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1- Steady-State Field Problems ( Quasi-Harmonic Equations)                         
 
1.1- Quasi-harmonic Steady State Field Problem  
 
Quasi-harmonic steady state field eqn is given by: 
 
Equation 1 
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where φ(x,y,z) is the field variable to be determined in a three dimensional 
domain Ωbounded by surface Γ. Kx, Ky and Kz are given functions of space 
coordinates only and are independent of φ (i.e. linear problem).  
The description of the field problem is not complete until boundary 
conditions are specified. Let these be: 
Equation 2 
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Where g(x,y,z) and h(x,y,z) are known a priori and nx, ny and nz are the 
direction cosines of the unit outward normal to the surface. ΓA and ΓB are 
parts of the boundary, i.e. ΓA+ΓB=Γ, the total boundary. 
Boundary condition in above equation is known as the dirichlet condition 
and φB, the dirichlet data. Equation 2(b) represents the Cauchy boundary 
condition. 
If g=h=0, the Cauchy condition reduces to the Neumann boundary 
condition, also called the Natural boundary condition. 
A field problem is said to have mixed boundary conditions when some 
portions of the boundary have Dirichlet boundary conditions while the other 
portions have Cauchy or Neumann boundary conditions. 
 
Physical interpretation of the parameters in eqn 1 depends upon the 
particular physical problem and listed in the table below: 
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Identification of Physical Parameters 
 

Problem φ Kx, Ky and 
Kz

f g H 

Diffusion flow in 
porous media 

Hydraulic 
head 

Hydraulic 
conductivity 

Internal 
sources 

flow 

Boundary 
flow - 

Heat conduction Temperature Thermal 
conductivity 

Internal 
heat 

generation 

Boundary 
heat 

generation 

Convective 
heat 

transfer 
coefficient 

Irrotational flow 

Velocity 
potential or 

stream 
function 

- 0 Boundary 
velocity 0 

Torsion Stress 
Function 

Reciprocal of
shear 

modulus 

Angle 
of twist per 
unit length 

- - 

Seepage Pressure Permeability Internal 
flow - - 

 
 
 
1.2- Variational Principle 
 
Variation principle for equation 1 and 2 is given by: 
Equation 3 
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It can be shown that δ J(ϕ)=0 yields the Euler equations which are the same 
as the equations 1 and 2. 
 
Note: there are some slight modifications involved when eqns1 to 3 are 
applied to a particular physical problem. 
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2- Two Dimensional Steady-State Heat Flow 
 
Governing differential equation: 
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subject to boundary conditions : 
 
Equation 4 
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where φ = temperature 
Kx=Thermal conductivity in x-direction 
Ky= Thermal conductivity in y-direction 
Q=Heat input per unit volume  
qa and qc = specified heat input per unit area on ΓA and ΓC, respectively. 
α=Convective heat transfer coefficient 
φc=ambient temperature of the environment 
 
Variational principle in two dimensions with thickness "t" take the 
following form: 
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Equation 4-b for boundary condition on ΓAis valid only for transfer of heat 
through conduction. 
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Comment: Since temperature φ is a scalar quantity, no transformation of 
matrices (computed in local coordinates to global coordinates) is necessary 
before assembling the global matrix. 
 
2.1-  Heat Transfer Matrix 
 
Assume finite element approximation for φ as: 
Equation 5 
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Where Ni are the shape functions, φI are the nodal values of φ, n is the 
number of nodes per element. 
Finite element approximation is required to have only C0 continuity. That is 
only φ needs to be continuous and no derivatives of it are required to be 
continuous. 
For the interior elements we do not have to consider the boundary integrals. 
Hence, for interior elements: 
Equation 6 
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Substitution of eqn 5 into eqn 6 yields: 
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We can use the shape functions developed for Isoparametric elements 
earlier in order to compute [He] and {fe} above. 
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2.2-  Anisotropic and Non-homogeneous Media 
 
The material properties Kx and Ky can vary from element to element in a 
discontinuous manner. Also the material properties are known only with 
respect to principle axes (or axes of symmetry) which can change direction 
from element to element as well. If these properties and direction are 
reasonably constant within the element, then the element heat transfer 
matrix can be formulated in local axes which is coincide with the principle 
(or symmetry) axes shown in the figure. 
 
 
 

y y x 
 y
 
 xy  
 
 

Stratification  Stratification 
 x x 
 
Then: 
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The only dufference is that the derivatives of Ni are now taken with respect 
to x and y, the local coordinates.  
Again as commented before, there is no transformation needed from x and y 
axes to x-y axes because φ is a scalar quantity. This then leads to a 
considerable economy in computations. 
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2.3- Formulation of Linear Temperature Triangular Elements 
 
For now assume we know the material properties Kx and Ky along x and y 
axes as shown. 
 
 
 y 
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For linear temperature variation within the element, using area coordinatea: 
Equation 7 
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For isotropic material properties K=Kx=Ky

 

 

Further, if we are dealing with an isotropic and nonhomogeneous material, 
then the coordinates in system are used in equation 7(d,e). 
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2.4- Heat Input Load Vector 

rom equation of potential energy, heat input load vector consists of 
 
F
internal heat generated Q, heat input on ΓA given by qA, on ΓC the amount 
of  qC and -αφc, i.e.  

 

Obviously, the contribution from line integrals comes only from hat part of 
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boundary Γ i.e. ΓA and ΓC where qA, qC and φc are specified. 
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Note if α=0 then {f2
e} and {f3

e} are the same. 
Also along ΓC, we have to calculate Γ=Γ ∫∫ dt αφδ{ 2
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where Ni
C are shape function along edge i-j of the element that coincides 

with ΓC. 
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In deriving above equation, N1=1-ξ, N2=ξ and N3=0 
Above matrix is equivalent to having a line spring boundary in plane 
elasticity problem. [HC] is added to[H] for the element on boundary ΓC to 
obtain the complete Heat Transfer Matrix, just as we did for plane elasticity 
case with spring boundaries in obtaining the complete stiffness matrix. 
Once the heat transfer matrices and input load vectors have been 
determined, these can be assembled in exactly the same manner as stiffness 
and load vector matrices in plane elasticity. The kinematic boundary 
conditions or fixed boundary conditions on φ can be easily incorporated. 
Number of constraints option can be incorporated for both zero and non-
zero φ on the boundary, i.e. φ=φB on ΓB. 
 
2.5- Advantages of Finite Element Method for Field Problem 
 

1. It can deal simply with non-homogeneous and anisotropic situations 
(particularly when the direction of anisotropy is variable) 

2. The elements can be graded in shape and size to follow arbitrary 
boundaries and to allow for regions of rapid variation of the function 
sought. 

3. Specified gradient or radiation boundary condition  are introduced  
naturally and with a better accuracy than in standard finite difference 
procedures. 

4. Higher order elements can be readily used to improve accuracy 
without complicating boundary condition- a difficulty always arising 
with finite difference approximations of a higher order. 

5. Finally, but of considerable importance in computer age, standard 
(structural) programs may be used for assembly and solution. 
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3- Transient two-Dimensional Heat Flow 
The time dependent governing differential equation is: 
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where φ is a function of x, y and time t. Boundary conditions are still given 
by equations 4, except these can vary with time. Equivalent steady state 
variational principle for any time t is then given by: 
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finite element approximation within an element is now chosen as: 
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where nodal variable φi(t) are now functions of time. Since we look for 
stationary of J(φ) at any time t, i.e.: 
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Therefore matrices [He] and [HC], the element heat transfer matrix and 
contribution to it from boundary integral on ΓC, are still the same. Load 
vector {f1

e}, {f2
e} and {f3

e} may vary with time. However a new matrix 
needs to be derived, i.e. element heat capacity matrix [Ce] from dxdyCt
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After assembling individual element matrices, the final discretized global 
equation take the following form: 
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[H]=global or master conductivity or heat transfer matrix 
[C]=global heat capacity matrix 
{F}=global heat input load vector 
Assume the material properties involved Kx, Ky, α, C do not change when 
temperature changes with time, i.e. we have a linear problem. Further, at 
t=0 the initial conditions are generally given, i.e.: 

),()0,,( 0 yxyx φφ =  
A  numerical recurrence process is now required to find the solution at 
subsequent times. Finite differences in time are employed to obtain such a 
recurrence formula. 
Approximate of above equation by finite differences in interval t to t+∆t can 
be written for mid interval as: 
Equation 8 
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Where [H], [C] (if variable with φ) and {F} are assigned their mid interval 
values, and  has been replaced by: }{φ&
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Substituting equation 9c in equation 8: 
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And from equation 9c, we can calculate {φ}t+∆t. Equation 8 and 9c provide 
the recurrence process sought. 
If Kx, Ky, C and α depend on temperature, then the problem becomes 
nonlinear and some special iterative techniques are required for a solution. 
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