Chapter 2

The Theory of the Finite
Element Method

Introduction and some Basic Concepts
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1- The Concept of an Element
1.1- The Finite Element Method

Physical visualization of a body or structure as an assemblage of
building block-like elements, interconnected at the nodal points.

1) Majority of the problems in continuum mechanics are too
complicated to handle exactly.

2) F.E. method is an approximate method to solve a continuum problem

3) F.E. method is subdivision of a continuum into a finite number of
parts (called finite elements). The behavior of each finite part is
specified by a finite number of parameters (also called generalized
coordinates)

4) The solution of the complete system as an assembly of its elements
follow precisely the same rules as those applicable to standard
discrete problems e.g. Matrix structural analysis etc.

5) Question? Is the solution obtained near the exact solution of the
problem? There is a lot more involved i.e. the mathematical theory
behind the F.E. method, before we can answer this question.

Continuous — Discrete

Interpretation: Body is not subdivided into separate parts, instead the
continuum is zoned into regions by imaginary lines (2D bodies) or
imaginary planes (3D bodies) inscribed on the body. No physical separation
1s envisaged at these lines or planes.

We apply variational procedures to each element (region). We are interested
in behavior of element. We need to define the element behavior in term of
the elements geometry, material properties.

We then assemble each element into the assembled structure.



1.2- Boundary Value Problem

Problem governed by differential equation, in which values of state
variables( or their normal derivatives)are given on the boundary.
Solution at a general interior point depends on the data at every point of the
boundary. A change in only one boundary value affects the complete
solution.
Initial Value Problem
Time as an independent variable, solution depends on initial
conditions and boundary condition.

1.3- Schematic Picture of the Finite Element Method
(Analysis of discrete systems)

Consider a complicated boundary value problem

1) In a continuum, we have an infinite number of unknown
System Idealization

2) To get finite number of unknowns, we divide the body into a number
of sub domains (elements) with nodes at corners or along the element
edges with finite degrees of freedom.

3) Element equilibrium, the equilibrium requirement of each element is
established in terms of state variables.

4) Element assemblage, the element interconnection requirements are
invoked to establish a set of simultaneous equations for unknown
state variable.

5) Solution of response, the simultaneous equations are solved.

P1

P3

P2



Notes to be considered:

1) Selection of unknown state variables that characterize the response of
the system
2) Identification of elements

There 1s some choice selection of state variables.

1.4- Various Element Shapes

Needs engineering judgment (geometry, no. of independent coordinates can
be 2 oe 3 dimensional)

1-D ele. Idealized by line

2-D ele. Plane stress, plane strain and plate bending element can be
triangular, rectangular, quadrilateral, axysymmetric

3-D ele. Tetrahedron, Rectangular prism, arbitrary hexahedron

Mixed assemblage e.g. beam elem. And plate bend.



2- Displacement Models

F.E. based on approximation of state variables if state variables is
displacement, then the function that approximate displacement for each
element 1s called displacement model or displacement function or
displacement field.
Displacement functions are polynomials
Reasons: 1. Easy for mathematical applications
(differentiation& integration)
2. Arbitrary order permits a recognizable
approximation

UX) =, +a, X+ a,X° +....+a

a;'s are generalized coordinates

Number of terms in u(x) determines shape of displacement model
Magnitude of generalized coordinates governs the amplitude

u(x) = {g}" {x}
=1 x x> ... x"]

{X}T:[al a, . .. ]



A Linear u(x)=a+bx

Quadratic
u( x)=a+bx+cx2

Constant u(x)=a

> g

Region of
element

The greater no. of terms, then closer to exact solution

If exact solution is polynomial of order m, then terms in excess of m do not
improve the representation.

Generalized coordinates displacement model is elementary form of models
for the F.E. method. There is an alternative representation of polynomial
displacement field that facilitates the formulation of the basic equations for
the elements.

For 2-D displacement model

UX,Y) =, +a,X+a, Y +a, X +a Xy +ay ...+ a,y

v(X,y)=a,, +ta

m=

u displacement in x and v displacement in y directions

m+2

2 2
X+am+3y+am+4x +am+5xy+am+6y """ +052my



2.1- Convergence Criteria
The numerical solution must converge or tend to the exact solution of the
problem.

Criteria

Complete elements

a) Displacement models must include the rigid body displacements of
the element (strain energy=0)
Beam element: w=constant (translation)
w=Dbx (rotation)
b) Displacement models must include the constant strain state
Beam element: w=a+bx-+cx’
(strain=curvature=d*w/dx’=2c=constant strain)
big element getting smaller and smaller till strains in
each element approach constant values

Compatible (Conforming elements)

c¢) Certain displacement continuity (HISTORICALLY controversial)
Displacement continuity 1is sufficient conditions for monotonic
convergence of the total potential energy

General complete elements have been successfully used.

Disadvantage of nonconforming element is that we no longer know in
advance that the stiffness will be an upper bound (less stiff or more
flexible)

In general continuity for the displacement and its derivatives to the
order (m-1) where m is the highest derivatives in the potential energy
functional J () is required for convergence.

For C'continuity instead of w, and w, and w, only w, is sufficient.

D) spatial isotropy when dealing with 2D or 3D

Taking counterpart terms in Pascal triangle (Khayyam) For example x * y
and y” x must be included

It helps fast convergence, without it convergence would / or might occur
but slowly.




1 Constant term

X X Linear terms
X xy oy’ quadratic terms
X Xy oxy' oy’ Cubic terms

y quartic terms

x> x'y x’y* x*y' xy* y’ quinticterms

Cubic displacement with 8 terms:
1) All constant + linear+quadratic + x° and y’
2) All constant + linear+quadratic + x’y and xy’

For the finite element method, the displacement formulation provides an
upper bound to the true stiffness of the structure or the stiffness coefficients
for a given displacement model have magnitudes higher than those for the
exact solution (deforms less than the actual structure)

As F.E. division is made finer the approximate displacement solution will
converge to the exact solution from below, we obtain lower bound to the
solution

Total potential energy approaches from top to the actual TPE (also upper
bound)

For selection of polynomial total number of generalized coordinates for an
element must be equal to or greater than the number of joint or external
degrees of freedom of the element (usually same number of generalized
coordinates as the dof).

It is possible to utilize an excess of GC to improve the element stiffness
matrix (less stiff or more flexible)

These excess coordinates associated with internal nodes and improve the
approximation of equilibrium within the element. However, they do not
improve interelement equilibrium.

More than a few extra coordinates are rarely justified.

The more additional DOF, more flexible becomes the element stiffness

But trade off, increasing complex formulation for individual element



2.2- Nodal Degrees of Freedom

Definition:

Nodal disp.s, rotations and /or strains necessary to specify completely the
deformation of the finite element.

Min no. of DOF for a given problem is determined by the completeness
requirements for convergence, the requirement of geometric isotropy, and
necessity of an adequate representation of the terms in the potential energy
function.

Additional DOF beyond minimum number may be included for any element
by adding secondary external nodes or by specifying as DOF higher order
derivatives of displacement at the primary nodes.

Element with additional DOF are called higher order elements.

Relation of DOF and Generalized coordinates

ul=[g1{A

u(nodel) ¢(nodel)
_ Juy(nodel) | | ¢, (nodel)
Oha = u(node2) [ | ¢(node2) A

u, (node2) ¢, (node2)
(At =[T]"{s}  [T]=transformation matrix

Ui =181 {5} = [NJs}

"Express the displacement at any point within the element in terms of the
element DOF vector {o}"
N is total no. of DOF per element
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Example 1.
Beam: transverse displacement w
u(x,z) =—-zw

X

e(X,z)=u, =—-zw

XX

need disp. Model for w

Strain is proportional to the second derivation of w
Minimum order of w is quadratic

W = a+bx +cx’

a=rigid body translation

b =rigid body rotation

c = constant bending strain(constant curvature)
inter element continuity is also satisfied
completeness (no need for geometric isotropy)

DOF: w; and w, : we need one more DOF
Introduce two more DOF wy; (0, ) and wy, (0, )
Modify w

w = a+bx+cx® +dx’

o o T o v

—_— = O
= o o
o o
—————— o0 0o T o

w(x = 0) wl 1
_jo(x=0)| o1 |0 B
)= wix=0[ Jw2[ |1 =[THA
a(x=1) 62| |0 21 317



3- Beam Bending Finite Element

3.1- Derivation of Stiffness Matrix
Consider an element of length 1 as shown,
Assume uniform EI and designate ends 1 and 2 as nodes.

P(x)

W2

—

W1

Assume the displacement w; and w, and 0; and 6, as the generalized
displacements i.e. 4 DOF.

To follow the displacement approach, assume an approximate
displacement distribution within the element by a cubic polynomial in x:

w=a+bx+cx® +dx’
The cubic has four constants and we have four degrees of freedom, i.e.
four constants can be associated with four generalized coordinates. We

know that any function can be approximately represented by a truncated
Taylor's series.

12



W1 W2
0, 0,

1« »2
|I=length

Now find a, b, ¢ and d in w in terms of w;, w, , 0, and 6,.

w0)=a=w,
00)= MO _p_g

dx
w(lh)y=a+bl+cl® +dI° =w,

.9(|):¥:b+2c|+3d|2 _0,
X

Define polynomial coefficient vector (also called generalized parameter)
as:

{Al=[a b c d]

and a generalized coordinate vector (or displacement vector for the beam
problem)as:

13



{5e}T:[W1 ‘91 W, 62]

w) [1 0 0 o0]fa
(%) = 6 |01 0 o|fb
w,[ |11 1P P |c
6,] [0 1 21 31%|[d

{0°} =[THA}

[T]=Transformation matrix, is evaluated by simply substituting the co-
ordinate values into w(x) or 0(x) that correspond to w;, w; , 0, and 0,.

We can numerically invert [T] to get {A}=[T]" {5}

This can be done because we know the numerical value of the
coordinates.

Next step is to evaluate potential energy for w(x).

Note : in finite element method we are not interested in satisfying the
differential equation exactly, only interested in energy or work done)

Rewrite displacement function as:

4
w(x) =a+bx+cx? +dx’ => ax"where m =i-1
i=1

m, in vector form {M} =[0 1 2 3]

2y 4
d'w_ > am,(m, —1)x™

Now the strain energy within the element is given by:

14



El ¢ d>w.,

El ¢ & Lo o
U =— dx =— am (m —1)x™ a.m.(m;, —Dx™ )dx
ezl(dxg 2!(2..(.) ><;,,<,> )
4 4 |
ue=% > a.a;mm, (m, —(m; ~[ x™")dx
i=1 j=1 0

£l < 4 Xmi+mj—3 !
U, :72 D aa;mm;(m, —1)(m; -1 am —3
0

i +m; =3

u. %z Sk aa, =%{A}T[I2 (Al

— K m;+m;—3
where ki =m;m;(m; —1)(m; —1) B
m; +m; -3

Note: Symmetry of k;, interchanging i with j does not alter right hand side.

ki are the components of the stiffness matrix [E} with respect to polynomial

coefficient a; .
To get the final stiffness matrix with respect to the generalized
displacement {5°},

0. =y [Kta =) i)

o, =3[ [ Jor)

0. =L T el

= my

k| is the required stiffness matrix with respect to the generalized

displacement {6°}.
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Note: We don't know yet |¢| is stiffness matrix but from the form of the U,
we can get a sense.

3.2- Consistent Load Vector

Loads are lumped at the discrete nodes of the element assemblage using
virtual work principle.

Potential energy of the load:
|
W = I p(X)w(x)dx
0
Let p(x)=po a uniform load

| |4 N ~ 4 I ~ ;-
W —!p(x)w(x)dx— p [ D3 x™dx = Py 23 i

m; +1

o i=1

Imi+l

Transformation to {3°}.
W= {A}T{p} =714 6})T{p} = {58}T(([T]‘1 )T{p}j

W = {5} {p°)
{p°} is the consistent load vector for the generalized displacement {5°}.

Computing Steps:
1) program the transformation matrix [T] and invert numerically

2) Program the untransformed stiffness matrix F} and the load vector

b}
3) Transform (pre and post multiply with ([T]‘l)T and [T]" respectively)
to [k°] and [p°]
Comments: obviously the size of [T] depend s on the degree of polynomial.
Therefore for higher degree polynomials, the larger [T] inverse process
become very time consuming on computer.

There is another procedure which yields [k °] in the final form and hence
saves a number of matrix multiplications.

16



3.3- Alternative Approach to Derive the Stiffness Matrix

w0)=a=w,
0(0)= O _p_g
dx

w(l)=a+bl+cl® +dI° =w,

dw(l)

——==b+2cl+3dl* =6,
dx

() =

four equations for four unknowns a, b, ¢ and d, solving:
a=w,

_491+6?2 W, — W,
= +2
|2 |3

d

substituting back into the cubic equation w yields:

W(X):W1+(91 X+|:W2_W1 _2014‘62})(2_'_[01'262 +2W1I—3W2:|X3

I? |

using £=x/l (nondimensional coordinate system), we can express the
displacement function for the beam element as:

W(E) =(1-387 +28) Wy +(£ =287 +E7) 16, + (387 -287) w, +(£° - £7) 16,

W(E) = ()W, +4,(5) 16, + ()W, +6,(5) 16,

where ¢; 's are often called interpolation functions or shape functions.

17



Graphical Representation:

A 0i1(8) $2(E)
5 1 <
1 ]
463(8) ¢’(1)=0 $48)

Wi
W

~_

There are the possible configurations one wants to combine into the true
shapes.

This method of solving for constants in the polynomial in terms of nodal
degrees of freedom becomes difficult for higher degree polynomial
approximations.

z=U-W

— Y =~ = 1

2 2 2 2 2 2
d-w dWiZ—L{d ¢1W+d¢2|91+d¢3wz+d¢4|92}

dx?  d&r 12 1% | de? de? dé? dé?
y :ﬂj‘(dzw)z _EL [12w2 £ 4170 +12w,7 + 416, + 121w,
T2 2% | - 24wyw, + 121w,6, + 121,06, + 4126,0, — 121w, 0,

Now the same procedure can be used as before.
Note: Stiffness coefficient can also be computed in a more convenient
way(some times for lower order polynomials):

18



w, ¢

e 6, 8
W=y W= w=2wd

0, 9,

_Elpdiw, o El g d2g, d>
Y. = 2 -([(dxz) dx = 2 ;[zwi dx? ZW,-
| 2 2 E | 2 2

_ J —_
_I x2 o j de? de‘
d> 1 .d?
dx*> 17 d¢?

=
kij :|_3_([¢i ¢jd§

“1{o%)

where the shape functions are given by :

$(5)=(1-35"+2&%)

$,(&) =1 -25"+¢&7)
$ () =3¢ -2&7)
8, =1 -¢&%)

dx

¢;j dx = ZZ%JL Elw,w,

d’4,

d’g.
idx

dx? dx?

19



3.4- Potential Energy Theorem for Finite Element Discretization

For an element :

e 1 e e e
U =5{5 K 10}
W*® ={p°}"{5°}

nele 1 e e e e e

= {5{5 VIKE1S - {p) T (8 }}
We know the stiffness matrix and load vector for each element.
Then when the elements are put together, we sum these energies to get
totals of energy.

We define the nodal displacements vector for the entire assemblage, {X}nxi
where N is structure total degrees of freedom and each element has n dof.

7 =U —W

U =X IKIX)

W= (p} X

_— ={%{X}T[K]{X}—{p}T{X}}

Where [k], {X} and {p} are stiffness matrix, displacement vector, and load
vector for the global or total problem.
on=0 (first variation set equal to zero)or extremum.

20



&z=%{{éX}T[K]{X}+{X}T[K]{é><}}—{p}T{éX}=0

{XYT[K]{oX}is scalar then transpose it :
X3 [KHOX} = {oX 3T [KT{X}

or ={{X3T[K]-{p}" JiX} =0
{oX} is arbitrary

X} KI={p}" =0
or transposin g :

[KI{X}={p}=0
Take second variation to show that w, infact is minimum:

527 = S[{X 3T IKTHX - {pyT 46X )]
52 = 1} [K1{oX)

5{{p}T{éX}}: 0 {oX}isalready varied and cannot vary again.

But {0X} is arbitrary variation of {X} and if [k] is a positive definite matrix
(which it is) then {oX}"[K]{oX}>0, therefore 7t is a minimum.

21



[K1{X} =1{p}

Py ={X}TK]

ﬂ=%{X}T[K]{X}—{X}T[K]{X}

z=—%{X}T[K]{X}

7=-U; |a|=U,]
This is true when 7 is minimum in a discrete problem.

4- Stiffness Matrix and Load Vector Assembling

Nodal compatibility is used as the basis for the assemblage of the individual
elements. Element adjacent to a particular node must have the same
generalized displacement at the node such as displacement, translation and
may be strain, curvature, and other derivatives of translations with respect
to the spatial coordinates. The imposition of nodal compatibility represents
the construction of the assemblage by rigidly joining the pieces of elements
together at certain preselected joining points. Since the displacements are
matched at the nodes, the loads and stiffness are added at these locations.

We applied the variational principle to the element. We will now apply it to
the assemblage to obtain the assembly rules.

Assume element has n dof and structure has N dof. And we know the

element stiffness matrix and load vector (including all the loadings on the
body) for each elements.

22



{p°} =

(P} 0%} = {R"} X}

{Ps"} =

k
Numbers are global DOF

With this concept the same can be done for Stiffness matrix

(K" =

JANxN

such that

XK X} = {8°} T [k°1{S}

[K.°] isthe assembling of one element into global stiffness matrix

=2 {%{W[ke]{ae}—{pef{58}}

=Z%{X}T[Kee]{X}—{PJ}T{X}
-0 3 k1o ey

1

or = {oX} (Ko 1{X} —{Ps})=0

[KG]{X}:{PG}

:E{X}T[KG]{X}_{PG

XS

23



nele
Thus > [K] and > {R;}" have the effects of each individual element

n=1
stiffness matrix and consistent load vector in the global matrices. These are
the equilibrium equations for the assemblage.

The equilibrium equation is results of joining of element together in which:
a)sum of the generalized forces at the nodes and equating to external loads
(equilibrium)

b) equate of degrees of freedom at the nodes (compatibility)

It must be noted that equilibrium and compatibility are satisfied within the
element and by doing it we satisfy them at the nodes. We must be worry
only about the continuity between the elements.

Example: Direct Stiffness Method for the Assemblage

Two dimensional assemblage to illustrate direct stiffness method

= element index

O = node index

AYSV

Global indices for assemblage
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O =local index

( ) global index

AY,V

Local indices for elements number 1 and 4

Typical element stiff nesses and loads with only selected nonzero entries
shown

25



Stiffness matrix for element no. 1 Load vector

global 1 2 3 4 9 10 7 8
local 1 2 3 4 5 6 17 8
11 [k, . . Ky
2 2 .
3 3 : Kiys  Ksg
4 4 : Kys  Kyg
9 5 |ks Ks Kss  Ksg Us
106 kg ke Kes Kes - - - Q6
7T . .

8 | . S T A e
Stiffness matrix for element no. 4 Load vector
global 9 10 11 12 15 16
local 1 2 3 4 5 6

9 1 [a, a, . . a5 ag] b,
10 2 |a,; 8y . . 8y ax b,
11 3

12 4 (
15 5 |a; a

16 6 |ay, a; . . . .. N en

Assemblage stiffness matrix and load vector showing the locations where
entries are added from components of elements number 4 and 2
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Total stiffness matrix Total load

global 1 2 3456 7 89 10 11 12 13 14 15 16 17 18

{ - -

2 . .

3 Kss Ksg

4 45 46

5

6

7

8 .
9 ks Ky ook tay kg ta, oo Ay a - Qs +b,
10 ‘61 62 oK +ay Kgta, oo Ay e - - qs +b,
11

12

13

14 .

15 as as

16 ag ag

17

18 L * J1gx1g

If we have external loads at nodes, we again add them to the load vector.
We usually find the components on the global directions of the dof.
Subroutine for setup

Element no. one

LI(H=[1 2 3 4 9 10 7 §]
| =1 2 3 4 5 6 7 8§

Element no. four

LI(H=[9 10 11 12 15 16]
| =1 2 3 4 5 ¢

27




LJ 1is the address for the local stiffness matrix. Global stiffness matrix is

18x18 while the local stiffness matrix is 8x8 for the 4-node elements and
6x6 for 3-node element.

ele.no.1:

k'(4,5) > k(4,9)

ele.no.4:
k*(3,4) > k(11,12)

k®(1,J) > LJR = LJ(I) = global row
LJC = LJ(J) = global column

LJC LJC=LJ(J)

|

Si\\ (LJR,LIC
- S— LIR=LJ(I)
LJR < LJC)

LIR \tl

e _1,¢
kij—kji

LIR>LJC

28



5- Boundary conditions

So far we have not considered boundary conditions at all. A problem in
solid mechanics is not completely specified unless boundary conditions are
prescribed. Without imposition of boundary conditions, the element and
total stiffness matrices are singular. It means that a loaded body or structure
is free to experience unlimited rigid body motion unless some supports or
kinematic constraints are imposed that will ensure the equilibrium of the
loads. These constraints are the boundary conditions.

Types of Boundary Conditions
From the variational-method point of view, there are two basic types of
boundary conditions

1. Geometric (essential)

2. Natural (force)
One of the principal advantages of the F.E. method is that we need specify
only the geometric bc’s; the natural bc’s are implicitly satisfied in the
solution procedures.
Traction boundary conditions are incorporated into the load vector.

In the displacement method of F.E. analysis, we can further categorize
geometric boundary conditions as being

1. Homogeneous

2. Non-homogeneous((normal and skewed)
Homogeneous conditions occur at locations where completely constrained
against movement (displacement=0).
Conversely, finite non zero values may be specified at some points; these
are non-homogeneous bc’s (e.g. support settlement). The distinction
between normal and skewed conditions arises at locations on the boundary
at which only some components of the displacement are restrained. If the
restrained components are parallel to the global coordinates, the conditions
are normal, otherwise they are skewed.

29



Skewed kinematic constraint

5.1- Essential Homogeneous Boundary Condition
5.1.1- First Approach

We delete all the rows and columns of the force deformation equations with
the essential bc’s.

Total stiffness matrix oo S o Total load
global 1 2 345 6 789 10 11 12 13 14 15 16 17 18
) _ -
2

3 o Ky

4 . N . . N . . . N k45 k46
g5
g6

7

8 . . . .

9 kg ko o o o oo L kgsta, kgt+a, .. . oas ag . . gs + D
10 .kﬁl k62 . N . . . . N k65 + aZl k66 + aZZ . . N aZS a6 N N qé + bZ
11
12
13
14
15 . L a,, a,,
16 . . . . . . . . . aﬁl a62
II 18 L - ° : ° : : : : : : : : ° : : ° ° - J18x18 : 18x1
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= element index

O = node index

AYSV

5.1.2- Second Approach

In the second approach, we do not number those essential bc’s. Then where
ever we have essential bc’s we ignore then for the purpose of assembling.
We give essential bc’s 0 to show that they are not used in the assembled

matrix.

AY,V
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6- Storage of the Total Stiffness Matrix
6.1- Bandwidth Method
Symmetric "usually thinly populated or sparse"

Bandwidth=2B-1
Half bandwidth=B

B
<4“—>
Stifness matrix is NxN
B
Bandwidth=2B-1 7ZEROS
Half Bandwidth=B
« |
2B-1
ZEROS
R

Economy of core storage is to only store NxB portion of the matrix (upper
part)

B=LBAND+1

B=(D+1) f

D=maximum largest difference occurring for all elements of the assemblage
f=number of degree of freedom at each node
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ki; > AM

LIR,BC)

il

k(LJR,LJC) goes to A(L)

For LIR>LIC  A(L)=A(L)+k(L,J)
L=B*(LJC-1)+(LJR-LIC)+1

For LJR<LIC  A(L)=A(L)+k(LJ))
L=B*(LJR-1)+(LJC-LIR)+1

Example: Is B different for this two numbering?

N PO \P

A(L)=k(LJR,LIC)

— N W W,
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For extremely large systems of equations even this method of storage may
be inadequate. Because B is a function of D which is the maximum of the
largest difference in all elements of the assemblage.

6.2- Skyline Method

a < 5 >
a \ a1 ZE?‘QS
ass
A(l)=| 332
a3y
a4
az4

ass

Sample problem
Write an algorithm for obtaining the address of each member by skyline
method. (Use the algorithm from FEB.For).
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7- Transformation to Global Coordinates

Local coordinate system is defined for particular element, where as global
coordinate system refers to the entire assemblage.

It is usually possible to adopt local displacement directions that coincide
with the global coordinates.

Y A
0, 0,
A

(83={ w1 01 w2 02} T ={8%}

U

{83={u vi W v2 u3 v3ug va} ={8%)

A
>

X

However for some types of problems, we may find it expedient to perform
the analysis of individual elements with a local displacement system which
has directions different from those in the global system. In such cases,
before we can construct the equation for the assemblage, we must transform
our element stiffness and load to a common frame of reference, the global
coordinate system.

Say 1 refer to local and g to global. Relation between local and global
element displacements at a node of an element:

U =[thug;

we may construct the transformation for the nodal displacements:
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{05 =[TH{sy}

[[t] [0] [O]
(0] [t] [O]

[T ] [t]

I
| |
S
e
| |
S
e

[0] [0] [O]

Number of matrices [t] in [T] equals the number of element nodes.

Y

[t]
[0]

[0]]
[0]
[0]
[0]

[t] ]
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0% =6%cos@+65%sind

0% =-6%sin@+6% cosé

0% =093
cosd sin@d O
[t]=|—sind cosd O
0 0 1

before assembling :

[k®g1=[T1 [k ][T]

note: [T]' =[T]" orthogonal matrix

U® = {5} [KE{S%1 ) ={6%} [T] [KE T 146%}
We = {pei" (%1} = {p*1}T [T145%}
[k®g1=[T1"[K®][T]

{pSe}={p°}' [T]

o= 0T K 16%0) - (P49 (6%

Notes: stiffness matrix and load vector are obtained using local coordinate
system and then transformed to the global coordinate system.

After solution we may want calculate the local displacement or stresses in
which the same transformation matrix can be used.
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8- Modification of the Equilibrium Equations for Skewed Boundary
Conditions

We need to transform the coordinates of the nodes where skewed bc's are
specified into normal constraints. This is analogous to the transformation
from local to global coordinates.

We can write the transformation for displacement at the i™ node as:

iy =[S Hri}
[s;] 1s a simple point transformation involving the direction cosines which

relate the global and skewed systems (same as [t]).
We can now write the transformation for the entire nodal displacement
vector as:

{ry=[S1{r}

117 [0] [0] . [O]]
[0] [11 [0] . [0]
[S1={[0] [0] [I] . [O]
[s;1 [0]
[0] [0] [0] [0] [I1]

[1]=identity matrix of same order as[s;]

Number of submatrices on diagonal of [S] is equal to the number of nodes
in the assemblage. The order of [s;] is equal to the number of displacement
dof at each node.

The resulting transformation for the stiffness, loads are:
[k1=[ST'[KI[S]

(R}=[S]"{R}

The procedure to transform skewed boundaries into normal boundaries, as
outlined above, can be performed before the individual element stiffness
and loads are assembled. In this case, the above equation apply for element
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stiffness matrix and load vector rather than total stiffness matrix and load
vector and the order of [S] is n rather than N.

Now, All the bc's are normal or they have been transformed to a skewed
system in which they may be treated as normal. Tre results for displacement
at the skewed bc's may want to be presented in the global direction in which
can be transformed using the same transformation matrix.

9- Prescribed Geometric Boundary Conditions
Partitioning the global equilibrium equation results in:

{ [kyy ] [klz]jH{rl}}:{{Rl}}
[klz]T LYY {Ry}

where {r} is the vector of unconstrained or free displacement, and {r,} is
the vector of specified displacements.

[k it = ARy} — [k, {1}

Here [ki;] is no longer singular. The reactions at the constraint displacement
can be computed as:

{R} = [klz]T {n} +kp i}

In the case where homogeneous bc's, {r,} is null, the procedure is
considerably simplified.

A more practical way of forming the modified equilibrium equation is to
arrange the equations as below:

{[kn] [O]H{ﬁ}}:{{Rﬁ—[klz]{rz}}
[o] [l]]{{r} {n}

The above can be done without reordering of the equations. The
contribution to the subvector {R;}-[k,]ir,}are first constructed for each
nonhomogeneous condition. Then the row and column of [k] corresponding
to that condition are made null with the exception of the diagonal element,
which is made unity. Finally, the prescribed value of the displacement is
inserted in the load vector.

For a specified displacement rj occurring at the i™ dof, the above process is
summarized as:
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Ri =R; — kij iy fori=1,2,3,..,N if r;=0

Kim =Kmj =0 form=123,...,N
Ri=r

These operations ensures that the equilibrium equations remain
symmetrical.

10- Accommodation of Elastic Supports in the Total Stiffness Matrix
Elastic supports cab be readily accommodated by the FE method. They do
not introduce a different type of bc’s into the analysis. The deformation
portion of such support is included as finite elements in the structure or
body that discretized. The conventional geometric boundary conditions are
then applied at the point where elastic supports are grounded. In practice,
we do not add a new equation for these grounding points; rather the
appropriate matrix element on the principal diagonal of the stiffness matrix
is merely modified by adding the support stiffness to it.

11- Solution of the Overall Problem

Steps we have taken so far are as followings:

1. we have used potential energy theorem for each element

2. Obtained displacement field, calculated n°=U°"-W*

3. joined each element together, got an approximate of the total
potential energy in a structure (is equivalent of satisfying equilibrium
and compatibility at the nodes)

4. minimized the TPE to get an approximate solution of the problem

. applied the boundary conditions; (only need to satisfy essential bc's;
1.e. displacement and slopes and .... We do not have to satisfy the
natural bc's for potential energy theorem)

We are ready to sole the equations for the unknown displacements. Once we

obtained the displacements, we can proceed to evaluate whichever element
stresses and or strains need to complete the analysis. It is important to know
that the element stresses do not satisfy the equilibrium conditions for the
individual element. In applying the principle of minimum potential energy,
we approximate the overall equilibrium of the body, but do not provide for

W

40



inter element equilibrium. Nevertheless, as our approximation to the total
potential energy and to the displacement solution is improved either by
using refined elements or by reducing the mesh, we also obtain improved
results for the element stress components.

Because of the approximation involved, it is logical to use some average
value of the stress(or strain) as representative for the element at the centroid
of the element.
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