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ABSTRACT
Standard sparse decomposition (with applications in many different
areas including compressive sampling) amounts to finding the mini-
mum �0-norm solution of an underdetermined system of linear equa-
tions. In this decomposition, all atoms are treated ‘uniformly’ for
being included or not in the decomposition. However, one may wish
to weigh more or less certain atoms, or, assign higher costs to some
other atoms to be included in the decomposition. This can happen
for example when there is prior information available on each atom.
This motivates generalizing the notion of minimal �0-norm solution
to that of minimal weighted �0-norm solution. On the other hand,
relaxing weighted �0-norm via the weighted �1-norm is challenging.
This paper deals with minimal weighted �0-norm solutions of under-
determined linear systems, provides conditions for their uniqueness,
and develops an algorithm for their estimation.

Index Terms— Weighted sparse decomposition, Sparse decom-
position, Compressive sampling, weighted compressive sampling.

1. INTRODUCTION

Sparse solutions of underdetermined systems of linear equations at-
tract growing interest for their potential application in areas as di-
verse as compressive sampling (CS) [1, 2], classification and recog-
nition [3], underdetermined sparse component analysis (SCA) for
source separation [4], real-field coding [5], and denoising [6], to
name a few. Let A � [a1, . . . , am] be an n×m matrix with m > n,
where {ai}m

i=1 denote its columns; x be an m × 1 vector, and con-
sider the underdetermined linear system

As = x (1)

with A assumed to have full row rank, so that (1) has no redundant
or contradictory equations. Being underdetermined, this system has
infinitely many solutions, but the sparse solution is a solution s �
(s1, . . . , sm)T having as few non-zero entries as possible. In other
words, it is the solution of the problem

(P0): min
s

‖s‖0 �
m∑

i=1

|si|0 subject to As = x (2)

where the �0-norm ‖ · ‖0 stands for the number of non-zero entries
of its vector argument, and | · |0 stands for the indicator function:

|x|0 �
{

0 if x = 0
1 otherwise

. (3)
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In the signal (or atomic) decomposition parlance [7], x is a vec-
tor expressed as a linear superposition of atoms {ai}m

i=1 compris-
ing the so-termed dictionary A over which the signal x is to be de-
composed. When m > n, the decomposition is not unique, but by
a sparse decomposition, one means a decomposition which uses a
minimum number of atoms to decompose x.

In the standard sparse recovery problem (2), all entries of s are
treated “uniformly” as far as being zero or non-zero, and the goal is
only to minimize the total number of non-zero entries of s. However,
in certain applications, one may opt to have different entries of s
affect differently the cost of being (non)zero. For example, in atomic
decomposition, one may wish to give a priority to some of the atoms,
or assign a higher cost to some other atoms for being included in the
decomposition. This can happen for example when there is prior
information available on the probabilities of different entries of s
being non-zero, which prompts looking for the sparse solution of (1)
by assigning different weights across entries of s. Analytically, the
weighted counterpart of (2) is

(P0,w): min
s

‖s‖0,w �
m∑

i=1

wi|si|0 s.t. As = x (4)

where wi ≥ 0, i = 1, . . . , m, captures the “cost” of having the
i-th entry of s being nonzero. Note that in (4), A, x and w �
(w1, . . . , wm)T are given, and the minimization is carried over s.
Similar to the �0-norm ‖s‖0, we call ‖s‖0,w the weighted �0-norm
of s (with weight vector w), although, neither ‖s‖0 nor ‖s‖0,w are
mathematical ‘norms’ (they do not satisfy the scaling property).

A special case of this problem, where wi’s are binary taking val-
ues zero or one, has been considered under the term sparse recovery
from partially known support [8, 9]. However, the main objective
behind those methods is to find the sparse solution of (1), meaning
to solve P0, when part of its support is known a priori, whereas in
this paper, the problem under study is P0,w, whose solution is gen-
erally different from that of P0 (see Section 2.2).

The paper is organized as follows. The next section motivates
the problem by expressing P0,w as a maximum a posteriori (MAP)
estimation of the sparse solution when priors on the activity of each
atom are available. Section 3 deals with the uniqueness issue of solv-
ing P0,w, while Section 4 presents an algorithm for approximating
the solution of P0,w. Finally, simulations are presented in Section 5.

2. MOTIVATION AND CHALLENGES

2.1. MAP sparse recovery with priors on activity

Suppose that in (1), s is modeled as a vector with statistically inde-
pendent entries, and the i-th entry is active (non-zero) with probabil-
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ity pi and inactive (zero) with probability 1 − pi (sparsity translates
to small pi’s). Suppose that pi’s are known a priori, and the goal is
to estimate s. To this end, [10] assumes that s is to be estimated by a
weighted �1-norm minimization, and within this class of estimators,
the weights are selected to maximize the probability of recovery. In
contrast, it is shown here that a MAP-like estimate of s requires in
fact solving a problem of the form P0,w with certain weights.

To see this, consider expressing the i-th entry of s as si = biri,
where bi ∈ {0, 1} is a binary variable denoting the ‘activity’ of
si (that is bi = 1 if si is active, and bi = 0 otherwise), and ri

is the magnitude of si assumed to be independent of bi. Let also
b � (b1, . . . , bm)T and r � (r1, . . . , rm)T . Under these notational
conventions, the following result is proved in the Appendix.

Theorem 1. Let ŝ � b̂MAP ◦ r̂MAP, where ◦ stands for the entry-wise
(Hadamard) product, and (b̂MAP, r̂MAP) � argmaxb,r p(b, r|x).
Then ŝ is the solution of P0,w with weights wi = ln[(1 − pi)/pi].

2.2. Challenges

A well-known approach to solving P0 is to relax it by replacing
the �0 by the �1 norm [11]. However, employing the weighted �1-
norm

∑m
i=1 wi|si| for solving P0,w is not as motivated as in the

unweighted case. This is because
∑m

i=1 wi|si| =
∑m

i=1 |wisi| is a
relaxation of

∑m
i=1 |wisi|0 =

∑m
i=1 |si|0 (assuming that all weights

are strictly positive). In other words, both �1 and weighted �1 can be
seen as relaxations of the unweighted �0-norm. In fact, [12] asserts
that since �1 and weighted �1 have generally different solutions, one
may view the weights in weighted �1 as free parameters in the con-
vex relaxation of the unweighted P0 problem, whose values can be
set judiciously to obtain an improved solution of P0. Hence, if one
adopts weighted �1 as a relaxation of the ‘weighted’ problem P0,w, it
is not known whether the final solution offers a better estimate of the
solution of P0 or P0,w. We will shed some light on this challenging
issue via simulations in Section 5.

Note also that P0 and P0,w are two different problems with gen-
erally different solutions. For example, for the system⎡

⎣ 1 1 −1 2 1
−1 1 1 −1 1
1 −1 1 3 1

⎤
⎦ s =

⎡
⎣ 1

1
1

⎤
⎦ (5)

the (unique) solution of P0 is s = (0, 0, 0, 0, 1)T , but the (again
unique) soltion of P0,w under the weight vector w = (1, 1, 1, 2, 4)T

is s = (1, 1, 1, 0, 0)T . Therefore, when used in applications, one has
to decide first which problem, P0 or P0,w, is more appropriate for
the application under consideration.

3. UNIQUENESS

An important property of P0 is that its solution can be unique. More
precisely, let spark(A) denote the minimum number of columns of
A that are linearly dependent [13]. It is known that if P0 has a solu-
tion s0 satisfying ‖s0‖0 < 1

2
spark(A), then it would be its unique

solution [14, 13].
This uniqueness theorem can be generalized to problem P0,w as

follows (see the Appendix for the proof).

Theorem 2. If As = x has a solution s0 for which

‖s0‖0,w <
Sw

(
spark(A)

)
2

(6)

where Sw(k) stands for the sum of the k smallest weights, then s0 is
the unique solution of P0,w.

As a sanity check, note that the unweighted problem P0 corre-
sponds to wi = 1, ∀i, for which Sw(k) = k, and hence the bound
in (6) becomes the known 1

2
spark(A) bound for P0.

Furthermore, the bound in (6) is tight in the sense that it is im-
possible to have a tighter bound that works for all linear systems. To
show this, it is sufficient to provide an example for which the bound
(6) is not marginally satisfied and P0,w has two different solutions.
An example of this kind is offered by the system⎡

⎢⎣
1 1 −1 2 0
1 −1 1 1 1
−1 1 1 3 1
1 1 1 2 −2

⎤
⎥⎦ s =

⎡
⎢⎣

2
0
2
4

⎤
⎥⎦ (7)

and the weight vector w = (0.5, 1, 1, 1, 1.5)T . It can be seen
that here spark(A) = 5, and P0,w has two solutions s0 =
(0, 0, 0, 1,−1)T and s1 = (1, 2, 1, 0, 0)T , whose weighted �0-
norms are both equal to 1

2
Sw(5) = 2.5.

4. A WEIGHTED SPARSE RECOVERY ALGORITHM

Being a generalization of P0, problem P0,w is NP-hard to solve.
Moreover, we pointed out in Section 2.2 that the use of (weighted)
�1-norm approach for solving P0,w can be challenging. In this sec-
tion, we present an approach for approximating the solution of P0,w

when the given weights are strictly positive (∀i, wi > 0). This ap-
proach is the weighted counterpart of the smoothed �0 (SL0) solver
of P0 [15], so, we call it weighted SL0 (WSL0).

The main idea of SL0 is to use a smooth approximation of
the �0-norm. Specifically, let fσ(·) be a continuous function sat-
isfying limσ→0 fσ(s) = 1 − |s|0. An example of such fσ’s

is fσ(s) � exp (−s2/2σ2). Then |s|0 can be approximated as
|s|0 ≈ 1 − fσ(s), where σ determines the accuracy of the approx-
imation: the smaller σ, the better approximation, and the larger σ,
the smoother approximation. So, the �0-norm can be approximated
by ‖s‖0 ≈ m − ∑m

i=1 fσ(si), and hence SL0 aims to maximize

Fσ(s) �
∑m

i=1 fσ(si) (subject to As = x) for a small σ. The
major challenge here is that Fσ is not concave and especially for
small σ’s, it has many local maxima, and hence its maximization is
not easy. To cope with this challenge, SL0 adopts a graduated non-
convexity (GNC1) [16] approach for maximizing it. GNC starts with
a very large σ, for which Fσ is nearly concave and its maximization
is easy, and then gradually decreases σ, and for each σ it starts the
search for the maximizer of Fσ from the maximizer for the previous
(larger) σ. Using such an annealing process, it is expected (but not
mathematically guaranteed) to escape from being trapped into local
maxima.

The GNC-based SL0 solver is directly applicable to the weighted
minimization, too. In this case, ‖s‖0,w ≈ ∑m

i=1 wi−∑m
i=1 wifσ(si),

and so, the idea behind WSL0 is to

max
s

Fw
σ (s) �

m∑
i=1

wifσ(si) s.t. As = x (8)

for a very small σ. The use of GNC to cope with local maxima is
exactly as in SL0. By opting to choose a gradient-projection (GP) it-
eration for a fixed σ, the final algorithm would be as shown in Fig. 1.
There are a few more points to be mentioned about this algorithm:

Step size: For smaller σ’s, Fw
σ is more fluctuating and we

should use a smaller step-size in the gradient ascent loop for its

1GNC can be seen as a deterministic version of simulated annealing. In
this viewpoint, the parameter σ is called ‘temperature’.
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• Initialization:

1. Set ŝ0 equal the minimum weighted �2-norm solution of
As = x, given in Theorem 3.

2. Choose a suitable decreasing sequence for σ:
[σ1 . . . σJ ].

• For j = 1, . . . , J :

1.Let σ = σj .

2.Solve (8) using L Gradient-Projection iterations:

–Initialization: s = ŝj−1.

–For � = 1, 2, . . . , L

(a)Let s← s + (μσ2)∇Fw
σ (s).

(b)Project s back onto the feasible set {s|As = x}:
s← s−A†(As− x).

3.Set ŝj = s.

• Final answer is ŝ = ŝJ .

Fig. 1. WSL0 algorithm. A† stands for the Moore-Penrose pseudo
inverse of A (i.e. A† � AT (AAT )−1).

maximization. For reasons detailed in [15], a good choice is to
decrease the step-size proportional to σ2. So, in Fig. 1, the step-size
μσ2 is used.

Initialization: Bearing in mind the GNC idea, a good initializa-
tion is to use the maximizer of Fw

σ (s) for σ → ∞. This is interest-
ingly the minimum weighted �2-norm solution as asserted next.

Theorem 3. Assume that ∀i, wi > 0, and let fσ(s) � exp (−s2/2σ2).
Then, as σ → ∞, the solution of (8) converges to the min-
imizer of

∑m
i=1 wis

2
i subject to As = x, which is given by

W−1AT (AW−1AT )−1x, where W � diag(w1, . . . , wm).

This result holds also for a large class of smoothing functions
fσ; see also [15, Theorem 2]. Due to lack of space, the general
theorem and its proof is delegated to the journal version of this work.
For the Gaussian smoothing function however, Theorem 3 can be
justified by simply noting that for very large σ’s, exp (−s2

i /2σ2) ≈
1 − s2

i /2σ2.

5. SIMULATIONS

We conducted a simulation to compare weighted �1 and WSL0. In
this simulation, we randomly created a system As = x of n =
40 equations in m = 100 unknowns having two different sparse
solutions s1 and s2 with ‖s1‖0 = 6 and ‖s2‖0 = 132. Then, we
chose the weighting vector w such that ‖s1‖0,w = α and ‖s2‖0,w =
1 − α, where 0 < α < 1. So, for α < 0.5, s1 is the solution of

2This was done as follows: First, A1 of size n = 40 by m/2 = 50
was randomly created with entries drawn independently from a standardized
Gaussian distribution. Then s′1 of length m/2 = 50 was created to have only
6 non-zero entries (whose locations and magnitudes were chosen randomly),

and x � A1s′1 was calculated. Similarly, A2 of size n = 40 by m/2−1 =
49, and s′2 of length m/2 − 1 = 49 with 13 − 1 = 12 non-zero entries

were created. Matrix A and vectors s1 and s2 were then formed as A �
[A1,A2,x−A2s′2], s1 � (s′1

T ,01×50)T , and s2 � (01×50, s′2
T , 1)T .

Finally, the columns of A were normalized to have unit �2-norm, and the
entries of s1 and s2 were scaled accordingly.

0.2 0.4 0.6 0.8

0

50

100

Percentage of  s
1
 estimates

α

0.2 0.4 0.6 0.8

0

50

100

Percentage of  s
2
 estimates

α

0.2 0.4 0.6 0.8

0

50

100

Percentage of failures

α

WSL0

L1
WL1

Fig. 2. The percentages of s1 and s2 estimates, and the percentages
of failure versus α. For α < 0.5, s1 is the solution of both P0 and
P0,w problems, whereas for α > 0.5 the solution of P0 is s1, and
the solution of P0,w is s2.

both P0 and P0,w problems, whereas for α > 0.5 the solution of P0

is s1 and the solution of P0,w is s2. Then three algorithms, namely
�1-norm minimization, weighted �1-norm minimization, and WSL0
were run on the system As = x. The output (̂s) was then compared
to s1 and s2 on the basis of the signal-to-noise-ratio (SNR) defined
as SNRi = 10 log10(‖si‖2

2/‖ŝ − si‖2
2), i = 1, 2. For SNR1 >

10dB, it was declared that the algorithm has estimated s1, while for
SNR2 > 10dB it was declared that the algorithm has estimated s2;
otherwise, it was declared that the algorithm has failed to estimate
either one of these solutions. This experiment was repeated 1,000
times with different randomly generated systems. Fig. 2 depicts the
percentages of estimating s1, s2 and failure rates versus α.

It is seen from Fig. 2 that the �1-norm minimization always esti-
mates the solution of P0, as expected. Although it can be considered
as a relaxation of both P0 and P0,w problems, especially for large
α’s (that is when ‖s1‖0,w 
 ‖s2‖0,w), the weighted �1 recovers s2

most of the times, but it has also a large failure rate (around 20% for
α near 1). WSL0 does a better job, and for α ≈ 1 it recovers s2

about 98% of the times.

6. CONCLUSIONS

In this paper, the weighted sparse signal decomposition problem
P0,w was studied. It was shown that P0,w has applications in re-
covering the sparse solution of an underdetermined linear system
where prior information on the activity of different atoms is avail-
able. Then, a condition for the uniqueness of the solution of P0,w

3427



was presented. The challenges of using the weighted �1 relaxation
for solving P0,w were also pointed out, and an algorithm based on
generalizing SL0 to the weighted case was developed to approximate
the solution of P0,w. Finally, a simulation was presented to compare
the results of weighted �1 and WSL0 approaches.

Future work will include generalization of [15, Theorem 1] to
the weighted case, and studying the stability of P0,w.

7. APPENDIX

Proof of Theorem 1. Since there is no prior information on r, the
probability density function p(r) is treated as uniform; hence:

(b̂MAP, r̂MAP) = argmax
b,r

p(x|b, r)p(b) = argmax
b,r

p(x|s)p(b)

= argmax
b,r

p(b) s.t x = As

= argmin
b,r

− ln p(b) s.t x = As (9)

The prior probability of bi is:

p(bi) =

{
pi if bi = 0
1 − pi if bi = 1

= p
|bi|0
i (1 − pi)

1−|bi|0 = (1 − pi)

(
pi

1 − pi

)|bi|0
.

Hence, the prior probability of b is

p(b) =
m∏

i=1

p(bi) =

[
m∏

i=1

(1 − pi)

]
/

[
m∏

i=1

(
1 − pi

pi

)|bi|0
]

(10)

and so

− ln p(b) = constant +
m∑

i=1

wi|bi|0 (11)

where wi is as given in the theorem. Substituting (11) into (9), and
noting that |bi|0 = |si|0 proves the result.

Proof of Theorem 2. Arguing by contradiction, suppose that besides
s0 there is another solution s1 satisfying (6). It is easy to see that the
pseudo-norm ‖ · ‖0,w satisfies the triangle inequality, and hence

‖s0 − s1‖0,w ≤ ‖s0‖0,w + ‖s1‖0,w < Sw

(
spark(A)

)
. (12)

Note also that if for a vector y, ‖y‖0,w < Sw(k), then the number
of non-zero entries in y should be smaller than k (otherwise, the sum
of the corresponding weights could not be smaller than the sum of k
smallest weights, that is, Sw(k)). In other words, ‖y‖0,w < Sw(k)
implies ‖y‖0 < k. Therefore, (12) implies ‖s0 − s1‖0 < spark(A).
On the other hand, As0 = As1 = x ⇒ A(s0 − s1) = 0. But this
contradicts the fact that ‖s0 − s1‖0 < spark(A), because a linear
combination of less than spark(A) columns of A (corresponding to
non-zero entries of s0 − s1) is null.
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