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ABSTRACT

This paper addresses blind source separation in convolu-
tive post nonlinear (CPNL) mixtures. In these mixtures,
the sources are mixed convolutively, and then measured by
nonlinear (e.g. saturated) sensors. The algorithm is based
on minimizing the mutual information by using multivari-
ate score functions.

1. INTRODUCTION

Blind Source Separation (BSS) is a basic problem in sig-
nal processing, which has been considered intensively in the
last fifteen years. For linear instantaneous mixtures, the ob-
servations are ��� �	�

, where s is the vector of sources,
assumed to be statistically independent, x is the observation
vector, and A is the (constant) mixing matrix. For separat-
ing the sources, one tries to estimate a separating system,
B, such that the estimated sources are 
����� . For lin-
ear mixtures, it can be shown that the independence of the
components of 
 , is a necessary and sufficient condition for
achieving the separation (up to a scale and a permutation
indeterminacy) [1].

Source separation in convolutive mixtures has been ad-
dressed by a few authors [2, 3, 4, 5, 6, 7, 8]. In that case,
mixing and separating matrices can be modeled by linear
time invariant (LTI) filters, i.e. the mixing system writes:

����������� � ������� � ����� (1)

and the separating system:


���������� ������������������� (2)

For these mixtures too, it has been shown that the output in-
dependence is a necessary and sufficient condition for sig-
nal separation (up to a filtering and a permutation indeter-
minacy) [2]. However, it must be noted that for convolutive
mixtures, the output independence cannot be deducted from
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Fig. 1. PNL mixtures: mixing and separating systems

the independence of  "!#����� and  %$%����� for all � , but requires
the independence of  "!#����� and  %$%���'&)(*� , for all � and all
( . Only a few researchers [9, 10, 11, 12, 13, 14, 15, 16]
addressed source separation in nonlinear mixtures, whose
observations are �+�-,.� � � . The problem consists in restor-
ing the sources by estimating a nonlinear separating system

/�102����� . However, generally, it can be deduced [15] from
the Darmois’s theorem [17] that the nonlinear mixtures are
not separable, i.e. the output independence is not sufficient
for achieving the separation. Taleb and Jutten [15] have
studied a special and realistic case of nonlinear mixtures,
called post nonlinear (PNL) mixtures which are separable.
As shown in Figure 1, this two-stage system consists of a
linear mixing matrix, followed by componentwise nonlin-
ear distortions (due to the sensors). In this paper, we con-
sider the generalization of the PNL model to the case the
first stage is a linear convolutive mixtures. We call these
mixtures convolutive post nonlinear (CPNL) mixtures. This
paper organized as follows. Section 2 contains some pre-
liminary issues about CPNL mixtures, and definitions and
properties of multivariate score functions. The estimating
equations are developed in Section 3. The separating algo-
rithm and experimental results are presented in Sections 4
and 5, respectively.

2. PRELIMINARY ISSUES

2.1. CPNL mixtures and their separability

In CPNL mixtures, the mixing-separating system is then
similar to Fig. 1, but

�
and � are now filter matrices. The

separating system is composed of componentwise nonlinear
blocks, 0%3 , such that 4536�70%38��9:3�� and of a linear separat-
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ing filter, ������� , such that the estimated sources are 
������ �
� ����������������� . For iid sources and FIR mixing filters, the sep-
arability of CPNL mixtures can be directly deduced from
the separability of instantaneous PNL mixtures. In fact, de-
noting

� � ��� � � ��� � , and:

� ���8� � �	� ��
 ����&�:��� ��
 ������� ��
 �������:��� � � ��� 
 (3)� ���8� � �	� � 
 ����&�:��� � 
 ������� � 
 �������:��� � � ��� 
 (4)

we have: � ��������	� � (5)

where � acts componentwise, and:

�� �
���� �	�	� �	�	� �	�	� �	�	� �	�	��	�	� � ��� ! � � � � � ! �	�	��	�	� � ��� $ � ��� ! � � �	�	��	�	� �	�	� �	�	� �	�	� �	�	�

� �� (6)

The iid nature of the sources insures the spatial indepen-
dence of

�
. Then, the CPNL mixtures can be viewed as a

particular PNL mixtures. For FIR mixing matrix
� ����� , (5)

corresponds to a finite dimension PNL mixture and the sep-
arability holds. For more general filter (IIR) matrix, (5) is
an infinite dimension PNL mixture, and the separability can
be conjectured.

2.2. Mutual information

Random variables  "!!� � � �"�8 $# are independent if and only
if: %�& ��
 � � #'

3 ( ! %*),+ �� %3 ��� (7)

A convenient (scalar) independence measure is the mutual
information of the  3 ’s, denoted by -5��
 � , which is noth-
ing but the Kullback-Leibler divergence between %*& ��
 � and. #3 ( ! %*),+ �� %3 � :-5��
 � ��/ � %�& ��
 ��0 #'3 ( ! %*),+ �� %3��8�

�21 & %�& ��
 �43 5 %�& ��
 �. #3 ( ! %*),+ �� %3 ��6 
 (8)

This function is always non negative, and vanishes if and
only if the  %3 ’s are independent.

2.3. Independence in convolutive context

As discussed in [8], in convolutive mixtures we have to con-
sider stochastic processes. For sake of simplicity, we restrict

the discussion to two random processes. Hence, the inde-
pendence of  "!#����� and  %$ ����� is not sufficient. In fact,  "!:�����
and  %$%���/& (*� have to be independent 7 � and 7 ( . As a
result, -5�� �! �������8 %$%�����8� is not a separation criterion, and we
propose [8] the following independence criterion:8 �29;:<-5�� �!#�������8 %$ ����&)(*�8� (9)

In theory, the value of ( must vary from &>= to = , how-
ever in practice we restrict ourselves to the set ? &�@A� � � �"�,@CB ,
where @ depends on the filter lengths. For reducing the
computational cost, we consider a stochastic criterion, de-
rived from

8
by randomly choosing one term -5�� ! �������8 %$%��� &

(*�8� at each iteration (see Section 4). However, since the
nonlinear part does not introduce time delay, one can use-5�� �! �������8 %$%�����8� as a criterion for estimating the nonlinear
functions 0%3 . For sake of simplicity, throughout this paper,
we note 
ED :GF ����� �7�� �! �������8 %$%���)& (*�8� 
 . In convolutive
mixtures, it must be noted that source separation only pro-
vides a filtered version of the sources. However, it is possi-
ble to obtain the contribution of each source on each sensor
by adding a post processing section [7]. Moreover, due to
the filtering indeterminacy, if the mixing filter matrix is a
rational filter:

� �������IH #EJKJ D L FM JKJ D L F #EJON D L FM JON D L F#PNQJ D L FM NQJ D L F #PNKN D L FM NKN D L FSR (10)

the separating system can be constrained to be a FIR filter:

���������IH #PNKN D L FM NKN D L F & #EJON D L FM JON D L F& #PNQJ D L FM NQJ D L F #EJKJ D L FM JKJ D L F R '
3OT U / 3 U ����� (11)

2.4. Score Functions

In memoryless mixtures, Mutual Information (MI), -5��
 � �� 3$V �� %3 � & V ��
 � , can be written -5��
 �)� � 3$V �� %3 � &V ��
 ��&W3 5YX[Z"\^] �_] & . 3 0[`3 ��453�� . Minimizing this last ex-
pression of -5��
 � with respect to the separating system leads
to an equation in which all the statistical knowledge about
the signal is contained in (scalar) score functions. However,
in convolutive mixtures, such a derivation is not possible
due to ������� and it is more convenient to derive directly-5��
 ��� � 3�V �� %3�� & V ��
 � . The derivation then leads to
multivariate score functions [8]. In this section, we recall
these definitions.
First, the score function of a scalar random variable is de-
fined as follows.

Definition 1 (Score Function) The score function of a scalar
random variable  is the opposite of the log derivative of its
density, i.e.: a ) �� ���-&cbb  3 5 %*) �� ���-& % `) �� �%*) �� � (12)
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where %*) �� � denotes the probability density function (PDF)
of  .

Let 
)���� �!!� � � �	�8 $# � 
 be a � -dimensional random vector,
we can define two different score functions. Let %*& ��
 � and%*),+ �� %3�� denote the joint and marginal PDFs, respectively.

Definition 2 (MSF) The marginal score function (MSF) of

 is the vector whose component � is the score function of
the � -th density:� & ��������� a !#�� �! ��� � � �	� a # �� $# �8� 
 (13)

where a
3 �� %3����-& bb  %3 3 5 %*),+ �� %3�����& % `),+ �� %3��%*),+ �� %3�� � (14)

Definition 3 (JSF) The joint score function (JSF) of 
 is
the gradient of &S3 5 % & ��
 � :� & ��
 ��� ����! ��
 ��� � � ����� # ��
 �8� 
 (15)

where

�.3 ��
 ����& ��  %3 3 5 %�& ��
 ����& �� ),+ %�& ��
 �%�& ��
 � (16)

Finally, we introduce the score function difference.

Definition 4 (SFD) The score function difference (SFD) of

 is the difference between its JSF and MSF:	 & ��
 ��� � & ��
 � & � & ��
 � (17)

The following theorem relates the independence of the com-
ponents of a random vector 
 to its SFD [8].

Theorem 1 The components of the random vector 
 are in-
dependent, if and only if, its SFD is zero, i.e.� & ��
 ��� � & ��
 � (18)

2.5. Gradient of mutual information

For designing the separation algorithm, we use the output
mutual information, -5��
 � , as the independence criterion.
Hence, the parameters of the separating system are com-
puted so that -5��
 � reaches its minimum (zero), following
a gradient descent algorithm. The gradient of -5��
 � , with
respect to the parameters of the separating system, is then
deduced from the following theorem [18].

Theorem 2 Let 
 be a ‘small’ random vector, with the
same dimension than the random vector � . Then:-5������
/�.& -5�������� � 
 
 	�� ������� ���"��
/� (19)

where �"��
/� denotes higher order terms in 
 .

Note that for any multivariate differentiable function ,.����� ,
we have:

,.��� ��
)�.&+,.��������
 
�� ,.����� ���"��
/� (20)

A comparison between (19) and (20) shows that SFD is
nothing but the stochastic gradient of the mutual informa-
tion.

3. ESTIMATION EQUATIONS

Solving the estimation equations, � � 
 
 	�� �������)��� , re-

quires the SFD. Because joint as well as marginal densi-
ties are unknown, it is necessary to estimate these densities.
Then, deriving the gradient of -5��
 � with respect to the sep-
arating system, leads to the practical estimation equations.

3.1. Estimating Score Functions

In this subsection, we suppose that 
.!!� � � �	�8
 
 denote �
observed samples of random vector 
 .

3.1.1. Estimating JSF

For estimating JSF of a random vector, we used the kernel
estimator method [19] where � ����� denote a multivariate
Gaussian kernel function, with zero mean and identity co-
variance matrix. Then, the estimated joint PDF of the ran-
dom vector 
 from the observations 
.! � � � �"�8
 
 will be:

�%�& ��
 ��� �� 
9  ( ! �! �#" 
 &)
  !%$ (21)

where the “bandwidth”
!

is the smoothing parameter. Using
this estimator, the � -th component of JSF will be estimated
by:

��.38��
 � � � 
 ( ! ��&� ),+ � & � &(') �� 
 ( ! � � & � &(') � (22)

3.1.2. Estimating MSF and SFD

The components of MSF can be estimated by kernel esti-
mators, too. However, this estimation does not lead to good
separation results. In fact, the gradient algorithm stops if
the SFD (the difference between MSF and JSF) is equal to
zero. However, if we independently estimate MSF and JSF,
the estimation errors are independent, too, and SDF is not
equal to zero when outputs becomes statistically indepen-
dent. Practically, for avoiding this problem, we propose to
estimate MSF from the JSF. Theoretically, this idea is based
on the following result [20].
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Theorem 3 Let 
 and % & ��
 � be a random vector and its
differentiable density, respectively. Then:

a
38���2��� �? �.38��
 ��]: %3���� B (23)

where

a
3 and �.3 are the � -th component of MSF and JSF of


 , respectively.

Since �.3 is a function of  3 , this theorem claims that the
SFD is the opposite of the variation of � 3 around its mean
(

a
3 ). When this variation is zero,  3 is then independent of

the other components. For estimating the expected value
in (23) we use the spline smoothing technique. Hence, the
estimated SFD is obtained according to the following steps:

1. Estimate JSF by using kernel estimators,

2. Calculate the smoothed version of JSF by using spline
smoothing method,

3. Finally, SFD is the difference between smoothed JSF
and JSF.

3.2. Computing the gradients

Let the separating filter ������� be:

������� � ���G� �6!�� � ! � �	�	� � ��� � � � (24)

We must compute the derivative of - ��
 D :GF ����� � with re-
spect to each ��� and to each function 0 3 . Consider:	0%3��10%3*��
 3��0%3�� 	453 � 453*��
 3 ��453�� (25)

and: 	��������� ������� ��������� (26)

where 
 38��453�� is a ‘small’ variation of 0 38��4 � and ������� is a
‘small’ variation of ������� , such that:�������������G��� !�� � ! � �	�	� ����� � � � � (27)

Now, up to first order terms, we can write:	
�������� � 	��������� 	�������
� 
������ � � ����������������� � � ����������� ����� (28)

where the � -th component of � ����� is � 3 �����*��
 3 ��453 �����8� .
Using the following notations:- ��-�� 
 D :GF �������	- ��-�� 	
 D :GF ������� ������� � �����������������! ������� 	 &#" $�% D � F ��
 D :GF �����8�	 ������� ! DO� :GF �����& ������� � ����������� �����

ans assuming the sources are stationary, we apply Theo-
rem 2 and obtain (up to first order terms):	- & - � � � 	 
 �����  ������� ��� � 	 
 ����� & ������� (29)

The first term of (29) can be simplified as:

� � 	 
 �����  ����� � �('9��()� � � 	 
 �����*�+�:�����'&�, � � (30)

From this equation, it is obvious that:�� ��� -�� 
 D :GF �������*� ��- 	 ����� � 
 ����&�, �/. (31)

After a few simple steps, the second term of (29) becomes:

� � 	 
 ����� & ����� � �('9��()� � � 	 
 ����� ���0� ���'&�, � �
��213� 
 �����4'9��()� � 
 � 	 �����5, �76
��8-�� 
 ������9 �����/.

(32)

where:9 ������� '9��()� � 
 � 	 �����5, ���;: � 
 ������< 	 � & ��� (33)

Finally, developing � 
 ����� and 9 ����� , we have:

� - � 
 ������9 ����� . � #9 3 ( ! �?0
 38��453 �����8��= 3 �����,B
�
#9 3 ( ! �?0
 38��453 �����8� � ?0= 38�����Y]:453 �����,B$B

�
#9 3 ( ! 1 ��>� > 
 3 ��4 � � ?�= 3 ����� ]#453 ������� 4 B %?�+ ��4 � b 4

(34)

We then deduce that the relative gradient of -5��
 � with re-
spect to the function 0 3 is the function

� ��@ + -�� ��4 � ��?0= 3 ����� ]:453 �������14 B (35)

Hence, choosing 
�38��4 ��� & � ��@ + -�� ��4 � leads to decreasing
of - . For estimating the expected value (35), we used the
smoothing spline method, i.e. the function � ��@ + -�� ��4 � is the
smoothing spline which fits the data ��4 3 �������A= 3 �����8� .

4. THE ALGORITHM

The matrices ��� and 453 ��0%3 ��9:3 � are estimated according
to:

��� � ��� &CB ! � - ��
 D :GF ����� �� ��� (36)

453 �1453 &CB $%� ��@ + -�� ��453 � (37)
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Fig. 2. Joint distribution a) ( � !!��� $ ) after the convolutive
mixtures b) ( 9 !!� 9:$ ), the observations just after the nonlin-
earities.

where B ! and B $ are two small positive constants, and the
gradients are obtained from (31) and (35). In (36), ( is
chosen randomly at each iteration in the set ? &�@A� � � �"�,@CB .
Hence, on the average, the cost function (9) will be mini-
mized. Conversely, in (37), we always used (7� � . Practi-
cally, after each iteration, one estimates the smoothing func-
tion which fits to the data ��9#3 �8453�� . This is for preventing
these functions, 0 3 , to become too fluctuating (and hence
noninvertible). Without this step, the estimation of each
sample 453 may be very noisy. We used smoothing splines
with

�
close to � (say

� � � � ��������� ). Moreover, for over-
coming the scale indeterminacies in estimating the 0�3 ’s and
� , we normalize 4 3 and  %3 at each iteration.

5. EXPERIMENTAL RESULTS

The algorithm has been experimentaly tested for a mixture
of a sine and a triangle waves, with the mixing matrix

� �������
� � ��� � � ��� ! ��� � � ��� $ � � �Y��� � �%��� ! ��� � ����� $� � �Y��� � �%� � ! ��� � ��� � $ � ��� � � � � ! ��� � � � � $
	

(38)

and the nonlinearities

,%!#��4 ��� ,#$%��4 ���\���5����4 �P��� � � 4 (39)

Figure 2 shows the joint distribution of the convolutively
mixed signals (before the nonlinearities) and of the obser-
vations (after the nonlinearities). We used sample of size� � ���(�(� . We choose second order filters in the separating
system. The step sizes are B.! �8B $ � � � ��� . For estimating
the JSF, we use Gaussian kernels with a bandwidth

! � � � � .
The MSF are estimated from JSF with a smoothing spline
with

� ��� � � . For estimating the conditional mean in (35),
another smoothing spline with

� �#� � � is used. Finally,
after each iteration, another smoothing spline with smooth-
ing parameter

� � � � ��������� is used for smoothing 0 3 . The
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Fig. 3. Output SIR’s
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Fig. 4. Composition of the nonlinearities ( 0�3+��,#3 ) (over �.�� , below � ��� )
separation performance is measured with the Signal to In-
terference Ratio (SIR), defined as follows (assuming no per-
mutation):

SIR 3 � ���E3 ��� !*� �8-% $3 �����/.� �  $3 �����	] � + D � F ()� � (40)

where  %3 �����	] � + D � F ()� is the output  %38����� when the source� 3 ����� is zero. Figures 3, 4 and 5 show the separation re-
sults. Figure 3 is the output SIR’s and points out the ability
of the algorithm to separate CPNL sources. Figure 4 shows
that the nonlinear distortions of the sensors have been com-
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Fig. 5. Observed and output signals
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pensated. Finally, Fig. 5 shows the observations (after fil-
tering and nonlinear distortions) and the estimated sources
(after separation).

6. CONCLUSION

In this paper, We address the problem of source separation
in Convolutive Post NonLinear mixtures (CPNL), which are
genralization of instantaneous PNL mixtures. We first show
that the separability of CPNL can be deduced from the sep-
arability of PNL, provided than the filters

� ����� are FIR fil-
ters. Secondly, we propose an algorithm based on the mini-
mization of mutual information, whose efficiency is pointed
out by experimental results. The main drawback of the algo-
rithm is its computation cost, especially because it requires
the estimation of multivariate densities. Consequently, the
algorithm would not be tractable for separating sources in
mixtures of a large number of sources (more than 3 or 4),
because it would require too large sample. Current work
address practical issues for simplifying the algorithm in or-
der to overcome these problems.
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