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1- Plate Bending (Review of theory)
Linear elastic small deflections

Assumptions:

1. Plateisthin (h<<L where L=typical length)
2. Normals perpendicular to the mid-surface remain norma to the

deflected mid-surface.

3. Small deflections (norma to the plate) so that the mid-surface

remains unstretched

Also note that t,,<<t, and Ty,

Deflections:
Displacements of B to B'

u=-z sin az-za=-z% similarly, v=-z%
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1.1- Stresses (Isotropic Case)
Plane stress in xy plane

Ty =5 (Ex +VEY) =~ E22 62\;\1+v82\;v)
1-v 1-v© ox oy
TW=L2(V5‘XX+8 )=— E22 v822v+82\;v)
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Secti on properties (resultants stresses as bending and twisting moments)
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Where D is the bending rigidity and My, M, are bending moments per unit

length about x and y axes, respectively. M,, and My, are the twisting
moments per unit length about x and y axes, respectively.

1.2- Shear Forces

Where Qy and Q, are the shear forces per unit length on edges whose
normals are x and y axes, respectively.



1.3- Equilibrium Equations
q(x,y) isthe transverse load per unit area:

+—L dy

M,y
oQ Q

Z F, =-Q,dy-Q,dx+(Q +6—X"dx)dy+(Qy +a—yydy)dz +q(x, y)dxdy =0

cancelling terms gives:

Qx Ny _
v + & +q(x,y)=0

Moment Equilibrium ignoring the second order effects :

M My
Z M, =M, dx—(M,, +7dx)dy+Qdedy—M Wy + (M, +7dx)dy =0

or:
oM, oM
LA | +Q, =0
oy OX
M oM
Z My =M dy+(M, + aa X dx)dy — Q, dxdy + M, dx— (M, +a—xydy)dx=0
X X
or:
aM_XX_aM_XV_Q =0
X oy X

E liminating Q,and Q, and substituting inequations:
Q, 9°M, 0°M,
oy oy? OyOX
0Q, 9°M, O°M,

= - then :
OX Ox 2 0yox
o o 22M 02M 0%M
Qu +&+q(x, y) = X _2 Yoy W +q(x,y)=0
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Substitute for M, M, and M, :
= D(Wexx +wvxxyy)_ 2D(1- V)Wxxyy - D(VWxxyy + Wyyyy) +q(x,y)=0
D(Wxxxx + 2Wxxyy + Wyyyy) =q(x,y)
4 4 4
4 4 O 0 0" . . .
DV®w=q(x,y) where V° = 2 +2 st I called biharmonic operator
OX ox“oy: oy




Also encountered in many other engineering problems, e.g. very viscous or
creeping incompressible flow, stress analysis using Airy's stress function ¢
or V*$=0 (compatibility equation)

1.4- Strain Energy
Thisis analogous to beam bending.
Energy stored=Elastic work done by moments

1 1 1 1
du = _E(M Xxdy)WXXdX—E(M yydx)wyydy +§(M Xydy)wxydx +E(M yde)wyxdy

note:M, =M, Wy =Wy,

1
U :E” (— M Wy =My Wy +2M Wy, )dxdy
A
Substituting forM ,, M, M, from above equations :

1
U :E-” [D(wXX + W )Wy + DWWy, +wy ) +2D(1- v)wxyz]dxdy

A
U :%” [WXXZ +Wyy2 + 2, Wy + 2(1—V)ny2]dXdy
A
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1.5- Boundary Conditions x=0 =2

a) Simply Supported Edge

1) along x=0 and x=a edges / y=b
w=0 and M,=0 Y
But if w=0 along y on x=0 then w,=wy,=0
Therefore wy=wy,=0
Myx=-D(WyxtvWyy)=0 .. Wy,=0

2)along y=0 and y=Db
w=0 and M,,=0 or wy,=0
for w=0 along y=0 and y=b, w,=0 and w,,=0

b) Clamped or built-in edge

1) along x=0 and x=a

w=0and & _-w -0
oX

2) along y=0 and y=b

w=0 and %:wy =0

c) Free edge

There are no restrictions on displacements- no edge forces.
Oneistempted to say that along x=a

Q«=0, M,=0 and M,=0
This is wrong because only two independent conditions are allowed.

According to kirchhoff, should use only two, i.e. My,=0 and T,=0

oM

(effective shear force) where, 1, =Q, - ayxy -ois effective shear force

along the edge.
1.6- Potential Energy

Potential energy of the plate bent to transverse load g(x,y) is given by:
r=U-W

= % J.J. [WXXZ + WW2 + 2, Wy +2(1- v)wxy2 ]dxdy - ” gwdxdy
A A



2- Rectangular Plate Bending Elements

2.1- Non-conforming Rectangular finite element use deflection and two
slopes as generalized displacements at each node i.e. use w, wy, Wy as nodal
degrees of freedom. This element has wide use application and performs
very well. A

y
W31 WX3!Wy3
3 4
b X
1 2 -
< a >
W1, Wx1,Wy1

With three dof per nodes, we have 12 dof per element, therefore, require a
twelve term polynomial

W(X,Y) = a, +a,X+azy +a,X> +aXy +a,y° +a,x> +ax’y +axy’ +a,,y° +a, X’y +a,xy’

i.e. complete cubic plus two terms (x’y and xy®) polynomia of above
equation satisfies the homogeneous plate equation DV*w=0, this fact is of
little significance in the finite element formulation.

Rigid Body Modes

W=constant (translation) and also need two rotations. Three rigid body
modes required are included through a;+axx+agy in the polynomial of above
equation.

Constant Strain

In plate bending, the strains are curvatures and twist i.e. Wiy, Wy, and Wwyy.
This is provided by the second degree terms i.e. ax*+asxy+agy” which are
also included.

Continuity

The polynomial in above equation has been chosen carefully and for a very
good reason we included x% and xy® terms instead of x* and y*. For
constant y, w(X,y) is cubic in x and vice-versa. Now a cubic polynomial in
one dimension contains four independent parameters or coefficient which
may be specified uniquely by two conditions at each end point (i.e. the end
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nodes. This particular feature leads to ensuring displacement continuity
between adjacent elements. We will ook into it in more detail later.

Generalized Displacement

The element formulation begins by first solving for generalized
displacements from displacement function. This yields the following matrix
equation;

W, O 0 0O 0 0 0 0O O O0lfa
Wy o 0 0O 0 0 0 0 0 o0 f|a
Wy 0O 0 0 0 0 0 0 0 0 |a
W, a? 0 0 a> 0 0O 0 0 0 |a,
Wy, za 0 0 3® 0 0O 0 0 0 |lag
Wyo O a 0 0 a* 0 0 a® o0 ||ag

w

a’ ab b? a® a®hb apb® b® ab® ab®lla,

R OO PFrR OOCTCRFrROOZR OO

OFrPr OO0 FrR 9 OFr 9 O Fr O

=
w
O O0OFr OO0OFr OO Fr OO0 R

W,s za b 0 3a® zab b?> 0 3a® bd||ag
W3 0 a z 0 a® 2ab P> a’> 3ab||ag
W, 0O 0 b2 0 0 0 b> 0 0 |lag
W4 O b 0 0 0 b*? 0 0 b®lla,
Wy | | 0O 02 0 0 0 B> 0 0 lap
or {w}=[TI{A}
where {A}=<ap,a,........ Qo>

The matrix [T] in equations above can be inverted in order to solve for { A}
as functions of the generalized displacements. Once &, & etc. are
substituted back into displacement function, we obtain deflection in terms
of the generalized displacements w;, Wyi, Wys,....€tC. as:



Equation 1

a(l-&)%£(1-n)
b@d-&)nd-n)?
all- £ - (3-26)£2(-n) - (1- £)3- 27
—a(l-&)E2(1-7)
b(d-7)?én
al3-26)£2-n) + En-ma-2y)]
—a(l-&)é%
~b@-n)én?
al(3-26)% - £n-n)a-21)
a(l-&)%né
~b(1-&)A-n)n?
al(1- @3- 2702 + £0-E)A-28)]

w(E,n) ={W}'

where {w} is the column vector of nondimensiona generalized
displacements:

T
{W} = [le Wyl W, la Wy Wy2 Wy /la Wy - - Wyg . ]
X y : , :
E==— n= m are non—dimensional coordinates
a

Each row in equation of w(&,n) represent a shape function or interpolation

function N;. We may write it as:
12

w(En) = Ni(&n) s, where s, =w, &,=w, & =-2 etc.

i-1 a
A Ns N1 A
n n
1 / Zéro slope /
Zero|slope alpng her
1 p

1 & N, g

ra |§=o;7=o -
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Now that we have the displacement distribution within the element defined
by displacement equation, we may ask what continuity will be provided by
the element. Consider for example, the joining of two elements A and B
together asillustrated in the Figure.

W =Wy H g (X) + Wy H g5 (X) + Wy Hpq (X) + Wy Hyps (X)

A Y
4 3
E
1 2|
4 3
A X
1 2

Ny,
L

Joining two elements along edges parallel to x

For element A, the displacement along edge 3-4 is obtained by putting n=1
in equation 1.

W (€)= W,y (1362 +28%) + aw, S (1- &) + W (3- 26)° —aw, g * (1~ &)
for element B, the displacement along edge1-2 (7 =0) is :

Wg (£) = Wy (1362 +28%) + aw, (1~ &)* + Wp(3- 28)& % —aw, & * (1)

It may be seen that the same function of & occur in these two equations.
Therefore, if wy, Wyy W,, Wy, Of element B are equated to Wy, Wya, W3, Wyg3,
respectively of element A, w will have to be continuous between the
elements. Similar arguments are easily made for edges parallel to the y-axis.

What about slopes normal to the edges?
There is no continuity of slopes normal to the element edges. This can be

shown by taking derivatives of w with respect to ) and substituting n=21 for
element A and n=0 for element B.

It will be found that % terms along those edges are cubic and there is no

way we can make normal slopes continuous by equating wys and wy, of
element A to wy, and wy; of element B, respectively.
Therefore, the element is called non-conforming

11



2.1.1- Stiffness Matrix

Calculate the stiffness matrix for the non-conforming plate bending element
by substituting equation 1 into expression for strain energy. After, carrying
out integration over the area of the element, we obtain the quadratic form in
term of generalized displacements (as expected) for strain energy:

U, =200} [KIQW)

Here, [K] isthe 12 by 12 stiffness matrix for the element and is given in the
following page.

Note, this matrix has been derived for { W} as given in equation of 5;=w,/a,
dg=W2/a, d9=Ws/a and 6;,=ws/a i.e. in dimensionless displacements. To
allow w's to take on dimensionless displacements, the 3°, 6", 9" and 12"
row should be multiplied by a again. Further, if the degrees of freedom are
desired to be arranged as:

T
{W} :[Wl le Wyl W2 Wx2 Wy2 W3 Wx3 Wy3 W4 Wx4 Wy4]

Then the rows and columns should be rearranged accordingly, e.g. 1% and
2" rows should be moved into second and 3" rows. And 3™ row should be
placed into 1% row, etc, etc., etc.

12



The stiffness matrix for the plate bending element may also be derived
following the aternative method we discussed for beam element.

Figure 1 Stiffness Matrix for 12 parameter Rectangular Element (non-conforming)

2 2(1-v)m a
—+ m=—
am 15 b
r 2m, 22y SYMMETRIC v = PoissorisRatio
2 3 1&m
1. 0+4) 55,2 (7-2)m
m 10 m
1 @-vm 0 1 N @-v)m 2 N 2(1-v)m
3n 30 m 10 3n 15
0 m_2A-v) m_(1+4) _y m, 2A-v)
3 1&m 2 10 2 3 1&m
-1 md-v) m* (1+4v) o2 @-22m 1 @eam L, (d) 5 2 (7-2)m
m 10 2 10 m 5 m 10 10 m 5
1 N m(l—v) 0 1 ml-v) 1 2md-v) 0 -1 N m(1+4v) 2 N 2m(l-v)
6m 30 2m 10 3m 15 2m 10 3m 15
0 m (@-v m* (@-v) 0 m_ (@1-v) 2, @-v v
6 30m 2 10 3 30m 10 2
-1 ml-v) ;ranr(l—v) e L, @-2m -1 @am o @-y) s 1 (7-2)m -1 mil+4)
2m 10 2 10 m 5 2m 10 10 m 5 m 10
-1_2md-v) 0 1 _@+4)m 1 (@A-v)m 0 -1, a-vm 1 _md-v)
m 15 2m 10 6m 30 2m 10 3n 30
0 m_(@-v) 2, d-vm 0 m. (- m_(@-v) 0
3 30m 10 6 30m 2 10
1 ml+4) _(m2+(1—v)) _2m3+i_(7—2v)m 1 @d-v)m -m? +(1—v) _m3_i+(7—2v)m i+m(1—v)
2m 10 10 m 5 2m 10 2 10 m 5 m 10
CONTINUE
@4_ 2(1-v)
3 15m
— m2 +M 2m3 +£ +M
10 m 5
0 1 (@-vm £+ 2(1-v)m
m 10 3m 15
m_201-v) —m? L @+4) v 2m_ 21-v)
3 15m 2 10 2 3 15m
2 J— J—
-m +(1+4v) . _E_m(? 2v) 1+(1+4v)m _mz_(1+4v) om? +E+(7 2v)m
2 10 m 5 m 10 10 m 5
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2.1.2- Consistent Load Vector

Assume uniform pressure . Recall from equation of potential energy ,
the work done W is given by:

W = [ agwaxdy ={p}" (W}

A
where A, is the element area, and {w} is given by equation 1, when
equation 1 is substituted into above equation and integrating, the load vector
for the element in dimensional form:

{p}T—abqiil _ill a b 1 a b 1
Tl o4 24 4 24 24 4

24 24 4 24 24 4

When nonconforming elements are used to obtain an approximate solution
for some loading, generally we use reasonably large number of elements
and can obtain reasonable answer by using lumped load i.e. quab/4 at each
corner node. However, for very refined elements, we must use consistent
load vector since much fewer elements are used. In such cases, we may be
introducing an undesirable error through lumped loads.

2.1.3- Stresses
Bending and twisting moments

Define:
WXX
{e} =qw,, + strain and curvature
Wy,
IleX
{r}=<M, ¢+ stresses and moments
My
M,y -1 —v 0 ||wy
{f}=\M,, ¢=D/-v -1 0 Rw,,
M,y 0 0 1-viw,
{z} =[DKe
-1 -v O 3
Eh
[D]=D|-v -1 O D= 5
0 0 1-v 12(1-v°)

From the shape functions in equation 1, we can obtain Wy, Wy, and Wy.
Further, these can be evaluated at various points (x;, y;) or (§;, n;) and hence
My, Myy and M,y can be evaluated at specified points.

We must know {w} before we can compute { t}.

14



2.1.4- Boundary Conditions (Kinematic)

Along AB and AD, the plate is simply supported,

AB: w=0 and w,=0

AD: w=0 and wy=0

Along cd, the plate is clamped w=0 and w,=0 and w,=0
Nothing specified on free boundary.

Clamped
-
2]
3 D C
Z Free
g
e
g || B
8
Simply supported

2.2- Note on Continuity

Both w and its normal derivatives or normal slope must be uniquely
determined by values along an interface or edge of an element in order to
ensure, C; continuity.

Consider edge 3-4 of the rectangular element shown.

A
y
n
T W31 Wx3,Wy3
3 4
b X
1 2 o
< a >
W1, Wx1,Wy1

Here, wy=wy, the normal slope. It is desired that w and wy, be uniquely
determined by the values of w and wy and wy at the nodes lying along edge
3-4.

15



W=a; +a,X+agXx” +...
oW 2

aong edge 3-4 with the number of constants & and b; in each expression
just sufficient to determine the expressions by nodal parameters or dof
associated with the line.

- With w and wy as nodal dof at each nodei.e. two nodes, we can allow only
four g (ay, & , as and a,) or at most cubic variation in x along 3-4.

Similarly only a linear variation can be allowed i.e. two terms (b, and by)
for wy;. In the same manner, w, can be made continuous along the edge
parallel to they axis (wy=c;+Cyy adong 2-3)

Therefore, along edge 3-4

-wy depends on nodal dof of edge 3-4

and along edge 2-3

-W, depends on nodal dof of edge 2-3

Differentiate wy, along edge 3-4 wrt x ->W,,

Differentiate wy aong edge 2-3 wrt y —W,

The first depends on nodal dof of edge 3-4 and the second depends on nodal
dof of edge 2-3.

At common node 3 Wyy | 347 Wy | 2.3

Because of arbitrary nodal dof at nodes 2 and 4 where as for continuous
functions wiyy,=wyy (b~Cy)

Assertion: It is therefore, impossible to use simple polynomials for shape
functions ensuring full compatibility when only w and its slopes are used as
dof at nodes.

If any functions satisfying compatibility are found with the three nodal
variables, they must be such that at corner nodes they are not continuously
differentiable and the cross derivative is not unique.

So far we have applied the argument to a rectangular element, we can
extend this for any two arbitrary directions of interfaces or common edges
at node 3 (triangular or quadrilaterals).

Unfortunately, this extension requires continuity of cross derivatives in
severa sets of orthogonal directions, which in fact implies a specification of
all second derivatives at a node. This leads to excessive continuity that
violates the continuity requirement of potential energy theorem, aso the
physical requirements. If the plate stiffness varies abruptly from element to
element then equality of moments normal to the interface cannot be
maintained.
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3- Elements for C* Problems

Constructing two-dimensional elements that can be used for problems
requiring continuity of the field variable ¢ as well as its normal derivative
¢n along element boundaries is far more difficult than constructing elements
for C° continuity alone. To preserve C' continuity, we must be sure that ¢
and ¢, are uniquely specified aong the element boundaries by the degrees
of freedom assigned to the nodes along a particular boundary. The
difficulties arise from the following principles:
1. The interpolation functions must contain at least some cubic terms
because the three nodal values ¢, ¢, and ¢, must be specified at each
corner of the element.

2. For non-rectangular elements, C' continuity requires the specification
of at least the six nodal values ¢, dx, dy, dxx, Pyy, 8N Oy, at the corner
nodes. For a rectangular element with sides parallel to the global
axes, we need to specify at the corners nodes only ¢, ¢y, ¢y and dyy.

It is sometimes very convenient to specify only ¢, ¢« and ¢, at corners, but
when this is done, it is impossible to have continuous second derivatives at
the corner nodes. In general, the cross derivative ¢,y will be directionally
dependent and hence, nonunique at intersections of the sides of the element.

Analysts first began to encounter difficulties in formulating elements for C*
problems when they attempted to apply FE techniques to plate-bending
problems. For such problems, the displacement of the mid plane of the plate
for Kirchhoff plate bending theory is the field variable in each element, and
interelement continuity of the displacement and its slope is a desirable
physical requirement. Also, since the functional for plate bending involves
second order derivatives, continuity of slope at element interface is a
mathematical regquirement because it ensures convergence as element sizeis
reduced. For these reasons, analysts have labored to find elements giving
continuity of slope and value.

Rectangular Elements

Whereas triangulars are the simplest element shapes to establish C°
continuity in two dimensions, rectangles with sides parallel to the global
axes are the simplest element shapes of C' continuity in 2 dimensions. The
reason is that the element boundaries meet at right angles, and imposing
continuity of the cross derivatives ¢y, at the corners quarantees continuity of
the derivatives that otherwise might be nonunique.

A four-node rectangle with ¢, ¢, ¢y and ¢, specified at the corner nodes
assigns a 16-dof element.
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4- Triangular Elements

For C! continuity, by assigning 21 dof to element, we can make a complete
quintic polynomial to represent the field variable ¢. When ¢ and all first
and second derivatives are specified at the corner nodes. There are only 18
dof, so 3 more are needed to specify the 21-term quintic polynomial.The 3
dof are obtained by specifying the norma derivatives ¢, at the midside
nodes. This element quarantees continuity of ¢ along element boundaries
because, along a boundary where sis the linear coordinate, ¢ variesin s as
aquintic function, which is uniquely determined by six nodal values,
normal, ¢, ¢s and ¢ at each end node.

Slope continuity is also assured because the normal slope along each edge
varies as a quartic function which is uniquely determined by five nodal
variables, namely ¢, and ¢, at each end node plus ¢, at the midside node.
The presence of midside nodes is undesirable because they require special
bookkeeping in the coding process, and they increase the bandwidth of the
final matrix.

Apparantly, C' continuity is not aways a necessary condition for
convergence in C' problems. Experience has indicated that convergence is
more dependent on the completeness than on the compatibility property of
the element. The following table shows a sample of incompatible elements.
Any of these elements can be used in the solution of continuum problems
involving functionals containing up to second-order derivatives.

The analysts may ask, which element should | use to sole my problem?
Unfortunately, no general answer can be given because the answer is
problem dependent.
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Some Incompatible Elements for C' Problems
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5- Nonconformin Triangular Plate Bending Elements

we need an element of more genera shape

Triangular elements fit curved edges more appropriately than the
rectangular elements

Again consider local coordinates £ and n. We shall use
transformation matrix to go back to x-y system.

Consider w, w;, w,, as the dof at each node.

A cubic has 10 generalized parameters:

W=ay +a,5 +agn+a,E” +asdn+agn’ +a,;8° +ags i +agdn® +ayn°

for the element we have 9 dof but 10 generalized parameters in above
equation. Therefore, must delete one of & (i=1,2,...,10) or add a dof.

Possibilities:

a)

usew at centroid as an extra dof

-this element doesnot work sometimes and also exhibit poor
convergence

-Certain orientations may lead to less than a cubic along one of the
edges and violates w continuity requirement

b) Throwaway one term- say as=0

This violates constant curvature or constant strain energy requirement

i.e. will not work since w;,=constant not present

c)

combine two terms, i.e. equate ag=ay

-we get ag(£°n + £n°) which keeps some symmetry.

-in general, ruins isotrophy of the polynomial so we expect
orientation problems.
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d)

Recall:

{{ ?} =[Tl1i0a0o{ At104

1041
A= a, . ... ... a]
{w} = [Wl Wer Wopo v v v v e W3

[T] matrix becomes singular sometimes. This happens when two of
edges are paral€l to the global axes (x,y).

Use area coordinates (Zienkiewics, 9dof triangular element)

-explain lack of full cubic because of only 9 dof. Let uslook at (c) in

more detail. [T] matrix
i e o -

1 -b 0 b2 . . . . . .[|*

0 1 0 -2

[T]=

1 -1 |

The last equation is a constraint equation i.e. ag-a,=0

Thisisamore elegant way of doing it.

Det[T]=c>(a+b)>(c+b-a)

If a=c+b or c+b-a=0 then det[T]=0 and we cannot invert [T] to
formulate the element.

If this situation is avoided then:
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e
{N—U]{o}

this can be written as:
{ A} 10x1 = [Tz ] 10><9{W} ox1

[T,]contains first 9 columns of [T]?
then

wem=l & n £ & n? & &t e pPlTW

W(&,7) =[p]" 3a0[T2]10.0{ W} 9q
to transform from {w} to {w} = [Wl Wy Wy oo Wy3]

{W} = [R]{w}
where [R]

[Ry][0] [O] 1 0 0
[R]=| [0] [Ry] [O] [R;]={0 cos@ siné
[0] [0 I[R4] 0 -sind cosé
where @ is the angle between (&, 77) and (x, y) axes.
A
AY n

0 Det [T]=0

45
a=C

Ny,

> X
6- Conforming Rectangular Element (16 dof)
Nodal degrees of freedom at each node are w, wy, Wy and w,y. Extra dof w,y
Is permissible as it does not involve excessive continuity. Thus, we have 16
dof per element and a polynomial expression involving 16 constants could
be used. We retain terms which do not produce a higher order variation of w
or its normal slope than cubic aong the sides. There are many aternatives
as far as choosing the polynomial is concerped. But some of these
alternatives may not produce invertible [T] matrix.

A

W3, Wx3,Wy31ny3
3 4
b
1 2 X
< a >
W1, le,WyLnyl

Y
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An alternative is to use Hermitian polynomials. These are one dimensional
polynomials and possess certain properties. A Hermitian polynomial
H" 1i(X) isapolynomial of order 2n+1 which gives, where x=x;:

Equation 2
d*H
dxX
and
d“H
dx*

=1 k=m for m=0ton

=0 k#m or when X=X

A set of first order Hermitian polynomaols is thus a set of cubics giving
shape functions for aline element ij and at the ends, slopes and values
of the function are used as nodal degrees of freedom along 1-2

He(X) = i\q(Zx3 —3ax* +a%)
a

1 1 3 2 X
Hoz(x):——3(2X —3ax°) *r—>
a
1 le )
H (x) = = (x® - 2ax® + a®x
1 (X) 612( ) < >

1
H 1 (%) =?(X3 - ax®)

These polynomials are plotted in the following figure.
Note these polynomials provide unit values of displacements and slopes at
one end and zero at the other as was implies by equation 2. assume w(X,y)
of the following form:

W(X1 y) =H ol(X)H ol(y)Wl +H 02 (X)Hol(y)wz +H 02 (X)H oz(y)W3 +

H 01(X)H 02 (y)W4 + H11(X)H 01(y)Wx1 + H12 (X)H 01(y)Wx2 +

H o (X)H 0 (Y)Wyz + Hypg (X)H g (Y)W, +H g (X)H 11(y)Wy1

H 02(x)Hll(y)wy2 +Hg(X)Hy, (y)wy3 +H 01(x)le(y)wy4 +

H 11 (OH 13 (WWyyq + Hyp (OH 13 (Y)W + Hpp () H 15 (VIWyy3 + Hyg () H 15 (V)W 4
The superscript for H has been dropped since all Hy; are 2x1+1=3" degree
polynomials (n=1). Further for H,(y), just replace x with y and awith b.

Checks

1. we can show that w(x,y) has three rigid body modes (can be

shown by performing an eigenvalue analysis)
2. we can also show that w(x,y) has constant strain modes.
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3. continuity: look at edge 1-2 of the element:

W =W H g1 (X) + W5 H gp (X) + Wyq Hyg (X) + Wy Hp (X)

wy: only those terms having Hi1(y) will have non-zero values

Wy, =Wy H og (X) + Wy o H gp (X) + Wy Hyg (X) + Wy o Hypp (X)
from above two equations, we note w and w, depends on nodal dof at nodes
1 and 2 for edge 1-2.
Similarly, we can show that we get the same expressions for w and wy along
edge 3-4 except w, replaces wy, Wi replaces w,, €etc.
Therefore, equating the nodal variables along edge 1-2 of element A in the
figure to nodal variables along edge 3-4 of element B will ensure continuity

of w and wy as requitred. In exactly the same manner we can show
continuity of w and wy along edges parallel toy axis.

A Y

4 3
A
1 2|
4 3
E X
1 2

Thus, the plate bending element discussed here is conformi ng in the sense
that displacements and normal slopes are continuous so that the potential
energy theorem does apply. We expect monotonic convergence of potential
energy as well as strain energy. Potential energy will converge to the exact
value from above where as strain energy from below as was shown for the
beam problem, i.e. potential energy is bounded above and strain energy is
bounded below.
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7- Alternative Method for Plate Bending Element

The alternative method for deriving the stiffness matrix and the consistent
load vector is presented for the conforming element discussed in the
previous section. However, the approach is general enough to apply to any
rectangular or triangular elements.

Although, we used Hermitian polynomials in deriving the displacement
approximation, one can multiply out these polynomials in eql of the
previous section and obtain the following expression:

W(X, y) = a; +a,X+azy +a x> +agxy+agy? +a,;x> +agx’y+agxy? +a,,y°> +a,,x°y +

2.2 3 3,2 2.3 3.,3
Ap XY taXy +tapXy taXTy +taeX'y

In this equation, the polynomial is complete only upto cubic terms. Using
Taylo series approach error in w is f(h*) where h =typical eement
dimension

Error in strain f(h?) (strain are second derivatives)

Error in strain energy is f(h?)

For h=L/N, the strain energy error is f(N**) where n=number of elements
along a side of length L. Generally for convergence rate study, use square
elements. Asymptotic convergence rate is N, When w is given in the form
of above equation, it is obvious that w(x,y) contains rigid body modes and
constant strains.

We can write the polynomial in the following form:

16
w(X,y) = Z ax™m
i—1

m'=010210321032132 3

("= 0o101201231232 3 3

Let us first obtain the stiffness matrix in terms of a,s and later transform to
obtain [K] in terms of w;,s.
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T
{W} = [Wl Wi Wyl W Wy Wy, Wy4 ny4]

{w} 16x1 — [T ]16><16{ A} 16x1

xyl

{A}T _[ ale]
16
W, =Y m(m; —Dax™2y"
i=1
16
w, =Y n(n -Dax™y"?
i=1
16
w,, =Y mnax™ Tty
Z%J' [ O 2u, w yy+2(1—v)wxy2]dxdy
A
mm. (m —D(m; —)x™ MY e (g =D, DXy
b
U, :%j I [m m, —1)(n; 1) + m;n, (m, —1)(n, _q ey dxdya,a;
0 2(1 v)m mjninjxmi+mj72yni+nj—2
Define :
j{ j‘ m+lbn+l
G(m,n) = x"y'dxdy = ————
5 b (m+D(n+1)

Note that Wy, Wy, term has been split into two terms tp preserve symmetry
i.e. if we change | with j U is till the same.

It is obvious that this integration is not valid when m=-1 or n=-1 and blows
up for m<-1 or n<-1 at lower limiti.e. x=0 (m=0,1,2,... and n=0,1,2,...).
Strain Energy Can be written as:
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Ue - S{ARIA

Kij =

_ mim; (m; =)(m; =DG(m; +m; —4,n; +n;)+nn; (N =H(n; —~HG(m; +mj,n; +n; —4) +
b [vminj(mi —1)(nj —1)+1mjni(mj =D(n; —1)+2(1—v)mimjninj]G(mi +M; =2,n; +n; -2

next the [T] matrix has to be computed :

1000 0 O O O O O O 0 0 0 0 0
0100 0 O O O O O O 0 0 0 0 0
0010 0 0 O O O O0 O 0 0 0 0 0
000O0O 1 0 O O O 0 O 0 0 0 0 0
1a0a 0 0 a® 0 0 o© 0 0 0 0 0 0
0102 0 0 3> 0 0 0 O 0 0 0 0 0
001 a 0 0 a?> o0 o0 a° 0 0 0 0 0

T 0000 1 0 0 2a 0 0 3% o0 0 0 0 0
1 a b a® ab b2 a® a% apb? b® a’ a%? ab® a%? a%® a%d
0102 b 0 32 2ab b2 0 3a’h 2ab®> b 3a%? 2ab® 33?3
001 0 a 2 0 a%? 2ab »? a® 2a%h 3ab? 2a°b 3a%h? 3a%?
000 0 1 0 0 2a 20 0 332 4ab 3p? 6a’h 6ab? 9a%b?
10b 0 0 b2 0 0 0 b* o0 0 0 0 0 0
010 b 0 0 0 b> 0 © 0 0 0 0 0
001 0 0 2 0 0 0 3% 0 0 0 0 0 0
000 0 1 0 0 0 2 0 O 0 3? 0 0 0

-Either we can program the matrix above or determine in a more
genera form asfollows:
Define: Xx;,V; 1=1234 asthe nodal coordinates

(X1, y1)=(&,8) ,» (X2,¥2)=(a,¢)
(X3, ¥3)=(a,b) , (X4,Y4)=(¢,b)

Where ¢ isavery small number, e=10™", instead of zero.

This helps retaining some more accuracy and some times makes the
inversion possible especially for triangular elements which may
exhibit some orientation preferences.

Then:
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Ty = XYy for i=15913

m;-1 n

Ty =mx.’ Ty for i=261014
Ti=nXeye for i=371115
T = mjn;x, Ty for i=481216

where j=123..16 k=1 for 1=1234
k=2 for 1=56,78
k=3 for 1=9101112
k=4 for 1=13141516
[T] matrix can be programmed
Do 59 k=14
| =4*(k-D+1
Do 60 =116
T(1,3)=x(k)**M@J)* y(k)**N(J)
T +1J)=M@I)* x(k)**(M(J) -1 * y(k)**N(J)
T(1+2J3)=N@)* x(k)**M)* y(k)**(N(J)-1)
60 T(I+3,J)=MI)*NI)*xK)**(M(I)-D*y(k)**(NJ)-2)
59 continue

The matrix [T] is then inverted and the stiffness matrix is the global
coordinatesis calcul ated:
[Kli6as =[T]isa6lk]16as[T 1646
one has to be cautious when computing G(m,n) or [G] matrix. This is
because some of the terms (lower order) in the polynomia of equation 1
may lead to negative or zero m and n i.e. terms like mi+n;-4, etc. For
example, m;=0, n;=0 then m;+m;-4=-4 and n;+n;-4=-4. These are the
smallest possible indecises for G(m,n) or [G]. This can be avoided by
taking amatrix [F] such that:
F(m+5,n+5)=G(m,n)
Where [F] has dimensions at |east 4 larger than [G] would require.
am+1bn+1

(m+DH(n+1)
where F; ;=0 for i=1234 and j=1234

b a
F(m+5,n+5)=G(m,n)=I J‘ x™y"dxdy =
0 0
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Load Vector
Assume constant load gy/unit area applied to the plate. Therefore, work
doneisgiven by:

ab 16
W, :” qowdxdy:j_[ %Z a; x ™" dxdy
A 00 i=1
W, ={AT(F} =(w" (112 {7}
W, =q0§ a;G(m;,n;)
i=1
f,=qoG(m;,n;)  i=12.16

{f}= ([T]‘l)T 16a6{ f}154 load vector in global coordinates

Stress Matrix for Obtaining Moments (for an element)
Recall:

{e} =

w
w
M
{r} =M, ¢ stresses and moments
M
M
M

- -1 —v 0 [|wy
{c}=My, ¢=D|-v -1 0 RKw,,
M,y 0 0 1-vijwy
{7} =[D){¢}
-1 -v O 3
Eh
[D]=D|-v -1 O D= 5
0 0 1-v 12(1-v*)

16
W:Z a; x ™" dxdy
i1
16
Wi 22 m; (m; —D)a;x™ 2y
i1
16
Wy :Z n, (n; —Da;x™y" 2

i=1

16
L
Wiy :Z min;a; X" "y
i-1

Slj = mJ (mJ —1)ij_2ynj

Sy =nj(n; ~HxMy" 2
Sgj=mjn;x 1y
{A =[T]H{w}

{} =[SI[T] H{w}
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where w is the displacement vector for element under consideration and is
extracted from the global displacement vector.

MXX

{}=M :[D]3x3[s]3x16[T]Iéx16{W}l6xl

My

Note that the matrix [§] is function of x and y and has to be evaluated at the
points (x;,y;) where bending moments and twisting moment are desired to be
evaluated.

The[T]™ matrices can be stored away e.g. on afile so that these can be used
for determining moments later, i.e. after displacements have been

calculated.

As mentioned earlier, the procedure is general and only changes need to be
made are integration routine, different data for m; and n; and changing sizes
of various matrices. The logic does not change at all.
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8- Triangular Element for Conforming C' Continuity
Using quintic polynomial for the displacement field:

Equation 3
_ 2 2 3 2 2 3 4 3
W(X,y) =a;+a,X+azy+a,X +agXy+agy  +a; X’ +agXy+agky“ +a;gy° +a; X" +appX’y+

2.2 3 4 5 4 3,2 2.3 4 5
AzXTY " FaAp Xy +agy +a1eXT Fa7X Y+t agX YT +a19XT YT taxXy  +axy
21
wix,y) =Y ax™y"
i1

m}™=01021032104321054321 0
n}'=0010120123012340123 45

There are 21 generalized parameters g's, therefore either 21 dof are required
or 21 indepemdent equations to relates a's to the dof.
e

ni

<V
X vy

Option One Option Two

Option One:
Six dof at corner nodes (1,2,3), i.e. W, Wy, Wy, Wy, Wy, and wy, and one dof
at the mid side nodes (4,5,6) i.e. wn(w, =Vwé,)

Option two:

Only six dof at corner nodes (1,2,3), i.€. W, Wy, Wy, Wy, Wy, and wy, for a
total of 18 dof per element. Additional three equations come from
constraining the normal slope w,, to vary cubically.

31



{w} =[T){a}

{a}' = [al a - . a21]
{W}T = [Wl Wy Wy Wyg Wyn Wyyg - o Wyg Wps WnG]
Edge Geometr

Consider thei™ edge defined by nodesi and j as shown. Let s be the running
coordinate along the edge and &,; be the unit outward normal to thei" edge:

li=\/(xi—xj)2+(yi—yj)2 j=i+1 (for j>3, #=9B)
84 =Cos i +sin B, _
X., .

where j(5.y1)

X —Xi .
COSﬂiZ JI | Sinﬂi:yjl yl

i i
8, =sinBii —cosf3: |
also along the i™ edge :
X=scosp; and y=ssing; >
i" edge

Option One
Equation 4

T =x"yl  k=1+6(-1) i=123and j=123.,21

_ mj-1.n;
T j =M% ' Y,

_ mj N1
Tii2j =NiXi Y

2 N
Tiiaj =m;j(m; ~Dx Ty

. m;-1 n;-1
Traj =Min;X "y

Tiasj =N (0 —Dx;" yi

I =1,2,3takes care of 18dof at the corner nodes.
At mid —side nodes :

oW
on

Tias; =MXs yiasin B —nixsyis cosf  j=123..,21and i =1,2,3(at nodes4,5,6)

{W}opq =[Tlopoi{@} o1 Invert[T]

=W, = VW&, =w, sinf—w, cosf3
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Option Two

Equation4 (af) for corner nodes still apply. Theseyields 18 egns and
therefore three more equations are still to be accounted for. Note that for a
guintic polynomial, the normal slope along all three edges vary as quartic
(4™ degree polynomial).

"additional three equations arise from constraining the normal slope to vary
cubically along each edge.”

Consider only the 5" degree term in equation 3 and denote this partial
W(X,y) aswp i.e.

5 4 3,,2 2,,3 4 5
Wy =836X° +a37X Y + 81X Y7 +819X Y +an0Xy " +ayY
also along an edge:
X=scosf; and y=ssnp,

ow, — oW, . oW,

W: Vw, € =Wsnﬂi —Fcosﬂi

awp _ a16(scosﬂi4sinﬂi)+al7(4cosﬂi3sinﬂiz—cosﬂi5)+a18(3cos,8i2sinﬂi3—2cos,8i4sinﬂi)+ g2
on

a;0(2c0s B; sin 3.4 —3c0s 8;° sin 8,%) +a,y (sin ;> —4c0s B;° sin B;°) +a,, (-5c0s B; sin ;)

Note the bracked term [...] is the combined coefficient of s’. For w,, to be

cubic along an edge [ ...] must be set equal to zero and hence yields three
more equations, from each edge.
Hence,

Tigj =M (Cosﬂi)mj_l(gnﬂi)nj sing; —n; (Cosﬂi)mj (Sinﬂi)nj_lcosﬂi =0
alongedgel23 j=16171819,20,21 and =123

{{{ngl} =[T]onof )

invert[T] and ignore the last three columns of [T]™ to obtain

{@} pq =[T] "22a8{W}igq
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8.2- Transformation of Nodal DOF along an Inclined Edge

Before any boundary conditions can be applied along an inclined edge, all
first and second derivatives must be transformed to perpendicular and
parallel to the edge.

For the first derivatives: ry
W, =AnW; =12 or w;=A4,w,
We=Agw; i=12 or Wi =AW,

s e
where A, are direction cosines of the /iv é sk
nk

unit outward normal &, and Ay arethe
direction cosines of the unit tangential vector &,

\4

For second derivatives: < edge X
W = ﬂniﬂan,ij Wi = ﬂniflst,ij W = ﬂsiﬂst,ij

Wii = AinAisW s Wi = /IinfljsW,ns W = ﬁjnijsW,ns

A =[cos® sind] A; =[-sind cosd]

to obtain A, replace & by 8+90in 4

Ain =[cos® —sin@] n=1forn,n=2 fors

Ajp =|sin@ cosg] i for x j fory

{W,X} _ {cose - sineHw,n} _ [Tl]{w'”}
W, sngd cosd ||Wg W
W cos’d  -2sinfcosd  sn?0  |[w,, W,
W:Xy =|singcos® cos’d—-sin’f —sindcosd W’,ns =[T,] W:ns
W, sin?¢ 2sindcosé cos’0 || wg W g

note : cosé =sinf; SN = —cos
for option2, for edge 1-2 (k —1) as an inclined edge, the followin gransformation will apply

1 0 0 0 0 O]

0 000

[Q1 [0 [O] 10 0 0 000
{why =1 101 [QI [O] {w}ns [Qlee =|0 [Tl [0} =1 o
W |[0] [0 [1]] 8 0 10 [Mlles | o o

000 |

[K]18><18 = [QB ]T18Xl8[ K]18><18[QB]18><18



9- Two-Dimensional Creeping Flow

I :%'Lj (VZ‘P)ZdQ ¥ = streamline function
a=vf vz\ya(vz\y)dgzv” V2 (Sys + Sy O
Q Q
8 =vf v2wsyds—v[[ [v2) o +(72), oy, jio
Q

3 =v§ VP¥sy,ds—v{ (vzw)mawsw” (V2w +(v2¥)  Juae
Q

fieldegn

AV20) +(729) |2 ¥+ ¥y + =0 08 Wy =0

Xxyy yyyy]
Boundaryconditions
either: W% =0 or Sy,=0 on$
either: v(sz/)’nzo or Sy=0 onS
_oy oy

Uy =—— Ug=———

05 on
on solidboundary

AY

u, =us =0
. 5('//n)20
2 : 2 aus aun
also W =v(yn, +ws) e =0 forstraightedge.. W =pu(——+—")=-7,#0
n "o
=O
Alongacentreline u, =0 u; #0 .. o(y,)=0 hence Wzl//zo V21/1=W=0(V0I’tiCi'[yiS Zero)
lookat:

2 2
A7), or ), ]
frommomentunequations Us > ¢ § >
Py = yVZU py :WZV (u =U, and v= Uy) CentreLine
~ ~ 2 u,=0 u#0
e, =cosfdi+sind j
8, =—sinfi+cosh |

1Ny, = 1V (i, coSO+y, SinG) = 1V (v cosP+using) = (Vv cosd+ iV using

V2, =—p, cOsO+ py SiNG = Vpé; :% o WV, =%

19,
gp = Pressuredropacrossa wake s normalto the wakeor freesurface

thesecond boundaryintegral revealsthat if v is not fixed alonga boundarythendy = 0alongs:

for Sy = Othen® =Ny, =0

P
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9.1- Fully Developed Parallel Flow
oY

U=—=06y(1-Y)
oy

V=0

w=3y>-2y° y(0)=0 y@)=1

Bc's

w=3y?-2y® and W¥,=0 onsectionone

w=0 and ¥, =0 atbottom edge

y=1 and ¥, =0 ontopedge

v, =0 on section two ) .
Section 1 Sectign 2

p=1 X

Y A

w=0~,

9.2- Flow Past a Cylinder

Computational domain=20xR away,
flow can be assumed uniform
Bc,s:

Bc's

w=uUyy and Y, =0 onsectionone
w=0 at bottom along x

w,y=Ug and ¥ =10u, on top edge
v,=0 on section two

byl

Y%

Uo R=0.5
Section 1 Section 2
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