching the stability limits of the utilized numerical integration methods. That is, the 

stability and accuracy of hybrid simulations cannot be determined based on the 

numerical properties of the integration algorithm alone. 
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In order to include the above-mentioned errors in the assessment of accuracy and 

stability of the numerical integration methods introduced in this and the following 

chapters, they are often compared using the energy balance error. This error measure 

was introduced in Chapter  5 to take both numerical and experimental errors into 

account; as mentioned in Chapter  5, the energy balance error includes the discrepancies 

between actual and converged hysteretic behaviors of the experimental substructures, in 

addition to the errors of the numerical integration procedure. A limitation of this 

approach is that this error measure can only be evaluated to show the stability and 

accuracy of the integration algorithm for each particular simulation, and the results 

cannot be extended to other simulations in general. The energy-based error measures are 

used in the next chapter to demonstrate the advantages of the proposed integration 

methods. 
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8 IMPROVED NUMERICAL INTEGRATION METHODS 

Two improved numerical integration methods for hybrid simulation are introduced 

in this chapter. These integration methods use the formulations presented in the 

previous chapter, as well as those of the improved operator-splitting method introduced 

in Section  8.2. The first method implements an implicit formulation to solve the equation 

of motion when possible, and defaults to an explicit or operator-splitting scheme to 

continue the simulation in case of convergence failure. The second method is based on 

the operator-splitting integration scheme. In this method, an experimental tangent 

stiffness is estimated in each integration step and used in the operator-splitting method 

to improve its accuracy for testing nonlinear systems. 

Before introducing the improved integration methods, a short discussion on the 

hybrid simulation implementation issues is presented in the following section. It is 

attempted to demonstrate the difficulties associated with numerical integration in 

hybrid simulation leading to the currently-available simplified integration methods, and 

to highlight the need for improved numerical integration methods. 
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8.1 IMPORTANCE OF IMPROVED NUMERICAL INTEGRATION METHODS 

In hybrid simulations, the path-dependent behavior of experimental substructures 

does not allow for direct implementations of iterative implicit integration procedures. 

Physical iterations may unexpectedly damage the experimental substructure, or 

erroneously dissipate energy. Further, the convergence of the iterative solution scheme 

cannot be guaranteed in nonlinear problems. Unlike numerical simulations, it may be 

impossible to “roll back” to the last converged solution and continue the simulation with 

different parameters, due to physical damages. In addition, unconverged solutions may 

lead to excessively large displacements that can severely damage the experimental setup 

with significant replacement costs. In any case, if a simulation is stopped because of 

convergence failure, it is likely for the experimental substructure to have already 

sustained unrecoverable damages.  

In order to avoid physical iterations and the difficulties associated with them, a 

numerical model of the experimental substructure (such as experimental tangent 

stiffness matrix) can be used. This numerical model can provide estimates of forces 

corresponding to iterative displacements, or it can be used to solve the state equations 

without iterations. This also reduces the required communications between numerical 

and experimental substructures. However, due to the experimental errors and 

measurement noise, estimation of experimental tangent stiffness matrix may be difficult, 

and often, the initial experimental stiffness matrix has been used for this purpose. 

The above are the most important underlying reasons for the widespread use of 

explicit and operator-splitting integration methods (presented in the previous chapter) 



Improved Numerical Integration Methods  
  
  

 

 165

in hybrid simulations. As mentioned before, these methods are either conditionally 

stable, leading to stringent time step requirements for MDF structures, or have limited 

accuracy for testing highly nonlinear systems. For this reason, development of improved 

numerical integration methods has been of great interest in recent years. 

In addition to providing better stability and accuracy properties, the improved 

integration methods should be easily applicable to hybrid simulation. Particularly, in 

fast and real-time simulations, the numerical simulation task and the communication of 

the results must be completed within a small period. That is, the solution algorithm 

should be very efficient, and be able to update the states and prepare the results within a 

finite amount of time. If a geographically distributed hybrid simulation is intended, the 

integration procedure should also limit the amount of communications that are 

necessary in each integration step. In summary, improved numerical integration 

procedures for hybrid simulation should possess the following characteristics: 

• have improve stability for using longer time steps and testing stiff systems, 

• have better accuracy by capturing the instantaneous behavior of 

experimental substructure instead of using its initial stiffness, 

• require minimal information about the experimental setup, which is 

normally unavailable before hybrid simulations, 

• eliminate iterations on experimental substructures to prevent unexpected 

damages, 
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• limit the communication and processing costs for fast and distributed 

experiments, 

• guarantee continuous simulation without interruptions from crashing of 

numerical integration algorithm. 

In the remainder of this chapter, two improved numerical integration methods are 

introduced for hybrid simulation. It is attempted to develop hybrid simulation 

integration procedures that address most of the above-mentioned implementation 

issues. 

8.2 OPERATOR-SPLITTING METHOD WITH IMPROVED PREDICTOR 

This section introduces a modification to the conventional operator-splitting 

procedure to improve its accuracy. In this method, instead of eliminating the implicit 

terms of Equation (7.3), the predictor displacement vector is calculated from an explicit 

expression by temporarily setting 0β =  in Equation (7.3): 

 ( )21 1 1

1
2n n n nt t− − −= +Δ + Δd d v a  (8.1) 

Consequently, in the corrector step the displacement should be modified as follows: 

 ( ) ( )2
1n n n ntβ −= + Δ −d d a a  (8.2) 

in which the correction term ( )2
1n ntβ −Δ −a a  is normally smaller than 2

ntβΔ a  used in the 

original operator-splitting formulation, thus providing more accurate predictor 

displacements. When the difference between the corrector and predictor displacement 

decreases, the effect of initial stiffness matrix approximation in Equation (7.23) also 
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reduces, and better accuracy will be achieved in capturing the behavior of experimental 

substructures. This integration method is termed herein the improved operator-splitting 

method. When this form of operator-splitting method is used, Equation (7.24) also 

changes to: 

 

( ) ( )( )

( )

( ) ( )( )

ιt 1 1

1 e
1 1 1

e 2 T e,l l,m
1

1 1

1

g n n n

n n n n

n n n n

u t t t

t

α α γ

α

α β

− −

−
− − −

−

⎧ ⎫⎪ ⎪⎡ ⎤+ Δ − + + − Δ⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎪ ⎪⎪ ⎪⎪ ⎪= + + −⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎡ ⎤⎪ ⎪− + + + − Δ −⎪ ⎪⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭

M C v a

a B Kd r M a

r K K d a T K d

 (8.3) 

The improved integration algorithm is summarized in Table  8-1. 

Table  8-1 Improved operator-splitting integration algorithm. 

Simulation Steps 
Equations and Other 

Information 
• Calculate predictor displacement vector at step n  Equation (8.1) 
• Transform displacements to actuator coordinate system l

n n=d Td  
• Apply predictor displacement vector on experimental substructure  
• Measure experimental displacements and restoring forces  
• Calculate the acceleration vector of step n  Equations (8.3) and (7.25)  

• Calculate new displacement, velocity, and force vectors Equations (8.2), (7.23), 
and (7.4) 

• Set 1n n+ →  and go to the next integration step  
 

8.3 IMPLICIT OR EXPLICIT INTEGRATION STEPS FOR HYBRID SIMULATION 

A new integration technique is proposed here, in which recent experimental 

measurements are used to capture the instantaneous behavior of experimental 

substructures in a fully implicit iterative scheme. The iterations are implemented 

numerically, without physical imposition of iterative displacements on the experimental 

substructures using the following procedure. First, the actuator command displacements 

are predicted using an explicit expression to load the experimental substructures. 
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Second, the displacements and forces measured through the load path are used in the 

iterative scheme to satisfy an implicit formulation. Since convergence cannot be 

guaranteed in every step of an iterative scheme, the procedure defaults to the explicit 

solution only in steps with failed convergence to continue the simulation. One 

advantage to this approach is that errors will not accumulate as in fully explicit methods 

because the implicit steps tend to minimize the unbalanced energy in the equation of 

motion. The improved accuracy and stability of the proposed integration procedure is 

demonstrated through experimental and numerical simulations. 

The proposed integration algorithm is based on the Alpha method formulation 

described in Sections  7.1 and  7.2. This procedure is described through modification of an 

explicit integration scheme. Later in this section, the combination of implicit steps with 

operator-splitting integration method is also discussed. 

In an explicit integration scheme, Equation (7.16) is first used to calculate the 

desired displacement at step n . This equation can be used to predict a displacement 

command signal for the actuator to load the experimental substructure, after considering 

the compensation of system delay and dynamics. For an explicit solution, the measured 

force vector, nr , corresponding to desired displacements nd  is then directly used in 

Equations (7.19) and (7.4) to determine acceleration and velocity at step n . 

In the proposed implicit approach, the initial displacement vector 0
nd  is assumed 

equal to the desired displacement from Equation (8.1), with predictor velocity given by 

0
1 1n n nt− −= +Δv v a . The experimental substructures are then loaded to the predicted 
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displacement, similar to the explicit procedure. Instead of using the force measurements 

directly to calculate acceleration and velocity vectors at the current step, the forces and 

displacements measured through the load path are used in an iterative scheme to correct 

the predicted displacement until the implicit equations (7.8), (7.3) and (7.4) are satisfied. 

The iterative procedure is repeated until a convergence criterion is satisfied, such as: 

 
1i i

n n

i
n

ε
−−

<
d d

d
 (8.4) 

where ε  is the convergence tolerance for the normalized displacement increment, and 

superscripts denote the iteration number. 

The major challenge in implementing implicit integration algorithms in a hybrid 

simulation is that iterative displacement reversals may result in unrecoverable damage 

to experimental specimens or erroneous energy dissipation. Therefore, it is not advisable 

to measure experimental restoring forces, 1i
n
+r , by physically imposing the iterative 

displacements. 

In order to avoid iterations on experimental substructures, a force estimation 

procedure for iterative displacements is followed, similar to that used in force correction 

approach described in Section  6.2.2. After imposing the predictor displacement 

determined by Equation (7.16), recent measurements are used to fit second-order 

polynomials to both measured displacement and force histories in local actuator 

coordinates (Equations (6.6) and (6.7)). As shown in Figure  6-4, these polynomials are 

used to estimate forces corresponding to each of the iterative displacements. 
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In each iteration, the trial displacements are determined in actuator coordinate 

system, but they are not physically imposed on the specimen. Instead, the displacement 

polynomial of each actuator is first used to estimate the time corresponding to the 

instant the target displacement was achieved. The corresponding force is then 

determined by replacing the computed time into the force polynomial. Therefore, the 

integration algorithm can be completed by addition of another step to the iterative 

scheme of Equations (7.8), (7.3) and (7.4), which estimates the restoring force vector i
nr  

for the iterative displacements i
nd . It is evident that this procedure does not require 

additional communication between experimental and numerical, since the iterative force 

estimations are obtained from the fitted polynomials that can be executed numerically 

local to the integrator.  

 
Figure  8-1   Combined implicit or explicit steps in comparison with fully implicit and fully explicit 

methods. 

A schematic view of the performance of the combined implicit or explicit 

integration method is shown in Figure  8-1. It is demonstrated that the actuator follows 

the explicit desired displacement path, while an attempt is made to bring the 
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displacement will remain close to the results of an implicit formulation and numerical 

errors will not accumulate as much compared to a fully explicit scheme. Of course, the 

actuator may not achieve the exact desired displacements as shown in Figure  8-1, and 

the polynomials should be fitted to measured (achieved) displacements and forces to 

capture the actual specimen behavior.  

Polynomials fitted to force and displacement measurements provide an 

instantaneous relation between the restoring force and the actuator displacement [13]. 

As mentioned in Section  6.2.2, fitting time histories and relating force and displacement 

polynomials through the data acquisition time stamp has several advantages: (i) 

computation of fitted polynomial coefficients with equally spaced points is efficient; and 

(ii) the effects of specimen nonlinearities will be less pronounced on time histories 

compared to force-displacement curves. Further, the accuracy of fitted polynomials in 

representing the actual specimen behavior can be controlled by restricting the range of 

variations of time, thus avoiding excessively large extrapolations. 

The time corresponding to each iterative displacement can be obtained from 

Equation (6.8) by replacing the iterative displacement for desired displacement: 

 
( )2 4

2

i
u u u u ni

n
u

b b a c d
t

a

− ± − −
=  (8.5) 

which can result in a complex value if actuator undershoots the displacement in a 

displacement reversal. In this case, the iterative displacement does not satisfy 

2
u4 4i

u n u ua d a c b≥ − , and inserting the resulting complex-valued time in the fitted force 

polynomial results in a complex-valued force. Similar to the delay compensation method 



Improved Numerical Integration Methods  
  
  

 

 172

described in Section  6.2.2, the iterative restoring force is approximated as the absolute 

value of the resulting complex value, as long as its imaginary component remains small. 

Admitting this approximation increases the number of successful implicit integration 

steps, which has been observed to improve the overall accuracy of the simulation. 

8.3.1 CONVERGENCE ISSUES 

As with most iterative schemes on non-linear systems, convergence cannot be 

guaranteed in each step, especially for a hybrid simulation that also involves 

experimental errors. The failed integration steps can be identified by detection of 

excessive time parameter variation, or convergence failure after maximum number of 

iterations. In a hybrid simulation, failure to converge to a solution that satisfies the 

implicit integration formulation could be detrimental to the experimental substructures. 

Stopping and restarting the simulation may not be possible if the experimental 

substructures are damaged during the simulation; hence, it is necessary to have alternate 

solution strategies that will allow the simulation to continue. To handle integration steps 

with failed convergence, it is proposed to revert to an explicit procedure by selecting the 

displacement of Equation (7.16) as the final solution for the step. The measured restoring 

force vector nr  is then directly used to determine acceleration and velocity vectors at step 

n  using Equations (7.19) and (7.4). If the initial stiffness matrix of the system is available, 

an operator-splitting method can also be utilized in the steps with failed implicit 

iterations. In this case, the explicit displacement vector of Equation (7.16) is used as the 

predictor displacement; in the corrector step, the measured force vector nr  should be 
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used in Equation (8.3) for acceleration, followed by Equations (7.4) and (8.2) for velocity 

and corrector displacement. 

 It is shown in Figure  7-2 that using measurements in the corrector step will result in 

a better force estimate compared to using the initial stiffness matrix in operator-splitting 

method. Hence, the proposed integration method results in an improved agreement 

between actual and converged hysteretic behaviors of the experimental substructure, 

and reduces energy balance errors described in Section  5.4. It should be noted that the 

proposed procedure may have errors in force estimation due to experimental errors not 

shown in this figure. The simulation algorithm using the proposed integration method is 

summarized in Table  8-2. 

Table  8-2 Numerical integration algorithm with combined implicit or explicit step. 

Simulation Steps 
Equations and Other 

Information 
• Calculate predictor displacement vector at step n  Equation (8.1) 
• Transform displacements to actuator coordinate system l

n n=d Td  
• Apply predictor displacement vector on experimental substructure  
• Measure experimental displacements and restoring forces  
• Fit polynomials to most recent force and displacement measurements  

• Calculate the predictor velocity vector 
Equation (7.4) with 

0γ =  
• Solve iteratively: 

- Using fitted polynomials, estimate forces 
corresponding to iterative displacements 

- Calculate new accelerations, velocities, and 
displacements 

- Check the convergence norm 

Equations (7.8), (7.3), (7.4) 
and (8.4) 

• Iterative solution scheme:  
- Failed: use explicit expressions to update 

accelerations and velocities, or perform a one-
step correction using the initial stiffness 
(operator-splitting) to update accelerations, 
velocities, and displacements 

Equations (7.19) and (7.4), 
or (8.3) and (7.4) 

- Succeeded: admit the iterative solution  
• Set 1n n+ →  and go to the next integration step  
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8.3.2 CHARACTERISTICS 

The proposed approach is similar to a fully implicit integration method for SDF 

substructures since the fitted polynomials provide an instantaneous relation between the 

measured displacements and restoring forces. However, for MDF experimental 

substructures, the coupling between actuators is not considered in the force estimation 

procedure. This is due to the fact that the force and displacement polynomials are fitted 

individually for each actuator, which is equivalent to ignoring the off-diagonal terms of 

the experimental tangent stiffness matrix. This should not have a dramatic effect on the 

simulation results, but may increase the required number of iterations to converge. 

The proposed integration method is mainly for experimental substructures with 

dominant strain-dependent behavior as opposed to strain-rate or acceleration dependent 

behavior. This is mainly due to the procedure for estimation of forces, which is carried 

out for displacements without consideration of velocity or acceleration changes. In 

addition, when this integration method is combined with operator-splitting, the 

correction of feedback force in Equation (7.23) only considers displacement-dependent 

forces. Therefore, this procedure may not accurately capture the behavior of highly rate-

dependent experimental substructures such as viscous damping devices. Nonetheless, it 

should be noted that these effects are only ignored in the iterative corrections, in which 

variations of the states are generally small. As a result, slight rate-dependent behavior of 

experimental substructures will not considerably affect the efficiency of this procedure. 

Accurate estimation of forces in the iterative procedure is central to the accuracy 

and stability of the proposed integration procedure. In fact, the proper use of 
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experimental measurements improves the stability of the integration scheme over 

explicit methods, and provides better accuracy over the operator-splitting method in 

nonlinear systems. However, this is only possible if the fitted polynomials accurately 

capture the behavior of experimental substructures. As shown in Figure  6-4, the fitted 

polynomials follow the actual measurement as long as the extrapolation distance 

(variation of time parameter) is small. Therefore, it is important to limit the time 

variation range within iterations to ensure adequate correlation between the 

measurements and fitted polynomials. In the approximations involving complex-valued 

time, the imaginary component should also be limited to small values. 

Another important issue that may affect the accuracy of the proposed integration 

procedure is the noise contaminations in the measurements. To reduce the effect of 

measurement noise, it is recommended that a number of data points larger than the 

minimum required by the polynomial should be used in the fitting process. Since the 

data points are equally spaced in time, use of additional data points will not 

significantly increase computational costs, but will help reduce noise contamination in 

the fitted polynomials. Using four points to fit second-order polynomials (one point 

more than minimum required) has been observed to result in adequate fits in the 

numerical and experimental studies presented in this dissertation. 

From Figure  6-4, it is evident that the polynomial curve fitting procedure is most 

effective for interpolation. In the proposed integration scheme with explicit 

displacement predictions, the final corrected displacement is expected to be near the last 

measured data point used for curve fitting. Consequently, the iterative trial 
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displacements may be interpolated or extrapolated. In order to reduce extrapolations, 

Equation (8.1) can be modified to over predict displacement by increasing the prediction 

time to twice the integration time step as in: 

 2
1 1 12 2n n n nt t− − −= + Δ + Δd d v a  (8.6) 

The measurements used for curve fitting will then include data from one step ahead of 

calculations to increase the interpolated force values. This modification is particularly 

effective for smaller values of time steps, where an increase of prediction distance will 

not significantly affect the accuracy of desired displacement. It is important to note that 

Equation (8.6) is only used to command the actuators, and does not modify the initial 

iterative displacement vector determined using Equation (8.1). Several simulations have 

demonstrated that using Equation (8.6) increases the number of integration steps with 

successful completion of iterative scheme. 

8.3.2.1 Stability 

In the proposed integration method with implicit or explicit steps, the implicit steps 

prevent the accumulation of errors and hence, improve the stability compared to fully 

explicit algorithms. As long as the implicit procedure does not fail in a large number of 

consecutive integration steps, its stability should remain unconditional similar to the 

implicit method [59, 121]. However, stability criteria for linear systems cannot be 

directly extended to hybrid simulation of nonlinear systems with experimental errors 

such as servo-hydraulic actuator delay, tracking errors and measurement noise. The 

stability of the proposed integration algorithm is also highly dependent on the curve 
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fitting procedure used to obtain the force-displacement relation in each step. Thus the 

unconditional stability of the integration procedures cannot be guaranteed for hybrid 

simulation because of the additional sources of errors and system nonlinearities. In this 

case, the overall stability of the proposed algorithm can as well be limited by explicit or 

operator-splitting methods when a large number of consecutive integration steps fail to 

converge. However, experimental verification tests described later demonstrate that this 

situation does not normally occur for a properly tuned experimental setup. In this 

section, a procedure from the field of structural control is implemented to investigate the 

stability of the combined integration algorithm. 

The combination of explicit and implicit integration steps for solving the equation of 

motion can be considered as a particular type of “variable structure control system” 

[122]. These control systems are recognized as a number of feedback control laws and a 

decision rule. Here, the selection of control law is based on the ability of implicit 

iterations to solve the equation of motion and maintain proper kinematic relations 

among the states. Combining several control laws has the advantage of utilizing the 

useful properties of each of the control systems, namely the stability of the implicit 

procedure, and the simplicity and guaranteed continuity of the explicit approach. If the 

control selection logic can be formulated as a function of the states, it is called a “sliding 

surface”, and “sliding mode control” results. 

In order to illustrate the improved stability of the integration procedure with 

implicit or explicit steps, the ability of this method for simulation of free vibration 
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response of a system is evaluated. The system is assumed to be linear, and random error 

signals are assumed to exist, as in: 

 err
n n n n+ + − =Ma Cv Kd u 0  (8.7) 

where err
nu  is an 1N ×  vector of random disturbance signals representing errors in force 

measurements. For example, this error can be a force measurement noise from an 

experimental strain-dependent substructure. Here, it is assumed that systematic errors 

such as mistuning of test equipment are minimal, and delay is properly compensated 

using procedures described in Chapter  6. For this purpose, the Newmark integration 

relations (Equations (8.7), (7.3) and (7.4)) can be put in a state-space form as follows: 

 
err

D D err
11

n

nn n −−

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x x u
A Bx x u

 (8.8) 

where x  and x  are column vectors of displacements and velocities, respectively, and DA  

and DB  are time-discrete state equation matrices given by: 
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The above matrices are found by expressing Equations (8.7), (7.3) and (7.4) in a 

matrix form and solving for state vector at step n . When 1 4β =  and 1 2γ = , the state 

equation takes the implicit form, while for 0β =  and 1 2γ =  an explicit formulation 

results. In the proposed integration method, the variable structure control system takes 

one of these forms in each step of a simulation. 

Fully explicit and fully implicit simulations have been carried out for a 5-story 

structure, with ( )max
2tωΔ ≈  and 5% of critical damping (stiffness-proportional). MDF 

structural model is selected to demonstrate the stability in the presence of high-

frequency modes. Random signals with zero mean and amplitudes of 10% of initial 

restoring forces are used for err
nu . By applying an initial displacement (90mm at the top) 

the phase diagrams of the top story states are shown in Figure  8-2. This figure 

demonstrates that the simulation using implicit method remains stable up to the vicinity 

of the origin, where the response continues to oscillate due to the disturbance signals 

erru . The explicit simulation becomes unstable, although it should remain stable 

according to numerical stability limit of 2tωΔ =  for undamped structures. It should be 

mentioned that in the beginning of simulation, the internal forces are significantly 

greater than the force error signal. The error effects become more evident as the 

oscillation amplitude reduces and likely result in the instability. The integration errors 

gradually accumulate until a higher mode is excited, leading to boundless increase of 

response. Note that the simulation was stopped after a few integration steps with 

unstable response to prevent excessive graph distortions. The disturbance signal has the 

same standard deviation from zero in both simulations. 
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Figure  8-2   Phase diagram of a free vibration response with fully implicit or fully explicit integration 

methods – ( )max
2tωΔ ≈ . 

In the proposed integration method with implicit or explicit steps, the control 

structure is selected based on the possibility of using the implicit solution scheme. That 

is, only if the implicit structure control system fails, the explicit approach is admitted. 

These situations usually occur when excessive errors prevent accurate calculation of 

forces, or severe experimental nonlinearities cannot be captured within the maximum 

number of iterations. Due to the random nature of most experimental errors, the control 

decision logic cannot be expressed in closed form as a definite sliding surface. Further, 

because random excitations are normally considered in seismic simulations, the 

occurrence of the explicit integration steps is expected to be random. 

Figure  8-3 shows the phase diagram of a simulation with combined implicit or 

explicit integration steps. Here, the selection of implicit or explicit control system is 

made using a random decision logic, providing a 20% probability for explicit steps. This 

probability is more than what is expected to occur in hybrid simulations with properly 

tuned experimental setups. In the simulation shown in Figure  8-3, 78.8% of integration 

-50 0 50
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Displacement, mm

V
el

oc
ity

, m
/s

 

 

Implicit

-50 0 50
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Displacement, mm

V
el

oc
ity

, m
/s

 

 

Explicit



Improved Numerical Integration Methods  
  
  

 

 181

steps are completed using implicit form of the state equation. As illustrated, similar to a 

fully implicit procedure, the combined method results in a stable simulation. It is shown 

that the implicit steps (shown by solid lines) are occasionally interrupted by one or more 

explicit steps (shown by dotted lines). Since the explicit steps are mostly isolated, the 

accumulation of errors is prevented, and the simulation remains stable. 

 
Figure  8-3   Phase diagram of a free vibration response with combined implicit or explicit integration 

steps – ( )max
2tωΔ ≈ . 

Simulations with higher-frequency modes or longer time steps also show that the 

combined integration method can produce stable results when explicit procedures fail. 

The simulation results shown in Figure  8-4 are determined for the same structure as 

above, but with ( )max
2.79tωΔ = . The explicit results are shown to immediately become 

unstable, while the combined integration method (with 80.2% implicit integration steps) 

remains stable throughout the simulation.  
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Figure  8-4   Phase diagram of a free vibration response with fully explicit and combined implicit or 

explicit integration steps – ( )max
2.79tωΔ = . 

To further study the accuracy and stability properties of the combined integration 

method, a series of parametric studies has been carried out. In these analyses, the same 

simulation model and initial conditions as above are considered. The unbalanced energy 

errors of 5-second simulations with different integration time steps and probabilities for 

explicit steps are calculated and shown in Figure  8-5. Sharp increases in the energy error 

shown in this figure indicate the transition of response from stable to unstable. Note that 

energy errors larger than 100% are considered obsolete, and are not shown in this figure. 

As illustrated in Figure  8-5, the energy balance error shows a consistent increase 

with increase of tωΔ  or the probability of explicit integration steps. Note that large 

errors and the instability of the explicit integration method occurs before the numerical 

limit of 2tωΔ =  due to the existence of an error signal, although the assumed damping 
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hand, the improvement of accuracy is evident with the reduction of explicit steps below 

40% of all integration steps. Particularly, when the percentage of explicit steps is limited 

to 20% or less, stable results can be obtained over a relatively wide range of tωΔ . 

 
Figure  8-5   Energy error as a function of tωΔ  and percentage of explicit steps. 
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Hence, the proposed integration method is shown to extend the stability limits of 

the simulation in the presence of high-frequency modes. That is, by selecting an 

integration time step sufficiently smaller than only significant natural frequencies of the 

system, accurate and stable results can be obtained using this integration method. The 

integration time step should also be small enough to accurately capture the hysteretic 

behavior of nonlinear components using a piecewise linear approximation. Of course, 

other stability and accuracy conditions should also be considered, such as properly 

tuned and calibrated experimental setup, reasonable levels of random experimental 

errors and measurement noise, and accurate delay compensation. The stability of the 

proposed integration method will be further studied through numerical simulations in 

Section  8.3.3.3. 

8.3.2.2 Delay Compensation 

Delay issue should be properly addressed in real-time or continuous hybrid 

simulations to ensure stability and accuracy. Delay compensation procedures that 

modify command displacements or force measurement signals can be used with this 

integration procedure (Chapter  6). However, measured force correction procedures 

should equally modify the measured displacements, as their phase difference can result 

in unpredictable simulation performance from this integration approach. 

In addition to polynomial extrapolation, the same explicit expression for desired 

displacements can be used for delay compensation in the command displacement signal, 
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as described in Section  6.2.1. Therefore, Equation (8.1) will result in the following 

expression for delay compensated command displacement vector for thj  actuator: 

 ( )
( )2c

1 1 12
jj

n n j n n

t
t

τ
τ− − −

Δ +
= + Δ + +d d v a  (8.11) 

in which jτ  is the thj  actuator’s delay. The command displacement for this actuator is 

then the result of transformation of the above displacement vector to the actuator local 

coordinate system. 

8.3.3 NUMERICAL AND EXPERIMENTAL VERIFICATIONS 

Single- and two-degree-of-freedom experimental substructures are considered for 

experimental verification of the proposed integration procedure with combined implicit 

or explicit steps. The experiments have been carried out using test specimens shown in 

Figures 3-3 and 3-4, with the 1978 Tabas earthquake record selected as the input. The 

simulations are conducted at the real-time event rate to demonstrate the modest 

computational cost of the proposed integration procedure. 

8.3.3.1 Single-Degree-of-Freedom Experiments 

A SDF system with natural period of 0.5 seconds has been selected. The properties 

of this system are the same as those described in Section  6.3.2. The test setup, including 

actuator response lag and measurement digitization was identified to have a total delay 

of 16 milliseconds, which is compensated using Equation (8.11). 

Simulations of the SDF system using the combined implicit-explicit integrator with 

a 1024Hz experiment sampling rate and a 10/1024-second integration time step are 
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shown in Figure  8-6. In these cases, the explicit procedure also produces similar results. 

In order to demonstrate the advantages of the proposed integration method, the 

experiment was repeated using a larger integration time step of 100/1024 seconds. The 

earthquake is scaled down to 2.5% of the full record to maintain a linear response that 

can be duplicated in both simulations. As shown in Figure  8-7, while the result of 

explicit approach is on the verge of instability, the combined procedure remains accurate 

and, more importantly, stable, despite the large time step compared to the natural 

period of the system.  

(a)    (b)  
Figure  8-6   Displacement histories of experimental simulation for 0.5-second period SDF system using 
combined implicit or explicit integration – (a) linear (2.5% amplitude Tabas earthquaje), (b) nonlinear 

(25% amplitude Tabas earthquake). 

(a)     (b)  
Figure  8-7   Displacement history of linear experimental simulation 0.5-second period system with 

increased integration time step – (a) explicit Newmark, (b) combined implicit or explicit integration. 
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be concluded that the proposed integrator shows significant improvement when using 

larger time steps. This can have substantial benefits for testing more complex structural 

systems including high-frequency modes, or for distributed hybrid simulations. In this 

test, 84.5% of the integration steps successfully satisfied the implicit formulation. 

8.3.3.2 Two-Degree-of-Freedom Experiments 

The two-story structure considered in this section and corresponding experimental 

setup are shown in Figure  8-8. The test setup shown in Figure  3-3, illustrates that the 

two-degree-of-freedom experimental substructure consists of two SDF setups mounted 

on top of each other. With two pairs of coupons in the lower clevis, and one pair in the 

upper one, static tests have been carried out for estimation of the initial stiffness matrix 

of the experimental substructure: 

 e
4.86 1.41

kN/mm
1.41 0.68

⎡ − ⎤
⎢ ⎥= ⎢ ⎥−⎢ ⎥⎣ ⎦

K  (8.12) 

 
Figure  8-8   Two-degree-of-freedom structure and corresponding laboratory setup for a column. 

which is doubled in the numerical simulation to account for both columns of the 

structure. A mass matrix is then selected to attain natural periods of 0.50 and 0.13 

seconds. For comparison purposes, and to keep the specimens in linear range, two 

simulations with 2.5% of Tabas earthquake were carried out, one with explicit central 
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difference method and the other with the proposed combined implicit-explicit 

integration. The integration time step was selected to be 10/1024 seconds in both 

simulations. 

(a)     (b)  

Figure  8-9   Displacement history of linear experimental simulation of two-degree-of-freedom system – 
(a) explicit central difference, (b) combined implicit or explicit integration. 

(a)     (b)  
Figure  8-10   Comparison of hybrid simulation results with those of numerical simulation – (a) 

displacement history, and (b) hysteretic behavior of first story spring. 

As shown in Figure  8-9, the explicit integration method is unstable and results in the 

spurious excitation of the second mode of the system. However, the proposed method is 

stable throughout the simulation. For this linear simulation, numerical analysis results 

are also calculated and compared to experimental results in Figure  8-10. The good 

agreement of the result confirms the accuracy of the proposed integration algorithm; the 

small discrepancies can be contributed to experimental errors and measurement noise, 

as shown in the hysteresis in Figure  8-10(b) for the plastic hinge (a nonlinear rotational 
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spring) in the first story. This rotational behavior is selected over the shearing behavior 

of columns due to the fact that the column is continuous past the first story, and hence, 

its behavior is essentially governed by bending and plastic hinge rotation rather than 

shearing of the column. 

 
Figure  8-11   Displacement history of nonlinear experimental simulation of two-degree-of-freedom 

system. 

In order to demonstrate the effectiveness of the proposed integration method in 

nonlinear simulations, the internal forces have been increased by adding numerical mass 

and increasing the earthquake amplitude scale factor. Figure  8-11 shows the 

displacement results of a two-degree-of-freedom system with natural periods of 0.60 

and 0.15 subjected to the Tabas earthquake scaled in amplitude by 20%. In this 

simulation, 87.1% of integration steps were successfully completed with implicit 

corrections; implicit steps are recognized by a flag variable that stores values of 0 or 1 to 

indicate explicit or implicit steps, respectively. This variable is plotted against time for a 

portion of simulation in Figure  8-12, along with the number of iterations at each step. It 

is shown that the steps with failed implicit iterations are not consecutive for the most 

part, which is important to maintain the stability of the simulation. The number of 

required iterations at each step is generally small, and only a few steps need more than 5 
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iterations for convergence. Some of integration steps showed bi-directional convergence, 

implying that their physical imposition on the experimental substructure could result in 

erroneous energy dissipation. 

  
Figure  8-12   Number of iterations in implicit steps and energy balance. 

Figure  8-12 also shows that the energy balance error remains close to zero during 

this simulation. Note that in the beginning of the simulation the excitation amplitude is 

small, resulting in highly-contaminated force measurements. Consequently, the implicit 

iterations fail in a large number of integration steps within this period, leading to a 

gradual drift of energy balance error within the first 5 seconds. As the excitation 

amplitude increases, this error is normalized by the increased input energy (see 

Equation (5.30)) and becomes less significant. 

 
Figure  8-13   Hysteretic behavior of first story plastic hinge. 
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The comparison between actual, observed, and converged hysteresis of first story 

plastic hinge is shown in Figure  8-13. The actual hysteretic loop of the presumed plastic 

hinge in the lower level is simply a plot of measured forces versus measured 

displacements as recorded by the data acquisition system. The observed hysteretic loop 

is a plot of feedback forces down-sampled to the integration time step, versus explicit 

desired displacements determined using Equation (8.1). The desired displacement may 

be different from command displacements due to implementation of delay 

compensation procedures. In this simulation, Equation (8.11) was used for compensation 

of delay. Finally, the converged hysteretic loops demonstrate the force and 

displacements at the end of implicit iterations. The similarity of these graphs shows that 

fitted polynomials have been successful in capturing the actual hysteretic behavior of the 

test specimen. 

Experimental studies have also shown that the performance of the proposed 

integration scheme for small nonlinearities (as in the previous example) is comparable to 

results achieved using an operator-splitting method. However, this procedure does not 

utilize the initial stiffness matrix, and hence, is expected to provide more accurate results 

for systems that are highly nonlinear. Due to current limitations of the experimental 

setup, this issue has been further investigated using numerical simulations presented in 

the next section.  

8.3.3.3 Numerical Simulations 

One of the most important goals in the development of proposed integration 

algorithm with implicit or explicit steps is to improve the stability of numerical 
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simulation. Section  8.3.2 included a discussion on the stability of this method. It should 

be noted that this integration procedure uses measurements in an iterative solution 

scheme, and hence, it is largely dependent on the experimental errors. Hence, analytical 

stability limits that are developed using linear control theory have limited applicability 

in the evaluation of its stability. For this reason, the energy balance error is considered as 

an accuracy and stability measure in this section to compare explicit and combined 

integration methods. 

Nonlinear SDF simulations with initial natural periods ranging from 0.08 seconds to 

0.4 seconds have been carried out using explicit and combined integration methods. The 

integration time steps have been selected to range from 0.002 s to 0.02 s. The Tabas 

earthquake scaled in amplitude to 50% is selected as input excitation. Experimental 

errors and measurement noise, along with actuator delay have been introduced in the 

simulations using the numerical models described in Chapter  3. The final energy 

balance errors in these simulations are plotted against normalized integration time step 

in Figure  8-14. It is shown that the proposed approach results in smaller energy errors, 

and remains stable for a wider range of tωΔ . Another important observation is that the 

explicit integration method becomes unstable well before its analytical stability limit, 

2tωΔ = , as a result of experimental errors and system nonlinearities. This was also 

observed in the analytical and numerical studies in Section  8.3.2.1. Of course, if larger 

values of tωΔ  are selected in a simulation, the proposed integration method also results 

in large energy errors, because: (i) the accuracy of simulation degrades with the increase 

of tωΔ  through piecewise linear approximation of nonlinear hysteresis, and (ii) with 
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large tωΔ , polynomials fitted to a few widely-spaced data points fail to accurately 

capture the behavior of the experimental substructure. Consequently, using large tωΔ  

the number of steps with failed implicit iterations increases and the procedure 

eventually reduces to an explicit integration scheme. 

 
Figure  8-14   Energy balance errors of SDF numerical simulations with explicit (E) and combined (IE) 

numerical integration. 

It was previously mentioned that the proposed integration procedure is expected to 

provide more accurate results for highly nonlinear systems compared to operator-

splitting approach. In this section, the two-degree-of-freedom system of Figure  8-8 is 

considered in a numerical study to demonstrate this advantage. The properties of the 

test structure and experimental model are selected to be similar to those of the 

experimental studies in the previous section (natural periods of 0.60 and 0.15 seconds), 

except for a reduced yield displacement of the experimental substructure to achieve 

larger ductility. The input excitation for these numerical simulations is the Tabas 

earthquake scaled in amplitude by 25%. 
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(a)     (b)     (c)  
Figure  8-15   Hysteretic behavior of first story plastic hinge in a highly nonlinear numerical simulation – 

(a) actual hysteresis, (b) operator-splitting result, (c) combined implicit or explicit integration result. 

Numerical simulation results of the two-degree-of-freedom system with elasto-

plastic behavior and large ductility are shown in Figure  8-15. This figure shows the 

actual hysteresis of the experimental model, and converged hysteresis for operator-

splitting and the proposed methods. It can be observed that the converged hysteresis 

obtained from operator-splitting method in Figure  8-15(b) has larger force estimates in 

some steps due to corrections using initial stiffness, as illustrated in Figure  7-2. Figure 

 8-15(c) shows that the proposed method results in an improved agreement between the 

actual and converged hysteretic behavior of the experimental substructure. In addition, 

the proposed implicit procedure does not require the initial stiffness matrix of the 

structure. 

The proposed integration procedure has also been numerically verified to be 

effective for structural models with strength degradation. Experimental studies 

involving highly nonlinear experimental substructures are necessary for better 

comparisons of these two integration methods. 
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8.4 MODEL-BASED INTEGRATION 

In this section, an integration method is introduced that takes advantage of a 

numerical model for the experimental substructure. Assuming predominantly strain-

dependent experimental substructures, this model reduces to a tangent stiffness matrix. 

The experimental tangent stiffness matrix is updated during the simulation, in order to 

establish an accurate relationship between experimental forces and displacements. The 

stiffness update process only uses the readily available force and displacement 

measurements. The updated experimental stiffness matrix is used to improve the 

accuracy of a modified operator-splitting integration scheme for testing highly nonlinear 

experimental substructures. The application and effectiveness of the proposed approach 

is demonstrated through hybrid simulations with MDF experimental substructures. 

8.4.1 OPERATOR-SPLITTING INTEGRATION USING EXPERIMENTAL TANGENT 

STIFFNESS 

A modified operator-splitting approach has been adopted following the formulation 

of α-method, described in Sections  7.1.2 and  8.2. Here, a tangent stiffness is determined 

in each integration step that replaces the initial experimental stiffness matrix. That is, 

after application of predictor displacement from Equation (8.1) and measuring the 

experimental restoring force, the force vector is updated according to a modified version 

of Equation (7.23): 

 ( )l l e,l l l,m
n n n n n= + −r r K d d  (8.13) 
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where e,l
nK  is the m m×  experimental tangent stiffness matrix at step n  expressed in the 

actuator coordinate system, where m  is the number of actuators (and load cells). 

According to this equation, the acceleration in the corrector step is obtained from:  

 

( ) ( )( )

( )

( ) ( )( )

t
1 1

1 e
1 1 1

e 2 T e,l l,m
1

1 1

1

g n n n

n n n n n

n n n n n n

u t t t

t

α α γ

α

α β

− −

−
− − −

−

⎧ ⎫⎪ ⎪⎡ ⎤+ Δ − + + − Δ⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎪ ⎪⎪ ⎪⎪ ⎪= + + −⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎡ ⎤⎪ ⎪− + + + − Δ −⎪ ⎪⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭

M C v a

a B Kd r M a

r K K d a T K d

ι

 (8.14) 

where: 

 ( ) ( )( )e 2 e1 1n nt tα γ α β α= − + Δ + + Δ + +B M M C K K  (8.15) 

Equations (7.4), (8.2) and (8.13) can then be used to update nv , nd  and nr . 

8.4.2 ESTIMATION OF STIFFNESS MATRIX 

An updated tangent stiffness matrix of the experimental substructure can be used to 

solve the equations of motion without iterations, or correct the force measurements in 

iterative schemes without physical application of iterative displacements. The tangent 

stiffness matrix can be used in a variety of integration methods to replace the initial 

stiffness matrix [14, 66, 70, 73, 74], including the modified operator-splitting method. By 

updating the experimental tangent stiffness during the simulation, the accuracy of the 

integration procedure is expected to improve in highly nonlinear experiments.  

Estimation of tangent stiffness of the experimental substructures has already been 

attempted in hybrid simulations. These tangent stiffness matrices have been used for 

error calculations [16], delay compensation [55] and establishing a force-displacement 

relation for SDF experimental substructures to improve the numerical integration [13]. 
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The first two applications were extended to MDF experimental substructures, which are 

briefly discussed in this section. The use of tangent stiffness matrix has not been 

attempted for numerical integration in hybrid simulations with MDF experimental 

substructures. 

The estimated tangent stiffness matrix of the experimental substructure should 

satisfy the following incremental force-displacement relation at the thn  integration step: 

 l e,l l
n n nΔ = Δr K u  (8.16) 

where l
nΔr  and l

nΔu  are measured incremental force and displacement vectors of the 

experimental substructure in actuator local coordinate system, respectively. 

The conventional static test sequence for estimation of experimental stiffness matrix 

cannot be applied to online hybrid simulations. The required procedures should 

estimate the tangent stiffness using 1m ×  measured force and displacement vectors of 

experimental substructure. Thewalt and Roman [16] developed such a procedure based 

on the BFGS formula [123], and used it to estimate energy errors of hybrid simulations. 

In their approach, the stiffness matrix is updated using e,l e,l e,l
* *n = +ΔK K K , where: 

 ( )
( )

( )
( )

( )
( )

( )
( )

T T T Tl e,l l l l l l e,l e,l l l
* * *e,l

* T T Tl l l l l l l l
1

n n n n n n n n

T

n n n n n n n n

⎡ ⎤Δ Δ Δ Δ Δ Δ Δ Δ⎢ ⎥Δ = + − −⎢ ⎥
⎢ ⎥Δ Δ Δ Δ Δ Δ Δ Δ⎣ ⎦

u K u r r r u K K u r
K

r r r u r u r u
 (8.17) 

and e,l
*K  is equal to e,l

1n−K  or e,l
0K , whichever results in a e,l

*ΔK  with a smaller Frobenius 

norm. The above relation results in a symmetric stiffness matrix that satisfies Equation 

(8.16). Thewalt and Roman also introduced criteria for selection of reliable 

measurements and data that result in positive-definite stiffness matrices. 
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Carrion and Spencer [55] employed the Broyden formula [34] to update the 

experimental stiffness matrix: 

 ( )( )
( )

Tl e,l l l
1e,l e,l

1 Tl l

n n n n
n n

n n

−
−

Δ − Δ Δ
= +

Δ Δ

r K u u
K K

u u
 (8.18) 

and used it for model-based compensation of delay. The resulting stiffness matrix will 

also satisfy Equation (8.16), but may not be symmetric or positive-definite. A brief 

discussion on the characteristics of Equations (8.17) and (8.18) is presented in Section 

 8.4.5. 

A new procedure for online estimation of tangent stiffness matrix is proposed here 

for MDF experimental substructures. Similar to the above-mentioned procedures, it is 

assumed that the only available information during the simulation is the incremental 

measured forces and displacements. For this reason, it is first attempted to reduce the 

number of unknowns required to update the tangent stiffness matrix. For this purpose, 

and to facilitate the estimation of stiffness matrix elements, a coordinate system is 

sought, in which the stiffness matrix is diagonal. By transforming force and 

displacement increments to this coordinate system, the decoupled stiffness matrix 

elements can be obtained by dividing corresponding force and displacement pairs. Two 

approaches are presented here; the first method uses the physical test setup information 

to identify an intrinsic coordinate system with the above-mentioned properties, and the 

second method is the classical decomposition of stiffness matrix using its eigenvectors. 
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8.4.2.1 Decomposition of Stiffness Matrix Using Test Structure Information 

The first method of decomposition of stiffness matrix takes advantage of some 

information about the physical test system and experimental element configuration. A 

brief look at structural analysis problems reveals that the stiffness matrices of most 

structural elements consist of terms that are a combination of a few geometric and 

material properties, such as modules of elasticity, lengths, areas and section modules. 

These quantities are subject to change in nonlinear numerical analyses. From a 

macroscopic standpoint, similar intrinsic parameters often exist that determine the 

resistance of a structure to loads imposed by actuators. For example, the lateral stiffness 

of a bracing system subjected to horizontal displacements provides a sufficient force-

displacement relation, regardless of the configuration of individual elements. As another 

example, the entire N N×  stiffness matrix of an N -story shear building can be found 

from N  story stiffnesses. Further, if only m  (m N< ) stories are subjected to loading, the 

required number of essential stiffness terms reduces to m , some of which may represent 

the equivalent stiffness of several stories. 

By only considering the key intrinsic parameters, the stiffness matrix e,l
nK  of the 

experimental substructure in the actuator coordinate system can often be expressed as: 

 e,l T
p pn n=K T P T  (8.19) 

where nP  is a diagonal p p×  matrix of essential stiffness parameters. The transformation 

matrix pT  transform displacements from the actuator local (substructure) coordinate 

system to an intrinsic (parameter) coordinate system with a presumed diagonal stiffness 
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matrix nP . Normally, only the parameters that are expected to change in a simulation 

should be included in nP , and pT  can include all other parameters, such as numbers, 

angles, and lengths. For the example of shear building, nP  is a diagonal matrix of story 

stiffness, and pT  simply transforms the displacements to story drifts. In a flexural 

element, the slope of one end with respect to the other end can be used as a component 

of intrinsic coordinate system. In such a case, the substructure local displacements 

should be projected to the rotation of one end of each element with respect to the 

tangent to the other end, to form each row of the transformation matrix, pT .  

In order to calculate the terms of the diagonal stiffness matrix nP , the incremental 

displacement and force vectors should be transformed to the above-mentioned intrinsic 

coordinate system. Regarding displacements, the transformation is relatively simple, 

and can be done through the same transformation matrix described above: 

 p l
pn nΔ = Δu T u  (8.20) 

in which p
nΔu  is the displacement vector in the intrinsic coordinate system. The 

transformation of displacements from global to actuator coordinate system can be 

carried out using l
n nΔ = Δu T u . 

The transformation of forces to the intrinsic coordinate system depends on the static 

determinacy of the experimental substructure. For statically determinate structures, the 

intrinsic forces can simply be found by equilibrium. Therefore, each column of force 

transformation matrix ( )-T
pT from local to intrinsic coordinates can be found by applying a 

unit force in a local degree of freedom and calculating forces in intrinsic degrees of 
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freedom. The transformation of local incremental force vector l
nΔr  to intrinsic 

coordinates ( p
nΔr ) will then be: 

 ( )p -T l
pn nΔ = Δr T r  (8.21) 

The superscript ( )-T  represents a pseudo-inverse of the matrix transpose, due to the 

fact that transformation matrices T  and pT  are generally rectangular [124]. Further, the 

above matrices satisfy ( )T -T
p p p=T T I  and ( )T -T

m=T T I , where pI  and mI   are p p×  and 

m m×  identity matrices, respectively. 

If the experimental substructure is statically indeterminate (for example, if the 

number of stiffness parameters to be updated in each step is greater than m ), the 

calculation of forces in intrinsic coordinates requires the stiffness matrix of the system 

for a structural analysis. In this case, the structure should be analyzed to find local 

displacements from the measured local force vector, l
nΔr . The resulting local 

displacements can then be transformed to the intrinsic coordinate system using Equation 

(8.20). The intrinsic forces will be the forces corresponding to the intrinsic displacement 

vector using diagonal stiffness matrix nP : 

 ( ) 1p e,l l
pn n n n

−
Δ = Δr P T K r  (8.22) 

It should be noted that the stiffness matrices used in Equation (8.22) are constantly 

updated. As a result, the transformation may be different from one step to another. 

Further, since the stiffness matrix is updated after being used for this transformation in 

the same integration step, an iterative procedure is necessary to ensure the use of up-to-
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date transformation relations. This may require computations too demanding for fast or 

real-time hybrid simulations, but given the small number of degrees of freedom in most 

experimental substructures, the iterative stiffness estimation procedure may be 

acceptable. Nonetheless, the iterative procedure may be omitted by replacing Equation 

(8.22) by: 

 ( ) 1p e,l l
1 p 1n n n n

−

− −Δ = Δr P T K r  (8.23) 

updated once at the beginning of each integration step. Using the previous stiffness 

matrix in transformation of force vector at the current step slightly reduces the stiffness 

matrix update rate. With the customary integration time steps that are required to 

achieve reasonable simulation accuracy, the effects of this reduction of stiffness update 

rate are normally insignificant. 

After determination of forces and displacements in the intrinsic coordinate system, 

each diagonal element of the updated parameter matrix can be found by dividing the 

corresponding elements of force vector by the displacement vector. Put in matrix form, 

the expression will be: 

 ( ) ( )1p pdiag diagn n n

−= Δ ΔP u r  (8.24) 

Following Equation (8.19), the global stiffness matrix of the experimental substructures 

can then be found using: 

 T e,l
n n=K T K T  (8.25) 
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8.4.2.2 Modal Decomposition of Stiffness Matrix 

As demonstrated in the previous section, transformation of the stiffness matrix to a 

coordinate system, in which the stiffness matrix is diagonal, facilitates the estimation of 

stiffness terms using the measurements. In this section, the classical method of 

diagonalization of stiffness matrix is presented for use in the above-mentioned stiffness 

estimation procedure. 

An m m×  matrix is diagonalizable if it has m  linearly-independent eigenvectors. 

This is the case when the matrix has m  distinct eigenvalues [125]. Given these 

conditions, the following relation can be used to diagonalize the tangent stiffness matrix 

at step n : 

 1 e,l
n n n n

−=P KΦ Φ  (8.26) 

in which: 

 1 2n m
n

⎡ ⎤
⎢ ⎥⎣ ⎦Φ = φ φ φ  (8.27) 

is a matrix of normalized eigenvectors (modal matrix) of the local stiffness matrix at step 

n , e,l
nK . In addition to the above, the symmetry of the stiffness matrix results in the 

orthogonality of eigenvectors (or the dynamic mode shapes with an identity mass 

matrix) [119], which further facilitates the diagonalization process by changing Equation 

(8.26) to: 

 T e,l
n n n n=P KΦ Φ  (8.28) 
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Hence, a general choice of the transformation matrix pT  is the transpose of the 

eigenvectors matrix: 

 T
p n=T Φ  (8.29) 

Since this transformation matrix is square, the number of stiffness parameters to be 

estimated will be equal to m , which is the same as the number of measured force and 

displacement pairs. Note that the orthogonality of the normalized eigenvectors matrix 

results in: 

 -1 T
n n=Φ Φ  (8.30) 

The transformation matrix given by Equation (8.29) and its inverse from Equation 

(8.30) can be used in the procedure presented in the previous section to transform forces 

and displacements to modal coordinate system and update the diagonal experimental 

tangent stiffness matrix. The experimental tangent stiffness matrix in actuator local 

coordinates can then be found using the inverse transformation.  

It should be noted that since the stiffness matrix is updated in each integration step, 

the mode shapes may change, and the transformation matrix needs to be updated. That 

is, an eigenvalue problem involving the tangent stiffness matrix should be solved in 

each integration step, regardless of the static determinacy of the experimental 

substructures. Hence, this procedure is more computationally expensive than that of 

previous section for statically determinate experimental substructures. Furthermore, the 

change in the stiffness matrix within an integration step leads to an iterative procedure 

for simultaneous update of stiffness and transformation matrices. Again, it has been 
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observed that iterations can be avoided by using the tangent stiffness matrix in the 

previous step, e,l
1n−K , with negligible loss of accuracy. 

The modal decomposition method provides a general procedure for diagonalization 

of stiffness matrix. This approach be used when an intrinsic coordinate system, in which 

the stiffness matrix is diagonal, cannot be directly recognized based on the geometry 

and element configuration of the experimental substructure. The coupled axial and 

bending behavior of columns, or the combined horizontal, vertical and rotational testing 

of bracings, such as the zipper frame shown in Figure  8-16, are examples of this 

situation. Furthermore, this procedure does not need the above-mentioned a priori 

information about the experimental substructure. 

 
Figure  8-16   A zipper frame and the first story bracing as the experimental substructure [81]. 

8.4.2.3 Selection of Reliable Measurements 

The fidelity of displacement and force measurements used in Equation (8.24) is 

essential to the accuracy of the estimated tangent stiffness matrix. Hence, it is important 

to minimize the amount of noise in the measured force and displacement vectors. For 

this purpose, filters and signal smoothing procedures can be used to improve the 

measurements. In addition, it is suggested that the stiffness matrix update process 

should be carried out only in integration steps with significant displacement increments 

ZIPPER FRAME EXPERIMENTAL SETUP
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sufficiently larger than the noise level. For example, the incremental displacement vector 

should satisfy: 

 l
n δ

∞
Δ >u  (8.31) 

where l
n ∞

Δu  denotes the largest element of the absolute incremental displacement 

vector, and δ  is displacement increment threshold. The displacement threshold δ  

should be greater than the measurement noise level, but small enough to capture steps 

with significant displacement increments. Pretest simulations with zero input excitation 

can be used to determine the root-mean-square (RMS) of the noise signal in 

displacement and force measurements. Recommended value of δ  is the greater of: 10 

times the RMS of displacement noise, or a value that results in a force (using initial 

stiffness) 10 times greater than the RMS of force noise. 

The proposed integration procedure using experimental tangent stiffness in the 

modified operator-splitting algorithm is summarized in Table  8-3. 

8.4.3 CHARACTERISTICS 

Compared to the operator-splitting integration with linear experimental stiffness 

matrix, the proposed integration procedure is more computationally expensive. The 

additional processing cost primarily originates from the stiffness update procedure 

described in the preceding section. However, for experimental substructures with a few 

degrees of freedom, this additional task can be easily handled by currently-available 

processing tools. In terms of communication requirements, interface forces and 

displacements are communicated once in each step of this integration method. Hence, it 
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is a reasonable procedure for implementation in geographically-distributed hybrid 

simulations. 

Table  8-3 Operator-splitting integration using experimental tangent stiffness matrix. 

Simulation Steps 
Equations and Other 

Information 
• Calculate predictor displacement vector at step n  Equation (8.1) 
• Transform displacements to actuator coordinate system l

n n=d Td  
• Apply predictor displacement vector on experimental substructure  
• Measure experimental displacements and restoring forces  
• Compare displacement increments with threshold: Equation (8.31) 

- Displacement increment norm is greater than 
threshold: update stiffness matrix: 

 Transform force and displacement 
increments to intrinsic coordinates 

 Update intrinsic stiffness parameters 
 Transform the updated parameters to 

actuator local coordinates 

Equations (8.20) to (8.25) 

- Displacement increment norm is smaller than 
threshold: keep the experimental tangent 
stiffness unchanged 

 

• Calculate the acceleration vector of step n  Equations (8.14) and 
(8.15) 

• Calculate new displacement, velocity, and force vectors Equations (7.4), (8.2) and 
(8.13) 

• Set 1n n+ →  and go to the next integration step  
 

The proposed integration method uses a more accurate force-displacement 

relationship to reduce the discrepancy between the actual hysteretic behavior of the 

experimental substructure and that obtained by the numerical integrator at the end of 

corrector step (termed herein the converged hysteresis). As shown in Figure  7-2, the use 

of a tangent stiffness that is obtained using the measurements will improve the force 

estimate corresponding to the corrector displacement. Consequently, the difference 

between actual energy dissipated in the experimental substructure EE  and that observed 

by the numerical integrator C
EE  reduces, and a smaller energy balance error results from 
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Equation (5.22). This improvement will be demonstrated in experimental and numerical 

verifications in Section  8.4.5. 

It should be noted that the proposed integration algorithm using experimental 

tangent stiffness is not iterative. This simplifies the implementation of this integration 

algorithm in hybrid simulations. However, the effects of changes in displacement vector 

in the corrector step are not considered in the estimation of the tangent stiffness matrix. 

As a result, the equation of motion is exactly satisfied only when the tangent stiffness 

matrix does not change between predictor and corrector displacements. For this reason, 

a reduced discrepancy between the actual and converged behaviors of the experimental 

substructure is still expected to exist using this integration method. 

8.4.3.1 Stability 

Similar to the conventional operator-splitting integration method, the proposed 

approach results in accurate kinematic relationships among displacements, velocities, 

and accelerations, and prevents the accumulation of errors. It has been shown that when 

initial stiffness matrix is used in the integration procedure, the stability is guaranteed as 

long as the specimen nonlinearity is of softening type [14]. This condition can be 

released when the stiffness matrix is properly updated in each integration step, since the 

actual stiffness is not expected to be larger than the tangent stiffness estimated in the 

integration procedure. Therefore, the stability of this integration method is equivalent to, 

or better than the conventional operator-splitting method. 
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It should be noted that besides improving the accuracy of operator-splitting 

method, using measurements for updating the stiffness matrix creates a potential for 

instability due to experimental errors. For example, the conventional operator-splitting 

method may remain stable in the presence of very large tracking errors as long as they 

are corrected using Equation (7.23). As an extreme case, if the actuators completely fail 

to respond to the commands ( l,m
n =d 0 ), the conventional operator-splitting method will 

result in a simulation with linear response from experimental substructure (stable, but 

most probably, inaccurate). Such independence from experimental errors, however, 

cannot be expected from the proposed stiffness update procedure. 

Low-quality measurements, or very small displacement threshold for selection of 

significant displacement increments, may result in large noises in the estimated stiffness 

matrix elements, leading to an inaccurate or unstable simulation. Nonetheless, as long as 

the experimental setup is well tuned for the intended application range, and only 

reliable measurements are used in the stiffness update process by proper selection of 

displacement threshold, it is expected that the proposed integration algorithm remains 

stable. Hence, the stability of this integration method depends on the extent of 

experimental errors; the stability and accuracy of simulation can be assured using this 

integration method if (i) the experimental setup is properly tuned and calibrated, (ii) 

delay is accurately compensated, (iii) the experimental errors and measurement noise 

remain within reasonable limits, and (iv) the integration time step is small enough to 

capture the behavior of nonlinear components with reasonable accuracy. Note that these 
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conditions are required for a reliable simulation using any integration method, and the 

method proposed in this section does not impose other stability conditions. 

8.4.3.2 Delay Compensation 

The proposed integration procedure with experimental tangent stiffness uses an 

explicit expression for calculation of predictor displacement vector, similar to other 

integration methods studied in this dissertation. Hence, in addition to the polynomial 

extrapolation method, the same Equation (8.11) can be used to compensate the delay. 

Again, if force correction procedures are utilized for delay compensation, they should 

retain the phase agreement of forces and displacements for use in the estimation of 

tangent stiffness matrix. 

8.4.4 USE OF TANGENT STIFFNESS MATRIX IN ITERATIVE SCHEMES 

In the integration scheme described above, the experimental tangent stiffness is 

updated based on the measurements up to the predictor displacement of integration 

step n . The use of this stiffness matrix in the corrector step without change assumes a 

constant tangent stiffness matrix between predictor and corrector displacements. It was 

mentioned in Section  8.4.3 that because of this assumption, the experimental energy 

dissipation may be slightly different from that converged at the end of corrector step. 

Although the difference between these two displacement vectors are generally small, for 

exact satisfaction of equation of motion and finite difference kinematics relations, an 

iterative implicit integration scheme should be employed. 
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In iterative implicit integration methods, the experimental measurements should be 

updated in each iteration, and a new experimental tangent stiffness matrix should be 

determined and used to update the states. The first problem in using this procedure 

appears to be the iterative scheme, which is not suitable for simulations involving 

nonlinear physical subsystems. A possible workaround for this problem is using the 

fitted polynomials described in Section  8.2 for estimation of forces corresponding to 

iterative displacements, to avoid physical iterations. 

Another problem in implementation of an iterative algorithm is to create an 

uninterrupted integration scheme. Other procedures need to be established for handling 

the integration steps with failed iterations. For this purpose, all cases that may prevent 

iterative calculation tasks from proper functioning should be identified and properly 

addressed. The following lists these situations, and the corresponding measures that can 

be taken to continue the simulation: 

• The maximum number of iterations can be reached before the convergence 

criterion is met. 

 In this situation, the integration step can be completed using a 

one step correction using tangent stiffness. The stiffness 

matrix may or may not be updated in this integration step, 

depending upon the displacement increments size. 

• The tangent stiffness matrix update may fail for one or more of the following 

reasons: 
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o The displacement increments are too small, 

o The force estimation procedure fails to estimate forces corresponding 

to one or more iterative displacements due to excessive variation of 

time parameter, 

o The matrix nB  given by Equation (8.15) cannot be inverted. 

 When the experimental stiffness matrix is not updated, the 

next iteration will yield identical state vectors, resulting in a 

“false convergence.” In this situation, the solution to the last 

iteration can be left unchanged, since up to that point, the 

iterative corrections can be thought as successful. However, 

the convergence error is expected to be more than the 

accepted tolerance of Equation (8.4). Alternatively, the same 

strategy as that for unconverged integration steps can be 

followed here. 

Note that a number of above problems can also occur in the non-iterative scheme 

described above, which can be handled by leaving the stiffness matrix unchanged in that 

integration step. As shown in the summarized algorithm of Table  8-4, an iterative 

integration algorithm based on the above-mentioned approach will be more 

computationally expensive. Further, by using polynomials for estimation of forces 

corresponding to the iterative displacement, a result similar to that of integration 

method with combined implicit or explicit steps may result. The properties of this 
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integration algorithm will be further studied through numerical simulations in Section 

 8.4.5.2. 

Table  8-4 Iterative implicit integration procedure using experimental tangent stiffness. 

Simulation Steps 

Equations and 
Other 

Information 
• Calculate predictor displacement vector at step n  Equation (8.1) 
• Transform displacements to actuator coordinate system l

n n=d Td  
• Apply predictor displacement vector on experimental substructure  
• Measure experimental displacements and restoring forces  
• Fit polynomials to most recent force and displacement measurements  

• Calculate the predictor velocity vector 
Equation (7.4) 

with 0γ =  
• Solve iteratively:  

- Using fitted polynomials, estimate forces corresponding to 
iterative displacements, and calculate displacement and force 
increments from the beginning of step 

 

- Compare displacement increments with threshold: Equation 
(8.31) 

 Displacement increment norm is greater than 
threshold: update stiffness matrix: 

• Transform force and displacement 
increments to intrinsic coordinates 

• Update intrinsic stiffness parameters 
• Transform the updated parameters to 

actuator local coordinates 

Equations 
(8.20) to (8.25) 

 Displacement increment norm is smaller than 
threshold: keep the experimental tangent stiffness 
unchanged 

 

- Calculate new accelerations, velocities, and displacements 

Equations 
(8.14), (8.15), 

(7.4), (8.2) and 
(8.13) 

- Check the convergence norm Equation (8.4) 
• Iterative solution scheme:  

- Failed: Use a one-step correction using the last successfully-
updated tangent stiffness matrix 

Equations 
(8.20) to (8.25), 
(8.14), (8.15), 

(7.4), (8.2) and 
(8.13) 

- Succeeded: admit the iterative solution  
• Set 1n n+ →  and go to the next integration step  
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8.4.5 NUMERICAL AND EXPERIMENTAL VERIFICATIONS 

In this section, numerical and experimental simulations have been carried out to 

illustrate the use of the proposed integration algorithm using experimental tangent 

stiffness matrix. This integration method is also compared to the conventional operator-

splitting method, where only the initial experimental matrix is used. 

 
Figure  8-17   Two-degree-of-freedom structure, corresponding laboratory setup for experimental 

substructure column, and stiffness components in the intrinsic coordinate system. 

8.4.5.1 Experimental Simulations 

The two-story structure shown in Figure  8-17 is considered in the experimental 

studies for verification of the proposed integration method. The entire stiffness of the 

hybrid model is represented by a two-degree-of-freedom experimental substructure 

shown in Figure  3-2. Damping is numerically modeled to be 5% of critical in the first 

mode. The numerical mass matrix is selected to obtain natural periods of 0.60 and 0.15 

seconds based on the measured initial substructure stiffness. The response of the 

structure subjected to the Tabas earthquake is simulated at the real-time event scale with 

integration time step of 10/1024 seconds. Real-time hybrid testing is used to 

demonstrate the computational efficiency of the integration scheme. Based on the 

observed measurement noise level, a displacement threshold of 0.1 mm has been chosen 

2u

2s
1r
1u

2r

l
2u

l
1r

l
1u

l
2r

1s

p
2u p

2r

p
1u p

1r



Improved Numerical Integration Methods  
  
  

 

 215

to select steps with reliable data using Equation (8.31), for the estimation of stiffness 

matrix. 

The stiffness matrix of the experimental substructure, given by Equation (8.12) is 

doubled in the numerical simulation to account for both columns of the two-story 

prototype structure. Since the column is continuous past the first story, the rotation of 

one end of the column with respect to the other end best describes the flexural behavior 

of each of experimental elements. Hence, the intrinsic coordinates for this structure can 

be defined as the deformations of two rotational springs at first and second story plastic 

hinges and their corresponding moments, as illustrated in Figure  8-8. That is, the 

diagonal stiffness matrix in intrinsic coordinate system is given by: 

 
1

2

0

0

s

s

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

P  (8.32) 

where 1s  and 2s  are the stiffnesses of the first and second story springs, respectively. 

Considering that actuator local and global coordinate systems are the same in this 

problem ( 2=T I ), the displacement transformation matrix: 

 
( )

1

p
1 2 1 2 2

1 0

1

l

l l l l l

⎡ ⎤
⎢ ⎥= ⎢ ⎥− +⎢ ⎥⎣ ⎦

T  (8.33) 

transforms actuator displacements to spring rotations. In Equation (8.33), 1l  and 2l  are 

the lengths of the first and second story columns, respectively. Since the experimental 

substructure is statically determinate, the force transformation matrix can be found 

based on equilibrium: 
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 ( ) 1 1 2-T
p

20

l l l

l

⎡ ⎤+
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

T  (8.34) 

This matrix transforms actuator forces to moments acting on the springs in the intrinsic 

coordinate system. Note that these transformation matrices satisfy ( )T -T
p p 2=T T I .  

The structural response of the two-degree-of-freedom structure is simulated with 30 

seconds of Tabas earthquake, scaled in amplitude by 35%. The global displacement 

histories are shown in Figure  8-18. As illustrated, the response is nonlinear, and residual 

drifts of 14 and 28 millimeters can be observed in the first and second stories, 

respectively. The energy balance of the system is well maintained throughout the 

simulation, as shown in Figure  8-19. This figure shows that the sum of analytical and 

experimental energies shows an excellent agreement with the input energy. Note that 

the simulation model does not have any numerical stiffness and numerical strain energy 

is zero throughout the simulation. The final energy balance error is less than 0.02%, 

which is very small. A similar experiment using a constant initial stiffness matrix for 

experimental substructure (conventional operator-splitting method), shows about 0.45% 

energy error at the end of simulation. This difference is small for this test structure, due 

to the fact that the amount of yielding is limited in the present experimental setup by the 

available actuator stroke. The improvement is expected to be larger in experiments with 

highly nonlinear experimental substructures, and will be demonstrated through 

numerical simulations in the next section. 
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Figure  8-18   Displacement history of the two-degree-of-freedom structure subjected to 35% Tabas 

earthquake record. 

 
Figure  8-19   Energy histories computed through the hybrid simulation. 

 
Figure  8-20   Stiffness matrix elements estimated through the simulation in actuator degrees of freedom. 

In the above experimental simulation, the stiffness matrix was updated in 64.0% of 

the integration steps (85.3% for the period of significant response between 5 and 30 

0 5 10 15 20 25 30 35
-80

-60

-40

-20

0

20

40

Time, s

D
is

pl
ac

em
en

t, 
m

m

 

 

DOF 1
DOF 2

5 10 15 20 25 30
0

1

2

3

4

5

6

Experimental

Kinetic

Damping

Strain

Input

Time, s

E
ne

rg
y,

 k
N

-m

0 5 10 15 20 25 30 35
-5

0

5

10

Time, s

S
tif

fn
es

s,
 k

N
/m

m

 

 

K11

K12

K21

K22



Improved Numerical Integration Methods  
  
  

 

 218

seconds). In other steps, the displacement norm was less than the noise threshold. The 

terms of the experimental tangent stiffness matrix through the simulation are shown in 

Figure  8-20. The stiffness matrix appears to have a fair amount of noise, which can be 

reduced by improved filtering of the measurements. Even so, this estimate is enough to 

reduce the energy error of the simulation well below that of conventional operator-

splitting approach. 

 
Figure  8-21   Variation of stiffness matrix elements and hysteretic behvior of the experimental setup in 

intrinsic coordinates (spring rotation). 

The good agreement of the estimated spring stiffness with instantaneous behavior 

of the experimental substructure is shown in Figure  8-21 for a short period of simulation. 

Note that the gradual reductions in the stiffness coincide with softening behavior in 

hysteretic loops. The consequent increases in stiffness are faster, which correspond to 

elastic recovery at displacement reversals. The stiffness of the second-story spring 

remains close to the initial value, except for two peaks that occur immediately after the 
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rotation rate in this hinge becomes negative, which is in agreement with its force-

displacement diagram. Since only one pair of coupons was used in the second story, this 

apparent reduction of stiffness is believed to originate from loose components of the 

experimental setup. The accuracy of the estimated experimental stiffness matrix can also 

be observed through the agreement of the converged and actual experimental hysteretic 

behavior of the first story hinge in Figure  8-22. 

 
Figure  8-22   Comparison of actual, observed, and converged experimental hysteretic behavior. 

8.4.5.2 Numerical Simulations 

Numerical simulations have been carried out to compare different stiffness matrix 

estimation methods presented earlier, and to demonstrate the improved effect of using 

tangent stiffness matrix over the initial stiffness matrix in highly nonlinear experiments. 

The numerical models described in Chapter  3 are used to replace the experimental setup 

with similar properties. The delays have been selected to be 15ms for each actuator, and 

measurement noise has been calibrated based on actual experimental data and 

laboratory equipment information. 
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Figure  8-23   Estimation of tangent stiffness matrix using different methods (a) BFGS method, (b) 

Broyden formula, (c) proposed method using test setup information, and (d) proposed method using 
modal decomposition. 

Comparison of Stiffness Matrix Estimation Procedures – In this section, the 

performance of the stiffness matrix estimation methods studied in this chapter are 

compared through numerical simulations. The seismic response of the structural model 

in Figure  8-17 subjected to Tabas earthquake with 50% amplitude scale is simulated, and 

the stiffness matrix histories estimated using different methods are compared. The same 

10 10.5 11 11.5 12
-5

0

5

10
(a)

S
tif

fn
es

s,
 k

N
/m

m

10 10.5 11 11.5 12
-5

0

5

10
(b)

S
tif

fn
es

s,
 k

N
/m

m

10 10.5 11 11.5 12
-5

0

5

10
(c)

S
tif

fn
es

s,
 k

N
/m

m

10 10.5 11 11.5 12
-5

0

5

10
(d)

S
tif

fn
es

s,
 k

N
/m

m

Time, s

10 10.5 11 11.5 12
-5

0

5

10
(a) Exact

10 10.5 11 11.5 12
-5

0

5

10
(b) Exact

10 10.5 11 11.5 12
-5

0

5

10
(c) Exact

10 10.5 11 11.5 12
-5

0

5

10
(d) Exact

Time, s

 

 

K11 K12 K21 K22



Improved Numerical Integration Methods  
  
  

 

 221

displacement threshold of 0.1 mm is used for the all methods of stiffness estimation. In 

these simulations, the exact stiffness values are also calculated by directly using the force 

and displacement signals of the Bouc-Wen hysteretic models simulating the 

experimental response. That is, the input and output pairs of Story 1 and Story 2 blocks 

in Figure  3-18 are recorded and used to calculate the instantaneous stiffness of these 

models. These results do not include force errors, and reflect the actual stiffness of 

individual Bouc-Wen models in the experimental stiffness matrix. Note that such 

comparison is not possible in a hybrid numerical and experimental simulation. 

The elements of stiffness matrix during a short period of these simulations are 

shown in Figure  8-23. This figure shows two sets of stiffness matrix histories: the first 

group on the left show the results of stiffness estimation methods presented in this 

chapter, and the group on the right demonstrate the exact results obtained during each 

simulation using the above-mentioned approach. Figure  8-23(a) shows that the stiffness 

matrix estimated using equation (8.17) is symmetric, but has a significant amount of 

large-amplitude spikes. This noise has been observed to result in considerable 

distortions in the converged hysteretic behavior discussed earlier. The agreement of the 

estimated stiffness matrix elements with exact values is also relatively poor. On the other 

hand, Equation (8.18) has a slower stiffness update rate, and some matrix elements do 

not adequately reflect yielding of the experimental model, as illustrated in Figure 

 8-23(b). Reducing the displacement threshold has also been observed to significantly 

increase the noise before achieving the desired adjustment rates. It can also be observed 

that Equation (8.18) results in unsymmetrical stiffness matrices in this simulation. 
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Similar observations have been made in simulations using other structures or 

earthquake records. Overall, the stiffness estimation procedures using Equations (8.17) 

and (8.18) did not show sufficient accuracy improvement in the simulation results over 

using the initial stiffness matrix. 

Figure  8-23(c) and (d) demonstrate that the proposed stiffness estimation methods 

provide quick updates of the stiffness matrix elements with reduced noise. It can be 

observed that these methods result in the best agreement of the estimations with the 

exact results. The energy balance errors of the simulations using these methods are also 

distinctly smaller than using Equation (8.17), Equation (8.18), or the initial stiffness 

matrix of the experimental substructure. From Figure  8-23, it also appears that using the 

test setup information for diagonalization of the stiffness matrix produces more accurate 

estimations than using the modal matrix, but with no significant advantage in terms of 

energy balance. Similar results have been observed in other numerical and experimental 

simulations. 

Effects of Using Updated Stiffness Matrix - In a numerical simulation, the level of 

nonlinearity of the experimental substructure can be easily altered by selecting different 

values for yield displacements of the experimental elements. Hence, it is possible to 

study the performance of the integration methods at different ductility levels. Numerical 

studies have been carried out for experimental models with yield displacements ranging 

from 5 to 70 millimeters resulting in ductility of about 6.0 to linear response. The 

structural response subjected to 50% Tabas earthquake is simulated using integration 

time steps of 10/1024 and 20/1024 seconds. 
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Figure  8-24   Absolute energy balance error at the end of simulation for different yield displacements. 

(a)     (b)     (c)  
Figure  8-25   Hysteresis behavior of first story spring (a) observed (b) converged using initial stiffness 

matrix (c) converged using updated stiffness matrix. 

Figure  8-24 illustrates that the unbalanced energy is always smaller when the 

tangent stiffness matrix is updated. This error continuously increases with higher levels 

of nonlinearity, but increases at a higher rate when the initial stiffness matrix is used. 

The use of initial stiffness is shown to result in comparable accuracy only when the 

response is close to linear (large yield displacements). Hence, it can be concluded that 

the stiffness matrix update method presented in this section improves the accuracy of 

simulation of nonlinear systems and becomes more beneficial for higher ductility levels. 

The comparisons of hysteretic loops for a yield displacement of 10mm and integration 

time step of 10/1024s are shown in Figure  8-25. It is illustrated that the use of initial 

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4

Yield Displacement (mm)

U
nb

al
an

ce
d 

E
ne

rg
y 

(%
 o

f I
np

ut
 E

ne
rg

y)

 

 

Initial Stiffness Δt = 10/1024s
Initial Stiffness Δt = 20/1024s
Updated Stiffness Δt = 10/1024s
Updated Stiffness Δt = 20/1024s

Experiment  
Yield       
Displacement

-2 0 2 4
-100

-50

0

50

100
Observed Hysteresis

Desired Rotation, Deg

F
ee

db
ac

k 
M

om
en

t, 
ki

ps
-in

-2 0 2 4
-100

-50

0

50

100
Initial Stiffness

Final Rotation, Deg

F
in

al
 M

om
en

t, 
ki

ps
-in

-2 0 2 4
-100

-50

0

50

100
Updated Stiffness

Final Rotation, Deg
F

in
al

 M
om

en
t, 

ki
ps

-in



Improved Numerical Integration Methods  
  
  

 

 224

stiffness matrix may result in distortions in the yielded portions of hysteretic loops 

(Figure  8-25(b)), while such distortions are eliminated when the tangent stiffness matrix 

is used. 

The benefit of using experimental tangent stiffness matrix is also evident when 

larger time steps are used in simulation of nonlinear systems, as shown in Figure  8-24. 

This can be attributed to the use of Equation (8.13) for updating the feedback force 

vector. With larger time steps, the differences between predictor and corrector 

displacements increase, and the effect of force corrections will be more pronounced in 

simulation results. The increased freedom to use larger time steps without significant 

loss of accuracy is therefore another advantage of the integration procedure presented in 

this section. 

Use of Tangent Stiffness Matrix in Iterative Schemes – The effects of iterative 

estimation of stiffness matrix using polynomials fitted to the measurements are studied 

in this section. Numerical simulations have been carried out for the two-degree-of-

freedom model subjected to 50% amplitude Tabas earthquake. The operator-splitting 

method using the tangent stiffness matrix has been observed to result in a small energy 

balance error of 0.05%, and the converged hysteretic behavior is in agreement with the 

actual behavior as shown in Figure  8-26. Figure  8-27 shows the elements of stiffness 

matrix during the simulation. In this simulation, 71.6% steps were completed with 

successful updates of stiffness matrix. 
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Figure  8-26   Hysteretic behavior of the first story spring obtained by operator-splitting procedure using 

tangent stiffness matrix. 

   
Figure  8-27   Stiffness matrix elements, number of iterations, and flags for implicit steps and stiffness 

update. 

The simulation results shown in Figures 8-28 and 8-29 are obtained using the 

iterative stiffness update procedure described in Section  8.4.4. Here, the iterative results 

with failed stiffness update procedure are accepted as solutions with increased 

convergence tolerance. With this strategy, 100% of the steps are considered implicit; that 

is, the convergence is achieved before the maximum number of iterations. However, the 

stiffness update has been successful only in 30.0% of steps. This reduced percentage can 

be attributed to the fact that stiffness update is considered successful only when it is 

successful in all iterations up to the convergence. In all other steps, the iterative 

procedure had a “false convergence” due to unchanged stiffness matrix in iterations. 

The energy balance error at the end of this simulation was about 0.90%. 
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Figure  8-28   Hysteretic behavior of the first story spring obtained by iterative integration procedure 

using tangent stiffness matrix – admitting the last iterative solution in case of stiffness update failure. 

  
Figure  8-29   Stiffness matrix elements, number of iterations, and flags for implicit steps and stiffness 

update. 

In another simulation, the steps with failed stiffness update have been considered 

non-implicit, and an operator splitting procedure has been utilized to replace the results 

using experimental tangent stiffness matrix. In this case, the percentage of steps with 

successful iterative scheme reduces to about 31.1%. On the other hand, the stiffness 

update is successful in about 72.3% of steps, which has been used either in iterative, or 

operator-splitting scheme. The results of this simulation are shown in Figures 8-30 and 

8-31. The energy balance error at the end of simulation is about 0.11%. The energy 

balance errors obtained from iterative schemes seem to be more than that of operator-

splitting with tangent stiffness. However, the converged hysteretic loops are in good 
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agreement with the actual ones in both iterative integration schemes. The noise in the 

estimated stiffness matrix elements also appear to be larger in iterative methods. 

 
Figure  8-30   Hysteretic behavior of the first story spring obtained by iterative integration procedure 

using tangent stiffness matrix – reverting to operator-splitting in case of stiffness update failure. 

  
Figure  8-31   Stiffness matrix elements, number of iterations, and flags for implicit steps and stiffness 

update. 

The amounts of energy balance error found in these simulations are observed to be 

sensitive to the noise in force measurements. Table  8-5 shows how energy balance and 

percentage of iterative solutions are affected by the level of noise in force measurements. 

Based on this data, the iterative solution (with reverting to operator-splitting in cases of 

stiffness update failure) shows better results in the absence of force measurement noise. 

Hence, the use of iterative stiffness update procedure does not show a noticeable 

advantage over a single-step correction of states using tangent stiffness due to 

experimental errors and measurement noise. However, this iterative integration scheme 
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may be beneficial for use with commercial finite element analysis programs that employ 

iterative solution schemes for nonlinear numerical and experimental substructures. With 

this approach, fully implicit integration methods can be used for both experimental and 

numerical substructures. 

Table  8-5 Energy errors and percentages of iterative solutions for different integration methods. 

Method Description 
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Operator-splitting with 
tangent stiffness 0.05% 71.6% 0% 0.08% 78.3% 0% 0.08% 79.0% 0% 

Iterative with admitting 
the last iterative solution 
in case of stiffness update 
failure 

0.90% 30.0% 100% 0.61% 31.8% 100% 0.28% 33.3% 100% 

Iterative with reverting to 
operator-splitting with 
tangent stiffness in case of 
stiffness update failure 

0.11% 72.3% 31.0% 0.05% 78.5% 37.1% 0.04% 79.3% 39.0% 

 

An Example for Using Modal Diagonalization of Stiffness matrix – In this section, 

the zipper frame structures shown in Figure  8-32 is simulated using stiffness matrix 

estimation with modal diagonalization approach. A similar substructure was tested 

pseudo-dynamically by Yang et al. [81]. As shown, six global degrees of freedom have 

been selected for this three-story frame. The three vertical degrees of freedom are 

considered to observe the effect of vertical elements in carrying vertical unbalanced 

loads when buckling occurs in the lower braces. The mass and stiffness matrices are 

selected to result in a first-mode period of 0.6 s, with the natural period of the highest 
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mode being 0.05 s. Damping is assumed to 5% of critical and is modeled in the 

numerical substructure. 

 
Figure  8-32   Example zipper frame structure and first story brace as the experimental substructure. 

  
Figure  8-33   Simulink model for numerical simulation of experimental substructure. 

The Simulink model shown in Figure  8-33 is used to model the behavior of the first 

story braces on the computer. This model first transforms the displacements to element 

local coordinates, and uses two Bouc-Wen models to calculate the restoring force for 

each element. The elements are assumed to be softer in compression, by reducing the 

negative restoring forces by 30%. This simple approach results in an overall behavior 

similar to that of a bracing system with buckled elements. The forces are then 
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transformed to actuator coordinate system. Delay and other errors are also introduced in 

the signals using the same methods presented in Chapter  3.  

In order to simulate the structural response using the stiffness estimation methods 

proposed in this chapter, it is necessary to select a diagonalization approach. Using the 

experimental setup information, the intrinsic coordinate system can be selected as the 

combination of the element local coordinate systems. That is, the transformation matrix 

is given by: 

 p

cos sin

cos sin

θ θ

θ θ

⎡ ⎤
⎢ ⎥= ⎢ ⎥−⎢ ⎥⎣ ⎦

T  (8.35) 

which transforms the displacements from actuator to element coordinates. For force 

transformation, the above matrix should be transposed and inverted, to give member 

axial forces from forces in actuator coordinate system. Alternatively, the modal 

diagonalization method described in Section  8.4.2.2 can be selected for the stiffness 

update process, without using the above information about the test setup. In any case, 

the initial stiffness matrix of the experimental substructure is required to start the 

simulation. Here, the initial stiffness matrix is selected based on the symmetric behavior 

of elements in tension and compression, which is only the case within the linear range, 

before the occurrence of buckling. 
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Figure  8-34   Global displacement histories of the example zipper frame. 

 
Figure  8-35   Hysteretic behavior of brace number 1, with compressive stiffness being 30% less than 

tensile stiffness. 

 
Figure  8-36   Horizontal and vertical displacements of the top node of first story brace. 

The displacement results of the simulation of the zipper frame subjected to El 

Centro ground motion is shown in Figure  8-34. Note that the nonlinearities are only 

limited to the braces in the first story, which are modeled as the experimental 

substructure. The hysteretic behavior of the experimental brace number 1 is illustrated 
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in Figure  8-35, which shows the reduced stiffness of the brace in compression. This 

unsymmetrical behavior of the elements results in the top experimental node to sustain a 

permanent downward dislocation, as shown in Figure  8-36. This figure shows the 

oscillation of this node in both horizontal and vertical directions, with vertical 

displacements being significantly smaller than horizontal displacements. It is also 

evident that vertical oscillations occur with a higher frequency than horizontal 

vibrations. 

 
Figure  8-37   Force-displacement diagram of the horizontal experimental degree of freedom (E1). 

 
Figure  8-38   Force-displacement diagram of the vertical experimental degree of freedom (E2). 

The force-displacement diagrams for both actuators are shown in Figures 8-37 and 

8-38. The horizontal force-displacement diagram shows a typical nonlinear behavior, 

while the vertical behavior is more complicated. The overall trend in vertical direction 
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appears to show a negative stiffness. This implies the development of tensile forces in 

the vertical actuators as the top node of the bracing underneath moves downward. This 

is in agreement with the role of the vertical elements of the zipper frame in carrying the 

unbalanced vertical loads of lower bracing elements after buckling [126]. The agreement 

of converged and actual hysteretic behaviors is also evident in Figures 8-37 and 8-38, 

demonstrating the accuracy of the stiffness estimations. 

 
Figure  8-39   Stiffness matrix elements during the peak structural response. 

 
Figure  8-40   Displacements at the first three degrees of freedom during the peak structural response. 

The elements of experimental tangent stiffness matrix in actuator local coordinate 

system during the peak structural response are shown in Figure  8-39. The displacement 

histories of horizontal degrees of freedom during this period are also detailed in Figure 

 8-40. It can be observed that during large drifts, the stiffness of the brace elements 
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reduce to values close to zero. At displacement reversals, the stiffness matrix elements 

are observed to sharply increase, and then, gradually decrease in the opposite direction.  

It should be noted that a linear 45° bracing system should have a diagonal stiffness 

matrix with identical stiffness in horizontal and vertical directions. However, during the 

simulation period shown in Figure  8-39, the horizontal stiffness appears to be greater 

when velocity is positive. In negative-velocity portions, the vertical direction shows 

larger stiffness values. These periods are accompanied by negative and positive off-

diagonal terms of stiffness matrix, respectively. These observations can be attributed to 

the unsymmetrical behavior and yielding of the elements in tension and compression, as 

described above. In this simulation, the experimental stiffness matrix was updated in 

76.2% of integration steps, and the final energy balance error was less than 0.1% of input 

energy. 
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9 SUMMARY AND CONCLUSIONS 

A summary of key contributions and concluding remarks from this dissertation are 

presented in this chapter. Research areas for further developments and future studies 

are also identified and briefly discussed. 

9.1 SUMMARY 

This work was conducted for the development of pseudo-dynamic hybrid 

simulation system at SEESL, and the improvement of hybrid simulation procedures for 

real-time and geographically distributed experiments. Only real-time experiments are 

presented in this dissertation, but the minimal communication requirements of the 

proposed methods make them suitable for distributed testing at slower rates. In this 

section, a concise summary of this dissertation is presented. 

The state-of-the-art of hybrid simulation test technique was presented in chapter  2. 

It was found that hybrid simulation has been widely recognized as a reliable and 

effective test technique for evaluation of dynamic performance of structural components 

and systems. As it stands, the most important challenges in the extension of this test 
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method to fast and distributed testing of complex structural systems are: (i) difficulties 

in setting up proper boundary conditions for experimental substructures, (ii) complex 

and unidentified dynamics of the test setup, (iii) effects of numerical and experimental 

errors on simulation results, (iv) lack of robust numerical simulation procedures for 

conducting stable and accurate experiments, and (v) absence of a general, user-friendly 

and fully-developed software framework for real-time hybrid simulations. This study 

was conducted to address issues related to items ii, iii, and iv above, by developing 

improved simulation procedures.  

Basic simulation models were developed for the Structural Engineering and 

Earthquake Simulation Laboratory at University at Buffalo. In addition, a general two-

degree-of-freedom experimental setup was developed and presented in Chapter  3 for 

experimental verification of test procedures. The hybrid simulation models take 

advantage of MATLAB Simulink development environment and xPC target computers 

for real-time simulations. All the numerical integration, delay compensation, and signal 

conditioning procedures studied in this dissertation are implemented in the simulation 

models. In hybrid simulations, these models are executed on real-time computers, and 

communicate with test setup via SCRAMNet.  

Also in Chapter  3, numerical models were described that can be used to replace the 

experimental setup for numerical simulations of hybrid simulation. These models mimic 

the performance of experimental setups by artificially introducing errors and delay in 

force and displacement signals. Pretest simulations and preliminary evaluation of new 

test procedures are two most important uses of these numerical models. Since the 
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experimental forces are numerically calculated in these models, numerical simulations 

can be carried out in either real-time or non-real-time environments. 

The functions of servo-hydraulic actuators and their most common control systems 

were studied in Chapter  4. It was shown that the control system parameters 

considerably affect the stability and tracking performance of the actuators. The 

properties of the most widely used PID controllers were also studied; it was shown that 

these linear controllers are able to yield satisfactory actuator response, if they are 

properly tuned for the intended frequency range. For this reason, the tuning should be 

repeated after any major change in the experimental setup or specimen properties. It 

was demonstrated that the properties of PID controllers can be improved by small 

adjustments to the procedure, such as delta-pressure stabilization for elimination of oil 

column resonance, and feedforward gain for reduction of response delay. It was also 

pointed out that some delay must be admitted to exist in the actuator response to 

achieve a sufficiently stable behavior from this controller. 

Numerical models developed for servo-hydraulic actuators were also studied in 

Chapter  4, ranging from simple linear models to complex models including the 

nonlinear dynamics of servovalve and orifice flow. The linear models have been shown 

to produce acceptable results for a limited actuator response range, where the behavior 

can be assumed linear. The more complex and nonlinear models normally produce 

better results, but they were shown to be sensitive to the accuracy of the provided 

system parameters, such as oil bulk modulus. Consequently, it may be necessary to 

repeat the numerical simulations for a wide range of system parameters to account for 
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their uncertainties. These models can be used to predict the system dynamics during 

simulations, and design controllers and compensators to improve the actuator 

performance. 

In Chapter  5, it was shown that both numerical and experimental errors affect the 

accuracy and stability of hybrid simulations. The majority of numerical errors normally 

occur due to the use of discretized numerical models and integration methods that are 

highly simplified for use in hybrid simulations. Compared to experimental errors, 

numerical errors are better identified, and normally can be restricted by following 

appropriate modeling guidelines. 

Experimental errors, which can be categorized as random or systematic, often 

originate from actuator tracking errors and measurement noise. These errors were 

shown to have the most detrimental effects on the stability and accuracy of hybrid 

simulations. In particular, servo-hydraulic actuator delay was studied in detail, and it 

was shown that uncompensated delay may destabilize the system by adding energy 

through an apparent negative damping effect. These effects were shown to be more 

significant in the presence of high-frequency modes. Hence it is important to first make 

every effort to reduce this systematic error, and then, properly compensate the 

remainder during fast and real-time hybrid simulations. 

It was shown that delay can be measured offline if it is expected to remain constant 

during the simulation. However, it has been demonstrated that delay may change 

during simulations with large stiffness variations. For this reason, the existing online 

delay estimation procedures were studied and an improved method was proposed in 
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Chapter  5. Error indicators were also studied in this chapter for the assessment of 

accuracy and stability of hybrid simulations. An experimental error indicator was 

examined and used to show the importance of proper delay compensation for accuracy 

and stability of hybrid simulations. In order to include both numerical and experimental 

errors, an overall energy balance error was formulated and applied to hybrid 

simulations. 

Delay compensation procedures for hybrid simulation were studied in Chapter  6. It 

was pointed out that in hybrid simulations, the properties of the experimental 

substructures are unidentified before the experiment; this is in contrast with delay 

compensation problem for active control of structures, where normally a reasonable 

numerical model of the structural system is available. Consequently, mostly 

compensation procedures that need the least information about test structure have been 

adapted to hybrid simulations. In particular, the use of Smith Predictor was 

demonstrated in linear hybrid simulations. It was shown that an adaptive 

implementation of Smith Predictor may be suitable for compensation of delay in 

nonlinear simulations. 

The polynomial extrapolation method was also studied in Chapter  6 as the most 

common delay compensation method in displacement signal. In addition, alternative 

methods were proposed for delay compensation in hybrid simulations that apply 

corrections in force signal or use the numerical integration procedure to predict the 

delay-compensated displacements. 
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Numerical integration procedures for hybrid simulation were studied in Chapters  7 

and  8. In Chapter  7, the formulations for the most common numerical integration 

methods were presented, and the necessary modifications were applied for use in 

hybrid simulations. The most widely-used explicit and operator-splitting integration 

methods were also presented, and their stability and accuracy properties along with 

their benefits and shortcomings for hybrid simulation were studied. Following this 

chapter, improved numerical integration methods were introduced in Chapter  8. 

9.2 CONCLUSIONS 

In this section, a summary of the major contributions of this dissertation is 

presented. These include an online delay estimation procedure, an energy-based error 

indicator, delay compensation methods based on force correction and numerical 

integration, and two improved numerical integration methods for hybrid simulation. 

9.2.1 ONLINE DELAY ESTIMATION 

In hybrid simulations with significant stiffness variation, delay may change during 

the simulation, requiring variable compensation of delay. For this purpose, a procedure 

for online estimation of delay was proposed that compares the desired and measured 

displacement signals in the actuator coordinate system. This procedure only requires a 

learning gain, and does not need any a priori information about the experiment setup. 

Computer simulations and experiments demonstrated its fast convergence with reduced 

oscillations, compared to the existing online delay estimation procedures. 
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The proposed delay estimation procedure was used with all compensation methods 

studied herein to demonstrate its effectiveness with minimal dependency on the 

simulation properties. It was observed that the adjustment of learning gain may be 

necessary only when significant modifications are applied to the experimental test setup 

and instrumentation.  

9.2.2 DELAY COMPENSATION METHODS 

Servo-hydraulic actuator delay is one of the most influential experimental errors in 

real-time hybrid simulations. Since it is virtually impossible to completely eliminate the 

delay in the experimental setup, compensation procedures are essential for stable and 

accurate hybrid simulations. Hybrid simulation delay compensation procedures were 

considered in the command signal sent to the actuator and force measurement signal fed 

back to the numerical integration procedure (Chapter  6).  

As an alternative to polynomial extrapolation method, the use of the numerical 

integration procedure for prediction of command displacement was proposed. In 

particular, delay compensation using the finite difference kinematic expression 

assuming constant acceleration was successfully implemented in SDF and MDF 

experiments. Similar to the polynomial extrapolation method, this method can be used 

with any integration procedure by modifying the time step of the equation estimating 

the next actuator command displacement. 

Modifications of force measurements were also studied for compensation of delay 

and actuator tracking errors. It was observed that estimation of the forces corresponding 
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to the desired displacements using recent measurements is an effective compensation 

method. This procedure can be combined with the above-mentioned displacement 

extrapolation methods to correct the force signal for uncompensated delay and tracking 

errors. 

Command displacement delay compensation methods were compared by studying 

their phase and amplitude errors in prediction of a sinusoidal signal. Analytically, the 

use of numerical integration procedure demonstrated a comparable performance to that 

of polynomial extrapolation. However, in earthquake simulations, the proposed 

procedure was shown to reduce the high-frequency noises in the force measurements by 

producing a smoother command displacement signal than that of polynomial 

extrapolation. 

Numerical and experimental simulations were also carried out for the verification of 

the performance of different delay compensation methods. This study showed that 

command displacement compensation procedures are more effective in the 

compensation of relatively large amounts of delay, while both procedures showed 

acceptable results for compensation of moderate delays. 

9.2.3 ENERGY-BASED ERROR INDICATOR 

For assessment of the reliability of hybrid simulation results, an error indicator 

based on the overall energy balance was introduced in Chapter  5. This procedure 

expands the existing methods that only monitor the experimental errors by considering 

both experimental and numerical errors. The energy balance equation was modified to 
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include the effects of: (i) the discrepancies between the actual experimental energy 

dissipation (hysteretic behavior) and that conceived by the numerical simulation 

module, (ii) the improper kinematic relations between displacement, velocity, and 

acceleration, and (iii) the inexact satisfaction of the governing equation of motion. The 

hybrid simulation error indicators studied in this dissertation can be monitored during 

the experiments to ensure the proper functioning of test components and stop the 

simulation in case of excessive errors, possibly before damaging the experimental 

substructure. 

9.2.4 NUMERICAL INTEGRATION METHODS 

In Chapter  8, new integration procedures were proposed for hybrid simulation with 

improved stability and accuracy properties. First, the conventional operator-splitting 

method was slightly modified to provide a predictor displacement closer to the corrector 

displacement in each integration step. Then, two improved integration methods were 

introduced: an integration method with combined implicit or explicit steps, and a 

method for estimation of experimental tangent stiffness matrix for use in operator-

splitting method. 

9.2.4.1 Integration Method with Combined Implicit or Explicit Steps 

A new integration scheme with combined implicit or explicit step was proposed in 

Section  8.3 for real-time hybrid simulations. This method captures the instantaneous 

behavior of the experimental substructures by using the most recent measurements to 

satisfy an implicit formulation in a majority of the integration steps. Only measured 
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forces and displacements from experimental substructures are used in the iterative 

scheme, to avoid the direct application of iterative displacements that may damage the 

experimental substructures. By using the measurements in the force estimation 

procedure, this method does not require the initial experimental stiffness matrix, and 

better captures the actual behavior of experimental setup.  

The accurate estimation of forces corresponding to iterative displacements and 

convergence of the iterative scheme cannot be guaranteed due to system nonlinearities 

and experimental errors. To address this issue in the proposed integration method, the 

implicit integration scheme is slightly modified such that the states are updated similar 

to an explicit procedure. This modification enables the procedure to revert to an explicit 

or operator-splitting scheme in cases of convergence failure, to ensure the completion of 

the integration step and continuity of the simulation.  

It was shown that the proposed integration method is able to eliminate spurious 

excitation of high-frequency modes and use longer time steps compared to explicit 

methods. This approach was shown to produce stable and accurate simulations when 

the explicit integration methods fail. Smaller overall energy balance errors were also 

obtained compared to the conventional operator-splitting method in nonlinear 

simulations. In addition, this integration method reduces the required communications 

between numerical and experimental subsystems, as the exchange of command 

displacements and acquisition of measurements occur only once within each integration 

step. These features make the proposed integration algorithm appealing for testing 
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large, stiff or highly nonlinear systems, or applications in geographically distributed 

simulations. 

9.2.4.2 Estimation of Experimental Tangent Stiffness Matrix 

An improved numerical integration procedure was proposed in Section  8.4 based 

on the estimation of tangent stiffness matrix of the experimental substructure. In this 

approach, necessary stiffness parameters are first identified and updated during the 

simulation using the incremental measured force and displacement vectors. Only 

significant force-displacement pairs are used to update these parameters; steps with 

small displacement increments are ignored to ensure the fidelity of the results. The 

estimated stiffness parameters can then be used to determine a reduced experimental 

stiffness matrix through a simple coordinate system transformation. 

In order to use the measurements to update the stiffness matrix, a transformation 

was established to an intrinsic coordinate system, in which the stiffness matrix is 

diagonal. This transformation can be found by considering the geometry and element 

configuration of the experimental substructure, or by using the modal matrix of the 

tangent stiffness matrix for classical diagonalization. 

The estimated tangent stiffness matrix can replace the initial elastic experimental 

stiffness matrix for improved accuracy in a variety of integration procedures. In this 

study, a modified operator-splitting method was employed using the experimental 

tangent stiffness matrix. It was demonstrated that the use of the updated experimental 

stiffness matrix improves the overall accuracy of nonlinear hybrid simulations. This 
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improvement was demonstrated through the reduced energy balance error in 

experimental and numerical simulations. In numerical simulations, it was shown that 

the improved accuracy of the proposed approach is more evident in highly nonlinear 

experiments, where using the initial stiffness matrix may no longer be a reasonable 

approximation. 

Estimation of the experimental tangent stiffness matrix increases the computational 

cost of the proposed integration procedure. However, since most experimental 

substructures have only a few degrees of freedom, the additional computational burden 

is often tolerable using currently available processing tools. Further, in each step of this 

integration method, the interface forces and displacements are transferred once between 

analytical and experimental subsystems. Hence, this procedure has the minimum 

communication requirements and is effective in geographically-distributed experiments. 

In order to fully implement an iterative implicit integration scheme in hybrid 

simulation, the use of experimental tangent stiffness matrix was also studied in iterative 

schemes. In this method, it is attempted to include the possible changes of the tangent 

stiffness matrix between predictor and corrector displacements. For this purpose, 

polynomials fitted to the force and displacement measurements were used to avoid 

physical applications of iterative displacements. Using these polynomials, the force and 

displacement increments are updated in each iteration, and used to estimate a new 

tangent stiffness matrix. In the numerical simulations, this method did not show a 

significant advantage over the single-step operator-splitting integration scheme with 

tangent stiffness, primarily due to the noise in force measurements. However, this 
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method can be beneficial for simulations involving commercial finite element analysis 

software that use iterative implicit solution schemes. 

9.3 FUTURE DEVELOPMENTS 

Identification of seismic performance of new and complex structural components 

and devices at large scale is one of the most important features of hybrid simulation 

technique. This method becomes more appealing as novel structural systems and more 

sophisticated design procedures are developed. Examples of these components are semi-

active dampers and variable stiffness devices, isolation systems or sensitive 

nonstructural components. Performance-based design of structures is also an example of 

design procedures that require understanding of the nonlinear behavior of structures 

and components. Hybrid simulation methods also have a potential for accurate, safe, 

and low-cost evaluation of the behavior of structural components through structural 

collapse. 

In order to achieve the above-mentioned goals, robust numerical simulation 

procedures that are able to carry out nonlinear and large-deformation analyses parallel 

to experimental tests should be implemented in simulation models. The current 

numerical simulation models at SEESL only include basic procedures for conducting 

relatively simple numerical simulations. Further development of these models is a 

necessary step for effective and prevalent use of this test technique. In addition, to make 

hybrid simulation a usable procedure by researchers in different areas of civil 

engineering, software packages that have the above-mentioned capabilities and a user-
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friendly interface should be developed. This development may involve the use of 

software packages developed in other laboratories across the NEES. In this case, these 

packages should be customized for the test system at SEESL and their necessary 

subroutines should be produced. 

Further development of computer simulation models of hybrid simulation is also 

required for more robust numerical experiments that take into account nonlinearities in 

both experimental and numerical substructures. To extend their capabilities to highly 

nonlinear problems such as collapse analysis, more general material models (e.g. rate-

dependent or deteriorating models) should be considered in the development of the new 

numerical models of hybrid simulation. 

The present hybrid simulation experimental setup at SEESL has a limited ability for 

nonlinear simulations, primarily due to short actuator strokes. For this reason, often 

numerical models were used in this study to perform highly nonlinear simulations. 

Experimental verifications are necessary to better demonstrate the benefits and 

deficiencies of test procedures in highly nonlinear systems. For this purpose, setting up a 

more robust experimental setup is a valuable step in the verification of test procedures 

studied in this dissertation. 

Currently, mostly linear control systems are used for control of servo-hydraulic 

actuators. Although these systems are simple and often do not need a numerical model 

of the actuators (the plants), their performance is limited, and they need to be 

exclusively tuned for each experimental setup. Any improvement to the actuator control 

systems to reduce errors and achieve better tracking performance is greatly valuable for 



Summary and Conclusions  
  
  

 

 249

hybrid simulations. As a novel family of controllers, neurocontrollers have recently 

received considerable attention in different engineering areas, including active control of 

structures. It has already been shown that these controllers are able to handle delay and 

measurement noise better than ordinary feedforward controllers. In order to take 

advantage of their promising features, utilization of these novel controllers for servo-

hydraulic actuators should be studied in hybrid simulations. 

In this study, for mitigation of actuator undershooting in displacement reversals, a 

variable gain was applied to the command displacements. The gain was calculated 

online using the difference between peak command and measured displacements, with 

respect to the actuator equilibrium point (zero displacement). This procedure, however, 

was only developed in simulations with SDF experimental substructures. The 

interaction of actuators in MDF experimental substructures makes the determination of 

actuator equilibrium point difficult, leading to an oscillatory command gain. More work 

is needed in the extension of this compensation method to MDF experimental 

substructures. Utilization of numerical models of experimental setup that are updated 

during the simulation may help better calculate the zero displacement and command 

displacement gain in MDF systems. 

The hybrid simulation error monitor and energy error indicator presented in 

Chapter  5, provide information about the amount of unbalanced energy in hybrid 

simulations. This unbalanced energy may be used as a feedback for correction or 

compensation of simulation signals to improve energy balance of the simulation system. 

As an example, it may be possible to modify the damping ratio of the test structure, or 
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select the integration parameters to alter the numerical energy dissipation towards a 

better energy balance. Implementation of this technique requires further study of the 

energy errors and their relations with structural properties and simulation parameters. 

For an integration procedure, the importance of a numerical model of the 

experimental substructure is that it eliminates the need for iterations, or physical 

application of iterative displacements on experimental substructures. The model-based 

integration method introduced in Section  8.4 was based on this concept. However, since 

it only uses a stiffness matrix that is updated during the simulation, this method is more 

suitable for essentially strain-dependent experimental substructures. For further 

extension of this procedure, more general models of the experimental substructure and 

setup should be used that allow for accurate testing of highly rate-dependent 

experimental substructures. In addition, efficient procedures should be established to 

accurately update these numerical models. For example, a well adapted Smith Predictor 

appears to have promising features for use in a model-based integration method. An 

updated model of experimental substructure can also be used in compensation of delay 

and correction of feedback forces for actuator tracking errors. More work is required for 

the development of these models, their adaptation laws and selection of optimum 

learning gains for use in hybrid simulations of MDF systems. 
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