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1- Steady-State Field Problems ( Quasi-Harmonic Equations)

1.1- Quasi-harmonic Steady State Field Problem
Quasi-harmonic steady state field egn is given by:

Equation 1
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where ¢(x,y,z) is the field variable to be determined in a three dimensional
domain Qbounded by surface I'. Ky, K, and K, are given functions of space
coordinates only and are independent of ¢ (i.e. linear problem).

The description of the field problem is not complete until boundary
conditions are specified. Let these be:

Equation 2
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Where g(x,y,z) and h(x,y,z) are known a priori and ny, n, and n, are the
direction cosines of the unit outward normal to the surface. I'y and I'g are
parts of the boundary, i.e. I'a+I'g=I", the total boundary.

Boundary condition in above equation is known as the dirichlet condition
and ¢g, the dirichlet data. Equation 2(b) represents the Cauchy boundary
condition.

If g=h=0, the Cauchy condition reduces to the Neumann boundary
condition, also called the Natural boundary condition.

A field problem is said to have mixed boundary conditions when some
portions of the boundary have Dirichlet boundary conditions while the other
portions have Cauchy or Neumann boundary conditions.

Physical interpretation of the parameters in egn 1 depends upon the
particular physical problem and listed in the table below:



|dentification of Physical Parameters

Problem ) Kx Kyand f g H
K;
Diffusion flow in Hydraulic Hydraulic Internal Boundary
. - sources -
porous media head conductivity flow flow
Internal Boundary Convective
. Thermal heat
Heat conduction | Temperature . heat heat
conductivity : : transfer
generation | generation .
coefficient
Velocity
Irrotational flow potential or - 0 Bound_ary 0
stream velocity
function
_ Stress Reciprocal of Aqgle
Torsion : shear of twist per - -
Function .
modulus unit length
- Internal
Seepage Pressure Permeability flow - -
1.2- Variational Principle

Variation principle for equation 1 and 2 is given by:

Equation 3
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It can be shown that & J(¢)=0 yields the Euler equations which are the same
asthe equations 1 and 2.

Note: there are some slight modifications involved when egnsl to 3 are
applied to a particular physical problem.



2- Two Dimensional Steady-State Heat Flow

Governi ng differential equation:
(x%) ay(K %HQ(X y)=0 in Q

subj ect to boundary conditions :

Equation 4
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where ¢ = temperature

Kyx=Thermal conductivity in x-direction

Ky= Thermal conductivity in y-direction

Q=Heat input per unit volume

gs and g. = specified heat input per unit areaon I'y and I'¢, respectively.
a=Convective heat transfer coefficient

d.=ambient temperature of the environment

Variational principle in two dimensions with thickness "t" take the
following form:

OB tj{ { 0y +K< } Q¢}dxdy+tIqA¢dF+tI [qcm(——qﬁc)}fdr

A

Equation 4-b for boundary condition on I'ais valid only for transfer of heat
through conduction.

y
A t= thickness (uniform)

I's

a+gH ="




Comment: Since temperature ¢ is ascalar quantity, no transformation of
matrices (computed in local coordinates to global coordinates) is necessary
before assembling the global matrix.

2.1- Heat Transfer Matrix

Assume finite element approximation for ¢ as:
Equation 5
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Where N; are the shape functions, ¢, are the nodal values of ¢, n is the
number of nodes per element.

Finite element approximation is required to have only C, continuity. That is
only ¢ needs to be continuous and no derivatives of it are required to be
continuous.

For the interior elements we do not have to consider the boundary integrals.
Hence, for interior elements:

Equation 6
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Substitution of egn 5into egn 6 yields:
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where :
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5(Jo(4°)) = 0 for stationary then leads to :

[H*{g* {1} ={0}

where :
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We can use the shape functions developed for Isoparametric elements
earlier in order to compute [H®] and {f°} above.



2.2- Anisotropic and Non-homogeneous Media

The material properties Ky and K, can vary from element to element in a
discontinuous manner. Also the material properties are known only with
respect to principle axes (or axes of symmetry) which can change direction
from element to element as well. If these properties and direction are
reasonably constant within the element, then the element heat transfer
matrix can be formulated in local axes which is coincide with the principle
(or symmetry) axes shown in the figure.
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Then:
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The only dufference is that the derivatives of N; are now taken with respect
tox and y, the local coordinates.

Again as commented before, there is no transformation needed from x and y
axes to x-y axes because ¢ is a scalar quantity. This then leads to a
considerable economy in computations.



2.3-Formulation of Linear Temperature Triangular Elements

For now assume we know the material properties Ky and K, along x and y
axes as shown.

d1
(X1, Y1)

For linear temperature variation within the element, using area coordinatea:
Equation 7

Ny =L, N, =L, N3 =Ls
¢=Liy +Log, +L3ds
b; a; : . .
Niy=— iy =—~ Where A=areaof the triangular element in the figure
" 2A v 2A
bi=Yy,-V3 b =Yy3-Vy1 by =y1-Y1
a1=X3—Xl azzal—ag a3:X2—X1

e t
Hijj :WLI [Kxbibj +Kyaiaj]dxdy
For isotropic material properties K=K,=K,
H;® = r_,:[bibj +aiaj]
Further, if we are dealing with an isotropic and nonhomogeneous material,
then the coordinates in system are used in equation 7(d,e).



2.4- Heat Input Load Vector

From equation of potential energy, heat input load vector consists of
internal heat generated Q, heat input on I's given by ga, on I'c the amount
of gcand-ag., i.e.

—t” Q¢dxdy+tj qA¢dr+tj [Gc —ag)lpdr
A N I

Obviously, the contribution from line integrals comes only from that part of
boundary I" i.e. ' and I'c where ga, gc and ¢ are specified.
For Q constants:

for elements with edge along T :
along i — j edge ¢(5) = (1-&)py + S,
Aal8)=0,1-8)+0¢

1 <Y
t rj amdr:thj{ Ta(8) 4(6) & / .

on int egration
24, +1, &
tl;;

{fze}:?J 01 + 20,

0
Similarly, for elements with edge along T :

ot 291+95

{fs }=— 91+29;
0

9(£) =Tc (&)~ s, ()

where both g and aac are assumed to have linear variation along edgei— j:

9:=9(0) 9,=9(0

Note if a=0 then {f,%} and {f;°} are the same.

Also along I'c, we have to calculate 5{% j ag?dr} = ot j so4dr . Thisterm yields
r

I'e

contribution to Hj;. Then:

1
0



where N;° are shape function along edge i-j of the element that coincides

In deriving above equation, N;=1-&, N,=¢€ and N3;=0

Above matrix is equivalent to having a line spring boundary in plane
elasticity problem. [HE] is added to[H] for the element on boundary I'c to
obtain the complete Heat Transfer Matrix, just as we did for plane elasticity
case with spring boundaries in obtaining the compl ete stiffness matrix.

Once the heat transfer matrices and input load vectors have been
determined, these can be assembled in exactly the same manner as stiffness
and load vector matrices in plane elasticity. The kinematic boundary
conditions or fixed boundary conditions on ¢ can be easily incorporated.
Number of constraints option can be incorporated for both zero and non-
zero ¢ on the boundary, i.e. ¢=¢g On I's.

2.5- Advantages of Finite Element Method for Field Problem

1. It can deal simply with non-homogeneous and anisotropic situations
(particularly when the direction of anisotropy is variable)

2. The elements can be graded in shape and size to follow arbitrary
boundaries and to allow for regions of rapid variation of the function
sought.

3. Specified gradient or radiation boundary condition are introduced
naturally and with a better accuracy than in standard finite difference
procedures.

4. Higher order elements can be readily used to improve accuracy
without complicating boundary condition- a difficulty always arising
with finite difference approximations of a higher order.

5. Findly, but of considerable importance in computer age, standard
(structural) programs may be used for assembly and solution.
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3- Transient two-Dimensional Heat Flow

The time dependent governing differential equationis:
Ok, 22y, %k, Pyomy)-c2 o0 in o

ox foax’ oy Yoy ’ ot

where ¢ is afunction of x, y and time t. Boundary conditions are still given
by equations 4, except these can vary with time. Equivalent steady state
variational principle for any timet isthen given by:

“tf [k, @2k, ()2 |—qp+ Sy 3 7 +a@-7
J(¢)—tjg{2[r<x(ax) +Ky(ay)} Q¢+2¢¢}dxdy+trjwdr+trj [QC+“(2 m}sdr

o

note:¢5=§

finite element approximation within an element is now chosen as.

BGY,0 =D N Y); (1)

i=1
where nodal variable ¢;(t) are now functions of time. Since we look for

stationary of J(¢) at any timet, i.e.:
6J(@)=0 atanytimet

Therefore matrices [H] and [HY], the element heat transfer matrix and
contribution to it from boundary integral on I'c, are till the same. Load
vector {f,%}, {f,"} and {fs} may vary with time. However a new matrix

needs to be derived, i.e. element heat capacity matrix [C®] from % j j C gdxdy
A
Cii :t” CN; (X, )N j (x, y)dxdy
A
In terms of shape function:

A
finally after int egration( for constant C)
A 211
ce=SAt 2 g
12
112

After assembling individual element matrices, the final discretized global
equation take the following form:

[H1{#} +[Cl{g} +{F} ={0}
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[H]=global or master conductivity or heat transfer matrix

[C]=global heat capacity matrix

{F}=global heat input load vector

Assume the material properties involved Ky, Ky, a, C do not change when
temperature changes with time, i.e. we have a linear problem. Further, at
t=0 theinitial conditions are generally given, i.e..

#(x,¥,0) = do (X, y)

A numerica recurrence process is now required to find the solution at
subsequent times. Finite differences in time are employed to obtain such a
recurrence formula.

Approximate of above equation by finite differencesin interval t to t+At can
be written for mid interval as:

Equation 8

[HI{ @} +[C1 (S} eune —{8}) AL +{F},,, ={O}

{¢}1+AI

Where [H], [C] (if variable with ¢) and {F} are assigned their mid interval
values, and {4} has been replaced by:

Equation 9

i _ {¢}t+At _{¢}t
{¢}t+At - At

Also note for linear var iation within the time int erval

(0 s =2 Q0w +))

2
i.e.as an average value

{#}iin = 2{¢}t+§ {4},

2

Substituting equation 9c in equation 8:

2 2
171+ 211, o = H1CUA AP

2

2. )2
@, o =(t0 Z001] [ Frea P

And from equation 9c, we can calculate { ¢} .. EqQuation 8 and 9c provide
the recurrence process sought.

If Ky, Ky, C and o depend on temperature, then the problem becomes
nonlinear and some special iterative techniques are required for a solution.
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