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1- The Concept of an Element 
 
1.1- The Finite Element Method 
 

Physical visualization of a body or structure as an assemblage of 
building block-like elements, interconnected at the nodal points. 

 
 

1) Majority of the problems in continuum mechanics are too 
complicated to handle exactly. 

2) F.E. method is an approximate method to solve a continuum problem 
3) F.E. method is subdivision of a continuum into a finite number of 

parts (called finite elements). The behavior of each finite part is 
specified by a finite number of parameters (also called generalized 
coordinates) 

4) The solution of the complete system as an assembly of its elements 
follow precisely the same rules as those applicable to standard 
discrete problems e.g. Matrix structural analysis etc. 

5) Question? Is the solution obtained near the exact solution of the 
problem? There is a lot more involved i.e. the mathematical theory 
behind the F.E. method, before we can answer this question. 

 
 
Continuous → Discrete 
 
 
 
Interpretation: Body is not subdivided into separate parts, instead the 
continuum is zoned into regions by imaginary lines (2D bodies) or 
imaginary planes (3D bodies) inscribed on the body. No physical separation 
is envisaged at these lines or planes. 
 
We apply variational procedures to each element (region). We are interested 
in behavior of element. We need to define the element behavior in term of 
the elements geometry, material properties. 
We then assemble each element into the assembled structure. 
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1.2- Boundary Value Problem 
 
Problem governed by differential equation, in which values of state 
variables( or their normal derivatives)are given on the boundary. 
Solution at a general interior point depends on the data at every point of the 
boundary. A change in only one boundary value affects the complete 
solution. 
Initial Value Problem 

Time as an independent variable, solution depends on initial 
conditions and boundary condition. 

 
1.3- Schematic Picture of the Finite Element Method  

(Analysis of discrete systems) 
 
Consider a complicated boundary value problem 
 

1) In a continuum, we have an infinite number of unknown 
System Idealization 

2) To get finite number of unknowns, we divide the body into a number 
of sub domains (elements) with nodes at corners or along the element 
edges with finite degrees of freedom. 

3) Element equilibrium, the equilibrium requirement of each element is 
established in terms of state variables. 

4) Element assemblage, the element interconnection requirements are 
invoked to establish a set of simultaneous equations for unknown 
state variable. 

5) Solution of response, the simultaneous equations are solved. 
 

 

P1 

P3 

P2 
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Notes to be considered: 
 

1) Selection of unknown state variables that characterize the response of 
the system 

2) Identification of elements 
 
There is some choice selection of state variables. 
 
 
1.4- Various Element Shapes 
 
Needs engineering judgment (geometry, no. of independent coordinates can 
be 2 oe 3 dimensional) 
1-D ele. Idealized by line 
2-D ele.  Plane stress, plane strain and plate bending element can be 
triangular, rectangular, quadrilateral, axysymmetric 
3-D ele. Tetrahedron, Rectangular prism, arbitrary hexahedron 
Mixed assemblage e.g. beam elem. And plate bend. 
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2- Displacement Models  
 
F.E. based on approximation of state variables if state variables is 
displacement, then the function that approximate displacement for each 
element is called displacement model or displacement function or 
displacement field. 
Displacement functions are polynomials 

Reasons:  1. Easy for mathematical applications 
(differentiation& integration) 
2. Arbitrary order permits a recognizable 
approximation 
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Number of terms in u(x) determines shape of displacement model 
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Linear u(x)=a+bx 

Quadratic 
u(x)=a+bx+cx2 

Constant u(x)=a 

Region of 
element

 
The greater no. of terms, then closer to exact solution 
If exact solution is polynomial of order m, then terms in excess of m do not 
improve the representation.  
 
Generalized coordinates displacement model is elementary form of models 
for the F.E. method. There is an alternative representation of polynomial 
displacement field that facilitates the formulation of the basic equations for 
the elements. 
 
For 2-D displacement model 
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Same can be done for 3-D (u,v,w) 
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2.1-  Convergence Criteria 
The numerical solution must converge or tend to the exact solution of the 
problem. 
 
Criteria 

 

 
 
a
 
b

 

 

Complete elements 
 
a) Displacement models must include the rigid body displacements of

the element (strain energy=0) 
   Beam element:  w=constant (translation)  
      w=bx (rotation) 
b) Displacement models must include the constant strain state 
   Beam element: w=a+bx+cx2 

    (strain=curvature=d2w/dx2=2c=constant strain) 
big element getting smaller and smaller till strains in
each element approach constant values
 
D
T
n
I
u

Compatible (Conforming elements) 
 
c) Certain displacement continuity (HISTORICALLY controversial) 
 Displacement continuity is sufficient conditions for monotonic
convergence of the total potential energy 
 General complete elements have been successfully used.  
Disadvantage of nonconforming element is that we no longer know in
advance that the stiffness will be an upper bound (less stiff or more
flexible) 
In general continuity for the displacement and its derivatives to the
order (m-1) where m is the highest derivatives in the potential energy 
functional J (π) is required for convergence. 
For C1continuity instead of wx and wy and wn only wn is sufficient.
) spatial isotropy when dealing with 2D or 3D  
aking counterpart terms in Pascal triangle (Khayyam) For example x 2 y 
d y2 x must be included 

t helps fast convergence, without it convergence would / or might occur 
t slowly. 
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Cubic displacement with 8 terms:  
    1) All constant + linear+quadratic + x3 and y3 

    2) All constant + linear+quadratic + x2y and xy2

 
 
 

For the finite element method, the displacement formulation provides an 
upper bound to the true stiffness of the structure or the stiffness coefficients 
for a given displacement model have magnitudes higher than those for the 
exact solution (deforms less than the actual structure) 
As F.E. division is made finer the approximate displacement solution will 
converge to the exact solution from below, we obtain lower bound to the 
solution 
Total potential energy approaches from top to the actual TPE (also upper 
bound)  
 
 
For selection of polynomial total number of generalized coordinates for an 
element must be equal to or greater than the number of joint or external 
degrees of freedom of the element (usually same number of generalized 
coordinates as the dof). 
It is possible to utilize an excess of GC to improve the element stiffness 
matrix (less stiff or more flexible) 
These excess coordinates associated with internal nodes and improve the 
approximation of equilibrium within the element. However, they do not 
improve interelement equilibrium. 
More than a few extra coordinates are rarely justified. 
The more additional DOF, more flexible becomes the element stiffness 
But trade off, increasing complex formulation for individual element 
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2.2-  Nodal Degrees of Freedom  
 
Definition: 
Nodal disp.s, rotations and /or strains necessary to specify completely the 
deformation of the finite element.  
Min no. of DOF for a given problem is determined by the completeness 
requirements for convergence, the requirement of geometric isotropy, and 
necessity of an adequate representation of the terms in the potential energy 
function. 
 
Additional DOF beyond minimum number may be included for any element 
by adding secondary external nodes or by specifying as DOF higher order 
derivatives of displacement at the primary nodes. 
Element with additional DOF are called higher order elements. 
 
 
Relation of DOF and Generalized coordinates 
 

 
{ }

{ }

{ } [ ]

{ } { } [ ]{ }δδφ

δ

φ
φ
φ
φ

δ

φ

NTu

matrixtiontransformaTTA

A

node
node
node
node

nodeu
nodeu
nodeu
nodeu

Au

x

x

x

x
N

==

==

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

=

−

−

×

1

1

1

]][[

][}{

}{

)2(
)2(
)1(
)1(

)2(
)2(
)1(
)1(

}]{[

 

 
 
"Express the displacement at any point within the element in terms of the 
element DOF vector {δ}" 
N is total no. of DOF per element 
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Example 1. 
Beam: transverse displacement w 
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Strain is proportional to the second derivation of w 
Minimum order of w is quadratic 
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completeness (no need for geometric isotropy) 
 
DOF:  w1 and w2 : we need one more DOF 
Introduce two more DOF wx1 (θ1 ) and wx2 (θ2 ) 
Modify w 
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3- Beam Bending Finite Element 
  
3.1- Derivation of Stiffness Matrix 
Consider an element of length l as shown,  
Assume uniform EI and designate ends 1 and 2 as nodes.  
 
 
 

 
Assume the displacement w1 and w2 and θ1 and θ2 as the generalized 
displacements i.e. 4 DOF. 
To follow the displacement approach, assume an approximate 
displacement distribution within the element by a cubic polynomial in x: 
   

32 dxcxbxaw +++=  
 
The cubic has four constants and we have four degrees of freedom, i.e. 
four constants can be associated with four generalized coordinates. We 
know that any function can be approximately represented by a truncated 
Taylor's series. 
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Now find a, b, c and d in w in terms of w1, w2 , θ1 and θ2. 
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Define polynomial coefficient vector (also called generalized parameter) 
as: 

][}{ dcbaA =  
and a generalized coordinate vector (or displacement vector for the beam 
problem)as: 

W1 W2

θ1 θ2

1 2
l=length 
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[T]=Transformation matrix, is evaluated by simply substituting the co-
ordinate values into w(x) or θ(x) that correspond to w1, w2 , θ1 and θ2. 
We can numerically invert [T] to get {A}=[T]-1{δe} 
This can be done because we know the numerical value of the 
coordinates. 
Next step is to evaluate potential energy for w(x). 
Note : in finite element method we are not interested in satisfying the 
differential equation exactly, only interested in energy or work done) 
 
Rewrite displacement function as: 
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Now the strain energy within the element is given by: 
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 are the components of the stiffness matrix with respect to polynomial 
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displacement {δe}, 
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[ ]ek  is the required stiffness matrix with respect to the generalized 
displacement {δe}. 
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Note: We don't know yet [ ]ek   is stiffness matrix but from the form of the Ue 
we can get a sense. 
 

3.2- Consistent Load Vector 
 

Loads are lumped at the discrete nodes of the element assemblage using 
virtual work principle. 
 
Potential energy of the load: 
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Transformation to {δe}. 
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is the consistent load vector for the generalized displacement {δe}. }{ ep

 
Computing Steps: 

1) program the transformation matrix [T] and invert numerically 
2) Program the untransformed stiffness matrix  and the load vector 
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3) Transform (pre and post multiply with ( )TT 1][ −  and  respectively) 
to [k

1][ −T
e] and [pe] 

Comments: obviously the size of [T] depend s on the degree of polynomial. 
Therefore for higher degree polynomials, the larger [T] inverse process 
become very time consuming on computer. 
There is another procedure which yields [k e] in the final form and hence 
saves a number of matrix multiplications. 
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3.3- Alternative Approach to Derive the Stiffness Matrix 
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four equations for four unknowns a, b, c and d, solving: 
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substituting back into the cubic equation w yields: 
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using ξ=x/l (nondimensional coordinate system), we can express the 
displacement function for the beam element as: 
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where φi 's are often called interpolation functions or shape functions. 
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Graphical Representation: 
 

 
 
 
There are the possible configurations one wants to combine into the true 

shapes. 
This method of solving for constants in the polynomial in terms of nodal 

degrees of freedom becomes difficult for higher degree polynomial 
approximations. 
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Now the same procedure can be used as before. 
Note: Stiffness coefficient can also be computed in a more convenient 
way(some times for lower order polynomials): 
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3.4- Potential Energy Theorem for Finite Element Discretization 
 
For an element : 
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We know the stiffness matrix and load vector for each element. 
Then when the elements are put together, we sum these energies to get 
totals of energy. 
We define the nodal displacements vector for the entire assemblage, {X}N×1 
where N is structure total degrees of freedom and each element has n dof. 
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Where [k], {X} and {p} are stiffness matrix, displacement vector, and load 
vector for the global or total problem. 
δπ=0 (first variation set equal to zero)or extremum. 

 20



{ }

{ }

0}{}]{[

:sin
0}{][}{

}{

0}{}{][}{

}]{[}{}]{[}{
:}]{[}{

0}{}{}]{[}{}]{[}{
2
1

=−

=−

=−=

=

=−+=

pXK

gtranspoor
pKX

arbitraryisX

XpKX

XKXXKX
ittransposethenscalarisXKX

XpXKXXKX

TT

TT

TT

T

TTT

δ

δδπ

δδ

δ

δδδδπ

 
Take second variation to show that π, infact is minimum: 
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But {δX} is arbitrary variation of {X} and if [k] is a positive definite matrix 
(which it is) then >0, therefore π is a minimum. }]{[}{ XKX T δδ
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This is true when π is minimum in a discrete problem. 
 
4- Stiffness Matrix and Load Vector Assembling 
 
Nodal compatibility is used as the basis for the assemblage of the individual 
elements. Element adjacent to a particular node must have the same 
generalized displacement at the node such as displacement, translation and 
may be strain, curvature, and other derivatives of translations with respect 
to the spatial coordinates. The imposition of nodal compatibility represents 
the construction of the assemblage  by rigidly joining the pieces of elements 
together at certain preselected joining points. Since the displacements are 
matched at the nodes, the loads and stiffness are added at these locations.  
 
We applied the variational principle to the element. We will now apply it to 
the assemblage to obtain the assembly rules.  
 
Assume element has n dof and structure has N dof. And we know the 
element stiffness matrix and load vector (including all the loadings on the 
body) for each elements. 
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Thus  and  have the effects of each individual element 

stiffness matrix and consistent load vector in the global matrices. These are 
the equilibrium equations for the assemblage. 

][
1

e
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nele

n
K∑

=

Te
GP }{∑

 
The equilibrium equation is results of joining of element together in which: 
a)sum of the generalized forces at the nodes and equating to external loads 
(equilibrium) 
 b) equate of degrees of freedom at the nodes (compatibility) 
It must be noted that equilibrium and compatibility are satisfied within the 
element and by doing it we satisfy them at the nodes. We must be worry 
only about the continuity between the elements.  
 
 
Example:  Direct Stiffness Method for the Assemblage 
 
Two dimensional assemblage to illustrate direct stiffness method 
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Typical element stiff nesses and loads with only selected nonzero entries 
shown 
 

 25



18

.

6

5

8888

66656261

56555251

4645

3635

1811

.

.

.

.

.

.......
........
....
....
......
......
........

......

8
7
6
5
4
3
2
1

8
7

10
9
4
3
2
1

87654321
871094321

1.

××
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

q
q

k

kkkk
kkkk
kk
kk

kk
local
global

vectorLoadnoelementformatrixStiffness

 
 
 
 
 

16

2

1

661111

1111

26252221

16151211

.

.

.

.

....

....

......

......
..
..

6
5
4
3
2
1

16
15
12
11
10
9

654321
16151211109

4.

××
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
b
b

aa
aa

aaaa
aaaa

local
global

vectorLoadnoelementformatrixStiffness

 

 
Assemblage stiffness matrix and load vector showing the locations where 
entries are added from components of elements number 4 and 2 
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If we have external loads at nodes, we again add them to the load vector. 
We usually find the components on the global directions of the dof. 
Subroutine for setup 
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LJ  is the address for the local stiffness matrix. Global stiffness matrix is 
18×18 while the local stiffness matrix is 8×8 for the 4-node elements and 
6×6 for 3-node element. 
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5- Boundary conditions 
 
So far we have not considered boundary conditions at all. A problem in 
solid mechanics is not completely specified unless boundary conditions are 
prescribed. Without imposition of boundary conditions, the element and 
total stiffness matrices are singular. It means that a loaded body or structure 
is free to experience unlimited rigid body motion unless some supports or 
kinematic constraints are imposed that will ensure the equilibrium of the 
loads. These constraints are the boundary conditions. 
 
Types of Boundary Conditions 
From the variational-method point of view, there are two basic types of 
boundary conditions 

1. Geometric (essential) 
2. Natural (force) 

One of the principal advantages of the F.E. method is that we need specify 
only the geometric bc’s; the natural bc’s are implicitly satisfied in the 
solution procedures. 
Traction boundary conditions are incorporated into the load vector. 
 
In the displacement method of F.E. analysis, we can further categorize 
geometric boundary conditions as being 

1. Homogeneous  
2. Non-homogeneous((normal and skewed) 

Homogeneous conditions occur at locations where completely constrained 
against movement (displacement=0). 
Conversely, finite non zero values may be specified at some points; these 
are non-homogeneous bc’s (e.g. support settlement). The distinction 
between normal and skewed conditions arises at locations on the boundary 
at which only some components of the displacement are restrained. If the 
restrained components are parallel to the global coordinates, the conditions 
are normal, otherwise they are skewed. 
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Skewed kinematic constraint 

 
 
5.1- Essential Homogeneous Boundary Condition 
 
5.1.1- First Approach 
 
We delete all the rows and columns of the force deformation equations with 
the essential bc’s. 
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5.1.2- Second Approach 
In the second approach, we do not number those essential bc’s. Then where 
ever we have essential bc’s we ignore then for the purpose of assembling. 
We give essential bc’s 0 to show that they are not used in the assembled 
matrix. 
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6- Storage of the Total Stiffness Matrix 
 
6.1- Bandwidth Method 
 
Symmetric "usually thinly populated or sparse" 
Bandwidth=2B-1 
Half bandwidth=B 

 
 
 
Economy of core storage is to only store N×B portion of the matrix (upper 
part) 
 
B=LBAND+1 
B=(D+1) f 
D=maximum largest difference occurring for all elements of the assemblage 
f=number of degree of freedom at each node 
 
 
 
 
 
 
 
 

B

2B-1 

ZEROS

ZEROS 

Stifness matrix is N×N 
B

Bandwidth=2B-1 

Half Bandwidth=B 

B
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For LJR≥LJC A(L)=A(L)+ke(I,J) 
   L=B*(LJC-1)+(LJR-LJC)+1 
 
For LJR<LJC A(L)=A(L)+ke(I,J) 
   L=B*(LJR-1)+(LJC-LJR)+1 
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For extremely large systems of equations even this method of storage may 
be inadequate. Because B is a function of D which is the maximum of the 
largest difference in all elements of the assemblage. 
 
6.2- Skyline Method 

 
Sample problem 
Write an algorithm for obtaining the address of each member by skyline 
method. (Use the algorithm from FEB.For). 
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7- Transformation to Global Coordinates 
Local coordinate system is defined for particular element, where as global 
coordinate system refers to the entire assemblage. 
It is usually possible to adopt local displacement directions that coincide 
with the global coordinates. 

v3
Y v4 u3

u4 θ1 θ2

v1 w1 w2
u1 v2

u2

{δe
1}={ u1  v1  u2  v2  u3  v3  u4  v4}T =

X

However for some types of problems, we 
the analysis of individual elements with a 
has directions different from those in th
before we can construct the equation for th
our element stiffness and load to a comm
coordinate system. 
Say l refer to local and g to global. Re
element displacements at a node of an elem

}]{[}{ gl utu =  
we may construct the transformation for th

 

{δe
1}={ w1  θ1  w2  θ2} T ={δe

g} 
{δe
g} 

 
may find it expedient to perform 
local displacement system which 
e global system. In such cases, 
e assemblage, we must transform 
on frame of reference, the global 

lation between local and global 
ent: 

e nodal displacements: 
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Number of matrices [t] in [T] equals the number of element nodes. 
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Notes: stiffness matrix and load vector are obtained using local coordinate 
system and then transformed to the global coordinate system. 
 
After solution we may want calculate the local displacement or stresses in 
which the same transformation matrix can be used. 
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8- Modification of the Equilibrium Equations for Skewed Boundary 
Conditions 
 
We need to transform the coordinates of the nodes where skewed bc's are 
specified into normal constraints. This is analogous to the transformation 
from local to global coordinates. 
We can write the transformation for displacement at the ith node as:  

}]{[}{ '
iii rsr =  

][ is  is a simple point transformation involving the direction cosines which 
relate the global and skewed systems (same as [t]). 
We can now write the transformation for the entire nodal displacement 
vector as: 
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Number of submatrices on diagonal of [S] is equal to the number of nodes 
in the assemblage. The order of [si] is equal to the number of displacement 
dof at each node.  
 
The resulting transformation for the stiffness, loads are: 

}{][}{

]][[][][
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SKSk

T

T
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=

 

The procedure to transform skewed boundaries into normal boundaries, as 
outlined above, can be performed before the individual element stiffness 
and loads are assembled. In this case, the above equation apply for element 
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stiffness matrix and load vector rather than total stiffness matrix and load 
vector and the order of [S] is n rather than N. 
Now, All the bc's are normal or they have been transformed to a skewed 
system in which they may be treated as normal. Tre results for displacement 
at the skewed bc's may want to be presented in the global direction in which 
can be transformed using the same transformation matrix.  
 
9- Prescribed Geometric Boundary Conditions 
Partitioning the global equilibrium equation results in: 
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where {r1} is the vector of unconstrained or free displacement, and {r2} is 
the vector of specified displacements. 

 

Here [k11] is no longer singular. The reactions at the constraint displacement 
can be computed as: 

}]{[}{}]{[ 2121111 rkRrk −=

 
 }]{[}{][}{ 2221122 rkrkR T +=
 

 
In the case where homogeneous bc's, {r2} is null, the procedure is 
considerably simplified. 
 
A more practical way  of forming the modified equilibrium equation is to 
arrange the equations as below: 
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The above can be done without reordering of the equations. The 
contribution to the subvector }]{[}{ 2121 rkR − are first constructed for each 
nonhomogeneous condition. Then the row and column of [k] corresponding 
to that condition are made null with the exception of the diagonal element, 
which is made unity. Finally, the prescribed value of the displacement is 
inserted in the load vector. 
For a specified displacement rj occurring at the jth dof, the above process is 
summarized as: 
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These operations ensures that the equilibrium equations remain 
symmetrical. 
 
10- Accommodation of Elastic Supports in the Total Stiffness Matrix 
Elastic supports cab be readily accommodated by the FE method. They do 
not introduce a different type of bc’s into the analysis. The deformation 
portion of such support is included as finite elements in the structure or 
body that discretized. The conventional geometric boundary conditions are 
then applied at the point where elastic supports are grounded. In practice, 
we do not add a new equation for these grounding points; rather the 
appropriate matrix element on the principal diagonal of the stiffness matrix 
is merely modified by adding the support stiffness to it. 
 
11- Solution of the Overall Problem 
 
Steps we have taken so far are as followings: 

1. we have used potential energy theorem for each element 
2. Obtained displacement field, calculated πe=Ue-We 
3. joined each element together, got  an approximate of the total 

potential energy in a structure (is equivalent of satisfying equilibrium 
and compatibility at the nodes) 

4. minimized the TPE to get an approximate solution of the problem 
5. applied the boundary conditions; (only need to satisfy essential bc's; 

i.e. displacement and slopes and …. We do not have to satisfy the 
natural bc's for potential energy theorem) 

We are ready to sole the equations for the unknown displacements. Once we 
obtained the displacements, we can proceed to evaluate whichever element 
stresses and or strains need to complete the analysis. It is important to know 
that the element stresses do not satisfy the equilibrium conditions for the 
individual element. In applying the principle of minimum potential energy, 
we approximate the overall equilibrium of the body, but do not provide for 
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inter element equilibrium. Nevertheless, as our approximation to the total 
potential energy and to the displacement solution is improved either by 
using refined elements or by reducing the mesh, we also obtain improved 
results for the element stress components. 
Because of the approximation involved, it is logical to use some average 
value of the stress(or strain) as representative for the element at the centroid 
of the element. 
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