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1- Plate Bending (Review of theory) 
          
Linear elastic small deflections 
 
Assumptions: 

1. Plate is thin (h<<L where L=typical length) 
2. Normals perpendicular to the mid-surface remain normal to the 

deflected mid-surface. 
3. Small deflections (normal to the plate) so that the mid-surface 

remains unstretched 
 
Also note that τzz<<τxx and τyy
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1.1- Stresses (Isotropic Case) 
Plane stress in xy plane 

yx
wEzE

y
w

x
wEzE

y
w

x
wEzE

xyxy

yyxxyy

yyxxxx

∂∂
∂

+
−=

+
=

∂

∂
+

∂

∂

−
−=+

−
=

∂

∂
+

∂

∂

−
−=+

−
=

2

2

2

2

2

22

2

2

2

2

22

1)1(2

)(
1

)(
1

)(
1

)(
1

ν
γ

ν
τ

ν
ν

ενε
ν

τ

ν
ν

νεε
ν

τ

 

Section properties (resultants stresses as bending and twisting moments) 
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Where D is the bending rigidity and Mx, My are bending moments per unit 
length about x and y axes, respectively. Mxy and Myx are the twisting 
moments per unit length about x and y axes, respectively. 
 
1.2- Shear Forces 
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Where Qx and Qy are the shear forces per unit length on edges whose 
normals are x and y axes, respectively. 
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1.3- Equilibrium Equations 
q(x,y) is the transverse load per unit area: 
 MxyQy Qy 
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Also encountered in many other engineering problems, e.g. very viscous or 
creeping incompressible flow, stress analysis using Airy's stress function φ 
or ∇4φ=0 (compatibility equation) 
 
1.4- Strain Energy 
This is analogous to beam bending.  
Energy stored=Elastic work done by moments 
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y=0 x 

1.5- Boundary Conditions x=0 
x=a  

a) Simply Supported Edge 
 y=b 
 1) along x=0 and x=a edges y   w=0 and Mxx=0 
  But if w=0 along y on x=0 then wy=wyy=0 
    Therefore wy=wyy=0 
    Mxx=-D(wxx+νwyy)=0 ∴ wxx=0 
 
   2)along y=0 and y=b 
  w=0 and Myy=0 or wyy=0 
  for w=0 along y=0 and y=b, wx=0 and wxx=0 
 
b) Clamped or built-in edge 
 
 1) along x=0 and x=a 
  w=0 and 0==

∂
∂ w  xx
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 2) along y=0 and y=b 
  w=0 and 0==

∂
∂ w  yy
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c) Free edge 
  

There are no restrictions on displacements- no edge forces. 
 One is tempted to say that along x=a 
  Qx=0, Mxx=0 and Myy=0 

This is wrong because only two independent conditions are allowed. 
According to kirchhoff, should use only two, i.e. Mxx=0 and Txx=0 
(effective shear force) where, 0=

∂

∂
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1.6- Potential Energy 
 
Potential energy of the plate bent to transverse load q(x,y) is given by: 
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2- Rectangular Plate Bending Elements 
 

y 

2.1- Non-conforming Rectangular finite element use deflection and two 
slopes as generalized displacements at each node i.e. use w, wx, wy as nodal 
degrees of freedom. This element has wide use application and performs 
very well. 
 
 

w3, wx3,wy3 
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With three dof per nodes, we have 12 dof per element, therefore, require a 
twelve term polynomial 
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i.e. complete cubic plus two terms (x3y and xy3) polynomial of above 
equation satisfies the homogeneous plate equation D∇4w=0, this fact is of 
little significance in the finite element formulation. 
 
Rigid Body Modes 
W=constant (translation) and also need two rotations. Three rigid body 
modes required are included through a1+a2x+a3y in the polynomial of above 
equation. 
 
Constant Strain 
In plate bending, the strains are curvatures and twist i.e. wxx, wyy and wxy. 
This is provided by the second degree terms i.e. a4x2+a5xy+a6y2 which are 
also included. 
 
Continuity 
The polynomial in above equation has been chosen carefully and for a very 
good reason we included x3y and xy3 terms instead of x4 and y4. For 
constant y, w(x,y) is cubic in x and vice-versa. Now a cubic polynomial in 
one dimension contains four independent parameters or coefficient which 
may be specified uniquely by two conditions at each end point (i.e. the end 



nodes. This particular feature leads to ensuring displacement continuity 
between adjacent elements. We will look into it in more detail later. 
 
Generalized Displacement 
The element formulation begins by first solving for generalized 
displacements from displacement function. This yields the following matrix 
equation; 
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or             {w}=[T]{A} 
where       {A}=<a1,a2,……..,a12> 
The matrix [T] in equations above can be inverted in order to solve for {A} 
as functions of the generalized displacements. Once a1, a2 etc. are 
substituted back into displacement function, we obtain deflection in terms 
of the generalized displacements w1, wx1, wy1,….etc. as: 
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ow that we have the displacement distribution within the element defined 

. Consider for example e joining of two elements A and B 
together as illustrated in the Figure. 

N
by displacement equation, we may ask what continuity will be provided by 
the element , th
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For element A, the displacement along edge 3-4 is obtained by putting η=1 
in equation 1.  

It may be seen that the same function of ξ occur in these two equations. 
Therefore, if w1, wx1, w2, wx2 of element B are equated to w4, wx4, w3, wx3, 
respectively of element A, w will have to be continuous between the 
elements. Similar arguments are easily made for edges parallel to the y-axis. 
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2.1.1- Stiffness Matrix 
Calculate the stiffness matrix for the non-conforming plate bending element 
by substituting equation 1 into expression for strain energy. After, carrying 
out integration over the area of the element, we obtain the quadratic form in 
term of generalized displacements (as expected) for strain energy: 

}]{[}{
2

WKWU e =  
Here, [K] is the 12 by 12 stiffness matrix for the element and is given in the 
following page.  

1 T

Note, this matrix has been derived for {W} as given in equation of δ3=w1/a, 
δ6=w2/a, δ9=w3/a and δ12=w4/a i.e. in dimensionless displacements. To 
allow w's to take on dimensionless displacements, the 3rd, 6th, 9th and 12th 
row should be multiplied by a again. Further, if the degrees of freedom are 
desired to be arranged as: 
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The stiffness matrix for the plate bending element may also be derived 
llowing the alternative method we discussed for beam element. 

igure 1 Stiffness Matrix for 12 parameter Rectangular Element (non-conforming) 
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2.1.2- Consistent Load Vector 
Assume uniform pressure q0. Recall from equation of potential energy π, 
the work done W is given by: 

where Ae is the element area, and {w} is given by equation 1, when 
equation 1 is substituted into above equation and integrating, the load vector 
for the element in dimensional form: 

 
When nonconforming elements are used to obtain  an approximate solution 
for some loading, generally we use reasonably large number of elements 
and can obtain reasonable answer by using lumped load i.e. q0ab/4 at each 
corner node. However, for very refined elements, we must use consistent 

ad vector since much fewer elements are used. In such cases, we may be 
introducing an undesirable error through lumped loads. 
 
2.1.3- Stresses 
Bending and twisting moments 
Define: 
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rom the shape functions in equation 1, we can obtain wxx, wyy and wxy. 
rther, these can be evaluated at various points (xi, yi) or (ξI, ηi) and hence 

d at specified points.  
We must know {w} before we can compute {τ}. 

{

F
Fu
Mxx, Myy and Mxy can be evaluate
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2.1.4- Boundary Conditions (Kinematic) 
Along AB and AD, the plate is

 15

Simply supported 

Free 

Sim
ply supported 

B

Clamped 

CD

A

y 

x 

3 4 

2 1 
b 

a 
w1, wx1,wy1

w3, wx3,wy3

n 

 simply supported, 
AB: w=0 and wx=0 
AD: w=0 and wy=0 

 
 

and its normal derivatives or normal slope must be uniquely 
determined by values along an interface or edge of an element in order to 
ensure, C1 continuity. 
Consider edge 3-4 of the rectangular element shown.  
 
 
 
 
 
 
 
 
 
 
 
 

l

Along cd, the plate is clamped w=0 and wx=0 and wy=0 
Nothing specified on free boundary. 
 
 

 
 
 
 
 
 
 
 
 
2.2-  Note on Continuity 
Both w 

Here, wn=wy, the normal slope. It is desired that w and wy be unique y 
determined by the values of w and wx and wy at the nodes lying along edge 
3-4. 
 
 



...2 +++= xaxaaw

...2
321 ++= xbxbbw

321

∂
+  

constants ai and bi in each expression 
st sufficient to determine the expressions by nodal parameters or dof 

ssociated with the line. 
With w and wx as nodal dof at each node i.e. two nodes, we can allow only 
ur ai (a1, a2 , a 4) or at most cubic variation in x along 3-4. 

imilarly only a linear variation can be allowed i.e. two terms (b1 and b2) 
r wyi. In the me manner, wx can be made continuous along the edge 

arallel to the  (wx=c1+c2y along 2-3) 
herefore, alo dge 3-4 

y depends on nodal dof of edge 3-4 
nd along edge 2-3 

x depends on nodal dof of edge 2-3 
ifferentiate wy along edge 3-4 wrt x →Wxy

 2-3 wrt y →Wyx

xy⏐3-4≠ wyx⏐2-3 
ere as for continuous 

nctions wxy=wyx (b2≠c2) 

ssertion: It is erefore, impossible to use simple polynomials for shape 
nctions ensuring full co patibility when only w and its slopes are used as 

of at nodes. 
 any function satisfying comp ibility are found with the three nodal 
ariables, they must be such that at
ifferentia  and the cross derivative is not un e. 
o far we hav applied the arg ent to a rectangular element, we can 
xtend this for any tw rbitrary directions of interfaces or common edges 
t node 3  or uadrilaterals). 
nfortunately, this extension requires continuity of cross derivatives in 

tes the continuity requirement of potential energy theorem, also the 
hysical requirements. If the plate stiffness varies abruptly from element to 
lement then equality of moments normal to the interface cannot be 

maintained. 

∂y
along edge 3-4 with the number of 
ju
a
- 
fo 3 and a

 sa
y ax
ng e

 
S
fo
p is
T
-w
a
-w
D
Differentiate wx along edge
The first depends on nodal dof of edge 3-4 and the second depends on nodal 
dof of edge 2-3. 
At common node 3:   w
Because of arbitrary nodal dof at nodes 2 and 4 wh
fu
 
A th
fu m
d
If s at

 corner nodes they are not continuously v
d ble iqu
S e um
e o a

 qa (triangular
U
several sets of orthogonal directions, which in fact implies a specification of 
all second derivatives at a node. This leads to excessive continuity that 
viola
p
e
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3-  Elements for C1 Problems 
 
Constructing two-dime sional elements that can be used for problems 

φ

1 continuity requires the specification 
, φx, φy, φxx, φyy, and φxy at the corner 

ith sides parallel to the global 
rs nodes only φ, φx, φy and φxy. 

n a oss derivative φxy will be directionally 

pted to apply FE techniques to plate-bending 

x y xy
ent. 

n
requiring continuity of the field variable  as well as its normal derivative 
φn along element boundaries is far more difficult than constructing elements 
for Co continuity alone. To preserve C1 continuity, we must be sure that φ 
and φn are uniquely specified  along the element boundaries by the degrees 
of freedom assigned to the nodes along a particular boundary. The 

ifficulties arise from the following principles: d
1. The interpolation functions must contain at least some cubic terms 

because the three nodal values φ, φx, and φy must be specified at each 
corner of the element. 

 
2. For non-rectangular elements, C

 six nodal values φof at least the
nodes. For a rectangular element w
axes, we need to specify at the corne

 
It is sometimes very convenient to specify only φ, φx and φy at corners, but 
when this is done, it is impossible to have continuous second derivatives at 
the corner nodes. In ge er l, the cr
dependent and hence, nonunique at intersections of the sides of the element. 
Analysts first began to encounter difficulties in formulating elements for C1 

roblems when they attemp
problems. For such problems, the displacement of the mid plane of the plate 
for Kirchhoff plate bending theory is the field variable in each element, and 
interelement continuity of the displacement and its slope is a desirable 
physical requirement. Also, since the functional for plate bending involves 
second order derivatives, continuity of slope at element interface is a 
mathematical requirement because it ensures convergence as element size is 
reduced. For these reasons, analysts have labored to find elements giving 
continuity of slope and value. 
Rectangular Elements 
Whereas triangulars are the simplest element shapes to establish C0 
continuity in two dimensions, rectangles with sides parallel to the global 
axes are the simplest element shapes of C1 continuity in 2 dimensions. The 
reason is that the element boundaries meet at right angles, and imposing 
continuity of the cross derivatives φxy at the corners quarantees continuity of 
the derivatives that otherwise might be nonunique. 
A four-node rectangle with φ, φ , φ  and φ  specified at the corner nodes 
assigns a 16-dof elem
 17



4- Triangular Elements 
1For C  continuity, by assigning 21 dof to element, we can make a complete 

ined by six nodal values, 
nor
Slope 
varies as a quartic function which is uniquely determined by five nodal 

ariables, namely φ and φ  at each end node plus φ  at the midside node. 
Th
bookk
final m
Appar or 
onvergence in C  problems. Experience has indicated that convergence is 

 
 

quintic polynomial to represent  the field variable φ. When φ and all first 
and second derivatives are specified at the corner nodes. There are only 18 
dof, so 3 more are needed to specify the 21-term quintic polynomial.The 3 
dof are obtained by specifying the normal derivatives φn at the midside 
nodes. This element quarantees continuity of φ along element boundaries 
because, along a boundary where s is the linear coordinate, φ varies in s as 
aquintic function, which is uniquely determ

mal, φ, φs  and φss at each end node. 
continuity is also assured because the normal slope along each edge 

v n nn n
e presence of midside nodes is undesirable because they require special 

eeping in the coding process, and they increase the bandwidth of the 
atrix. 

antly, C1 continuity is not always a necessary condition f
1c

more dependent on the completeness than on the compatibility property of 
the element. The following table shows a sample of incompatible elements. 
Any of these elements can be used in the solution of continuum problems 
involving functionals containing up to second-order derivatives. 
The analysts may ask, which element should I use to sole my problem? 
Unfortunately, no general answer can be given because the answer is 
problem dependent. 
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Some Incompatible Elements for C1 Problems 
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1

2

3

b 

a
c

ξ

η

θ

x

y

5- Nonconform
 

- we need an element of more general shape 
- Triangular elements fit curved edges more appropriately than the 

rectangular elements 
- Again consider local coordinates ξ and η. We shall use 

transformation matrix to go back to x-y system. 
- Consider w, wξ, wη as the dof at each node. 
- A cubic has 10 generalized parameters: 

- for the element we have 9 dof but 10 generalized parameters in above 
equation. Therefore, must delete one of ai (i=1,2,…,10) or add a dof. 

 
 
 
 
 
 
 
 

 
 
 
 
Possibilities: 

a) use w at centroid as an extra dof 
-this element doesnot work sometimes and also exhibit poor 
convergence 
-Certain orientations may lead to less than a cubic along one of the 
edges and violates w continuity requirement 

b) Throwaway one term- say a5=0 
 This violates constant curvature or constant strain energy requirement 
i.e. will not work since wξη=constant not present 
 

c) combine two terms, i.e. equate a =a9 
-we get a8(ξ2η + ξη2) which keeps some symmetry. 
-in general, ruins isotrophy of the polynomial so we expect 
orientation problems. 
 
 
 

in Triangular Plate Bending Elements 

3
10

2
9

2
8

3
7

2
65

2
4321 ηξηηξξηξηξηξ aaaaaaaaaaw +++++++++=  
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Recall: 
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appens when two of 
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t equation is a constraint equation i.e. a8-a9=0 
ng it. 

c+b-a=0 then det[T]=0 and we cannot invert [T] to 
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[T] matrix becom s singular sometimes. T
). edges are parallel to the global axes (x,y

 
d) Use area coordinates (Zienkiewics, 9dof triangular element) 

-explain lack of full cubic because of only 9 dof. Let us look at (c ) in 
more detail. [T] matrix 
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The las
This is a more elegant way of doi
Det[T]=c5(a+b)5(c+b-a) 
If a=c+b or 
formulate the element. 
If this situation is avoided then: 
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6- Conforming Rectangular Element (16 dof) 
Nodal
is perm
dof pe ression involving 16 constants could 
be used. We retain term
or its normal slope than cubic along the sides. There are many alternatives 
as far as choosing the polynomial is concerned. But some of these 
alternatives may not produce invertible [T] matrix. 
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 degrees of freedom at each node are w, wx, wy and wxy. Extra dof wxy 
issible as it does not involve excessive continuity. Thus, we have 16 

r element and a polynomial exp
s which do not produce a higher order variation of w 

 



 
An alternative is to use Hermitian polynomials. These are one dimensional 
polynomials and possess certain properties. A Hermitian polynomial  
Hn 

mi(x) is a polynomial of order 2n+1 which gives, where x=xi: 
 
 

Equation 2 

jk

k

k

k

xxwhenormk
dx

Hd

and

ntomformk
dx

Hd

=≠=

===

0

01

 

A set of first order Hermitian polynomaols is thus a set of cubics giving 
shape functions for a line element ij and at the ends, slopes and values 
of the function are used as nodal degrees of freedom along 1-2 
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These polynomials are plotted in the following figure. 
isplacements and slopes at 

)()()()()()()()( xyxyxy

y

wyHxHwyHxHwyHxHwyHx +++

The superscript for H has been dropped since all Hmi are 2x1+1=3
polynomials (n=1). Further for Hmi(y), just replace x with y and a with b. 

hecks 
. we can show that w(x,y) has three rigid body modes (can be 

shown by performing an eigenvalue analysis) 
. we can also show that w(x,y) has constant strain modes. 

3a

H

H

H
 

3 2 +

2

Note these polynomials provide unit values of d
one end and zero at the other as was implies by equation 2. assume w(x,y) 
of the following form: 

12013120221102
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302022010210101
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3. continuity: look at edge 1-2 of the element: 
)()()()( 122111022011 xHwxHwxHwxHww xx +++=  

a ues wy: only those terms having H11(y) will have non-zero v l
()()()( xHwxHwxHwxHww )122111022011 xyxyyyy +++=
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from above two equations, we note w and wy depends on nodal dof at nodes 

r edge 1-2. 
Similarly, we can show that we get the same expressions for w and wy along 
edge 3-4 except w4 replaces w1, w3 replaces w2, etc. 
Therefore, equating the nodal variables along edge 1-2 of element A in the 
figure to nodal variables along edge 3-4 of element B will ensure continuity 
of w and wy as requitred. In exactly the same manner we can show 
continuity of w and wx along edges parallel to y axis. 
 

 
 
 
 
 
 
 

Thus, the plate bending element discussed here is conforming in the sense 
so that the potential 

e as strain energy from below as was shown for the 
beam problem, i.e. potential energy is bounded above and strain energy is 
bounded below. 

 
 
 
 

 

1 and 2 fo

 
 
 

that displacements and normal slopes are continuous 
energy theorem does apply. We expect monotonic convergence of potential 
energy as well as strain energy. Potential energy will converge to the exact 
value from above wher

 
 
 
 

 



7- Alt
The alternative method for deriving the stiffness matrix and the consistent 
load v  in the 
previo  to any 
rectangular or triangular elements. 

an multiply out these polynomials in eq1 of the 

yx +

to cubic terms. Using 
aylo series approach e r in w is f(h4) where h =typical element 

dimension 
Error in strain f(h2) (strain are second derivatives) 
Error in strain energy is f(h4) 
For h=L/N, the strain energy error is f(N-4 where n=number of elements 
along  side of length L Generally for convergence rate study, use square 
elements. Asymptotic convergence rate is N-4. When w is given in the form 
of above equation, it is obvious that w(x,y) contains rigid body modes and 
constant strains. 
We can write the polynomial in the following form: 

ernative Method for Plate Bending Element 

ector is presented for the conforming element discussed
us section. However, the approach is general enough to apply

Although, we used Hermitian polynomials in deriving the displacement 
approximation, one c
previous section and obtain the following expression: 
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n this equation, the polynomial is complete only up
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Let us first obtain the stiffness matrix in terms of ai,s and later transform to 
obtain [K] in terms of w ,s. 
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y term has been split into two terms tp preserve symmetry 

It is obvious that this integration is not valid when m=-1 or n=-1 and blows 
up for m≤-1 or n≤-1 at lower limit i.e. x=0 (m=0,1,2,… and n=0,1,2,…). 
Strain Energy Can be written as: 
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i.e. if we change I with j Ue is still the same. 

 26



 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+−+−+−−+−−

+−++−−++−+−−
=

=

0003000200010000
0000003000200100
0000000000010
0000000000001

9663430220010000
3323232020100
3232302302010

1
0000030020010000
0000000000100
0000000003002010
0000000000001
0000000000010000
0000000000000100
0000000000000010
0000000000000001

][

:][

)2,2()1(2)1)(1()1)(1(

)4,()1)(1(),4()1)(1(

}]{}[{
2
1

2

2

2

32

222222

2322322322

3232232222

3332233223322322

2

32

2

32

bb
bb

bb
bbb

baabbabababa
bababaabbaabababa
baabbababbabababa
bababaabbabababbaabababa

aa
aaa

aa
aaa

T

computedbetohasmatrixTthenext

nnmmGnnmmnmnmnmnm

nnmmGnnnnnnmmGmmmm
DK

AKAU

jijijijiijijjiji

jijijijijijijiji
ij

e

ννν

 

-Either we can program the matrix above or determine in a more 

l

 
Where ε is a very small number, ε=10-13, instead of zero. 
This helps retaining some more accuracy and some times makes the 
inversion possible especially for triangular elements which may 
exhibit some orientation preferences. 
Then: 
 
 
 
 
 
 
 
 
 

general form as follows: 
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continue
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The matrix [T] is then inverted and the stiffness matrix is the global 
oordinates is calculated: c
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one h
becaus
may l . terms like mi+nj-4, etc. For 
examp =0, n1=0 then m1+m1-4=-4 and n1+n1-4=-4. These are the 
smallest possible indecises  for G(m,n) or [G]. This can be avoided by 
taking a matrix [F] such that: 
F(m+5,n+5)=G(m,n) 
Where [F] has dimensions at least 4 larger than [G] would require.  

as to be cautious when computing G(m,n) or [G] matrix. This is 
e some of the terms (lower order) in the polynomial of equation 1 
ead to negative or zero m and n i.e
le, m1
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Load Vector 
Assume constant load q0/unit area applied to the plate. Therefore, work 
done is given by: 
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Stress Matrix for Obtaining Moments (for an element) 
Recall: 
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where w is the displacement vector for element under consideration and is 
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Note that the matrix [S] is function of x and y and has to be evaluated  at the 
points (xi,yi) where bending moments and twisting moment are desired to be 
evaluated. 
The [T]-1 matrices can be stored away e.g. on a file so that these can be used 

r determining moments later, i.e. after displacements have been 

ioned earlier, the procedure is general and only changes need to be 
made are integration routine, different data for mi and ni and changing sizes 
of various matrices. The logic does not change at all. 
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8- Triangular Element for Conforming C1 Continuity 
Using quintic polynomial for the displacement field: 
Equation 3 
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Edge Geometry 
Consider the ith edge defined by nodes i and j as shown. Let s be the running 
coordinate along the edge and  be the unit outward normal to the ith edge: 
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Option Two 
Equation4 (a-f) for corner nodes still apply. These yields 18 eqns and 
therefore three more equations are still to be accounted for. Note that for a 

uintic polynomial, the normal slope along all three edges vary as quartic 
omial). 

Consider only the 5  degree term in equation 3 and denote this partial 
w(x,y) as wp i.e.: 
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8.2-  Transformation of Nodal DOF along an Inclined Edge 
Before any boundary conditions can be applied along an inclined edge, all 
first and second derivatives must be transformed to perpendicular and 
parallel to the edge. 
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9- Two-Dimensional Creeping Flow 
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9.1-    Fully Developed Parallel Flow 

 36

u0 R=0.5 

10 

Section  2 Section 1 

x 

y 

Section  2 

Ψ=1 

Ψ=0 

1 

x 

y 

Section 1 
twotionon

edgetoponand

edgebottomatand
onetiononandyy

sBc
yy

V

yy
y

U

x

y

y

x

sec0

01

00
sec023

'
1)1(0)0(23

0

)1(6

32

32

=

=Ψ=

=Ψ=
=Ψ−=

==−=

=

−=
∂
Ψ∂

=

ψ

ψ

ψ
ψ

ψψψ

 

 
 
 
 
 
 
 
 
9.2-  Flow Past a Cylinder 
 
Computational domain=20xR away,  
flow can be assumed uniform 
Bc,s: 
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