Assignment Number 6

1) We are going to construct two-dimensional element for C^1 Problem. To reserve the continuity, we must guarantee that ϕ and ϕ_n are continuous along the element boundary. Describe on the continuity requirements for the following cases:

- a) Rectangular element with sides parallel to the global axis, what nodal values need to be considered as DOF to assure C^1 continuity?
- b) Answer (a) for rectangular element in general form
- c) Answer (a) for non-rectangular element such as triangular element
- d) If we specify ϕ , ϕ_x and ϕ_y at the corner node of a rectangular element sides parallel to the global axis, do we get ϕ_{xy} to be unique at the corner?

2) You wish to analyze a clamped plate for plate bending action under a linearly varying temperature change across the thickness, i.e. $\Delta T(x,y,z) = mz$ where m is a constant. Making use of the finite element notes on plate bending , derive the consistent load vector due to this temperature change. Show all steps clearly and calculate only the first term of the load vector. Use nonconforming plate bending element.

