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ABSTRACT Two premeditated resistor models have been de-
veloped and tested for the prediction of the effective thermal
conductivity of a periodic array of multi-coated spheres embed-
ded in a homogeneous matrix of unit conductivity. The results
have been compared and evaluated with the exact solution, as
obtained by extending a method originally devised by Zuzovski
and Brenner. The results for the two models were found to yield
bounds for the exact solution. For some situations, the model
results match well with the exact solution, but in other cases
the results for one of the models could deviate from the exact
solution.

PACS 41.20.Cv; 44.10.+i; 72.80.Tm

1 Introduction

Many studies have been conducted on calculating
the effective thermal conductivity of a composite medium
consisting of a periodic array of spheres embedded in an
isotropic matrix. The basic work for the solid spheres has
been outlined by Maxwell [1], who inspected the effective
conductivity of a dilute spherical dispersion. Rayleigh [2] de-
scribed the polarization of each sphere in an external field
by an infinite set of multipole moments and gave a relation
of low order for a simple array of spheres. His solution was
corrected later by Runge [3] and improved by Meredith and
Tobias [4]. Maxwell’s theory was extended by Jeffrey [5] to
higher particle concentrations. McPhedran et al. [6] modified
Rayleigh’s method to overcome a non-absolutely convergent
series involved in the solution. Zuzovski and Brenner [7] pre-
sented another method that avoids the problems encountered
in Rayleigh’s original method. Sangani and Acrivos [8] modi-
fied the Zuzovski–Brenner method to circumvent the tedious
algebra encountered in the calculations.

Runge [4] developed Rayleigh’s method to coated elem-
ents where the geometry was composed of an array of tubes
having the same core material as the matrix. Lurie and
Cherkaev [9] showed that the bounds on the effective conduc-
tivity derived by Hashin and Shtrikman [10] for three-phase
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composites are realizable for coated sphere assemblages. Yu
et al. [11] derived a relation for the effective properties of
coated spheres in the dilute limit. Nicorovici et al. [12] ex-
tended Rayleigh’s method for a simple cubic array of coated
spheres and inspected the behaviour of the solution as a func-
tion of the properties of the core and shell of the sphere. Lu
and Song [13] and Lu [14] developed a boundary colloca-
tion scheme to compute the effective conductivity of a simple
array of multi-coated spheres and derived a relation for the
effective conductivity of the random array of coated and
multi-coated spheres which is correct to O(F2) where F is the
total volume fraction.

In this report, we extend the Zuzovski–Brenner method
to multi-coated spheres. We also present a scheme for deriv-
ing the effective conductivity of the system using two resistor
models and compare the results with the exact solution. It
should be noted that the formulation and the results for the
thermal conductivity could be applied exactly to the seven
other associated transport properties listed by Batchelor [15].
(These properties include electrical conductivity, dielectric
permittivity, magnetic permeability, mobility, permeability of
a porous medium, modulus of torsion in a cylindrical geom-
etry and effective mass in bubbly flow.)

This paper is organized as follows. The next section de-
scribes the geometry under study. Section 3 reports the details
of one approach [7] for calculating the effective conductivity
of a cubic array of multi-coated spheres embedded in a homo-
geneous matrix of unit conductivity, and presents the exact so-
lution for this system. Section 4 develops two resistor models
for deriving the conductivity of the system. In Sect. 5, the re-
sults of the two resistor models are compared and evaluated
with the exact solution. Finally, Sect. 6 summarizes the key
findings of the study.

2 Geometric description

Consider a homogenous matrix with unit conduc-
tivity surrounding an array of composite spheres with a top-
ology based upon the well-known cubic lattices, i.e. the sim-
ple cubic (SC) lattice, the body-centered cubic (BCC) lattice
and the face-centered cubic (FCC) lattice. Each lattice point of
a cubic array can be described by a lattice vector rn defined as:

rn = h (n1a1 +n2a2 +n3a3) (1)



442 Applied Physics A – Materials Science & Processing

a1 a2 a3

SC ex ey ez

BCC 1/2(ex + ey − ez) 1/2(−ex + ey + ez) 1/2(ex − ey + ez)

FCC 1/2(ex +ey) 1/2(ey+ez) 1/2(ex +ez)

TABLE 1 The basic vectors a1, a2 and a3 for three cubic lattices. The
vectors ex , ey and ez form an orthonormal basis in space

where h is the characteristic length to express all the distances
in dimensionless form and n1, n2 and n3 are arbitrary integers.
The three basic vectors a1, a2 and a3 belonging to a SC, BCC
and FCC lattice are given in Table 1.

The radius of the core is determined by a1 and the other
coating layers of the multi-coated sphere are a2, . . . , aN−1 re-
spectively, as shown in Fig. 1. The conductivity ratio between
the phase i −1 and i is assigned as ki−1,i . With this consider-
ation, the volume fraction occupied by the core and coating
layers can take the following values:

fi = 4

3τ0
π

(
a3

i −a3
i−1

)
(i = 1, . . . , N −1) (2)

F =
N−1∑
i=1

fi (3)

where τ0 = a1 · [a2 ×a3] refers to the non-dimensional vol-
ume of the unit cell, and has values of 1, 1/2 and 1/4 for SC,
BCC and FCC lattices respectively. Note that a0 = 0 is used
here and in the subsequent relations in order to reduce the
number of mathematical notations. If ϕ is an azimuthal angle
measured from the plane of x1x2 and θ is a polar angle meas-
ured from the x1-axis, then the following relations apply:

x1 = r cos θ, x2 = r sin θ cos ϕ, x3 = r sin θ sin ϕ (4)

3 The exact solution

The symmetry of the geometry makes the solution
of the problem independent of the applied external gradient
temperature, which is assumed to occur along the x1-axis.
Since the arrays are periodic, we just study a unit cell of the
systems. For the unit cell located at the origin, considering
the general solution of the Laplace equation in spherical co-
ordinates (r, θ, ϕ) and following Rayleigh [2], the temperature
inside the layers may be given by:

T 1 =
∞∑

n=1

m< 1
2 n∑

m=0

E1
nmr2n−1 P4m

2n−1 (cos θ) cos mϕ (5)

T i =
∞∑

n=1

m< 1
2 n∑

m=0

[Ei
nmr2n−1 + Fi

nmr−2n]P4m
2n−1 (cos θ) cos mϕ

(i = 2, . . . , N) (6)

where PM
L (cos θ) represents the associated Legendre poly-

nomial of degree L and order M. Zuzovski and Brenner [7]

FIGURE 1 The multi-coated sphere under study

proposed another suitable expression for the temperature in-
side the continuous phase:

T N = x1 +GH (7)

where G is the differential operator, whose preferred form for
a cubic array of spheres later was derived by Sangani and
Acrivos [8] as:

G =
∞∑

M=0

m≤ 1
2 M∑

m=0

24m−1

(2n +1)! Anm
∂2n+1

∂x2n+1
1

×
{(

∂

∂ξ

)4m

+
(

∂

∂η

)4m
}

(M = n +2m) (8)

where

ξ = x2 + ix3, η = x2 − ix3 (9)

and

H = 1

r
−σ + 2π

3
r2

+
∞∑

n=2

m≤ 1
2 n∑

m=0

εm (2n −4m)!
(2n +4m)! Snmr2n P4m

2n (cos θ) cos mϕ

(10)

where εm represents the Neumann symbol (1 for m = 0 and 2
otherwise). The calculated values of constant array σ for the
three cubic arrays [16] are 2.837297, 3.639233 and 4.584862
for SC, BCC and FCC respectively. The lattice sums have the
following form:

Slm =
∞∑

n=1

|rn | −(2l+1) P4m
2l (cos θn) cos mϕn (11)
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where their values may be calculated by direct summation or
in some region of l and m by approximate correlation [6, 17].
Note that θn and ϕn are polar and azimuthal angles measured
from the lattice point n.

The unknown coefficients A in (8) can be determined by
implementing boundary conditions at the surface of the core
and coating layers:

T i−1 = T i, ki−1,i∂T i−1/∂n = ∂T i/∂n r = ai−1 . (12)

Using these conditions, the following result is obtained:

Fi
nm + Li

na4n−1
i−1 Ei

nm = 0 i ≥ 2 (13)

where

Li
n =

(2n −1)
(
ki−1,i −1

)+ [
2n

(
ki−1,i +1

)−1
]

Li−1
n (ai−2/ai−1)

4n−1[
(2n −1)

(
ki−1,i +1

)+1
]+2n

(
ki−1,i −1

)
Li−1

n (ai−2/ai−1)
4n−1

.

(14)

Calculating T N by using the above expressions for H and G
and comparing the resulting relation with (5), two linear equa-
tions can be found relating E N

nm and FN
nm to Anm . These two

equations combined with (13) yield a set of linear equations in
the unknowns Anm :

Anm = L N
M+1

a4M+3
N−1

(2M +4m +1)!

×
∞∑

J=0

j≤ 1
2 J∑

j=0

[
λ1εq1 (2p −4q1)!

(2J −4 j +1)
Spq1 +λ2εq2 (2p −4q2)!

(2J −4 j +1)
Spq2

]

× AJ−2 j, j + δM0L N
1 a3

N−1

(
1 + 4π

3τ0
A00

)
(15)

where

p = M + J +1, q1 = m + j, q2 = |m − j| (16)

λ1 = λ2 = 0.25 if j �= 0, m = 0
λ1 = 0.5, λ2 = 1 if m = j �= 0
λ1 = λ2 = 0.5 otherwise


 . (17)

The effective thermal conductivity can be calculated using
the following formula:

keff = 1 +4πA00/τ0 (18)

3.1 The explicit expression

As outlined by Manteufel and Todreas [18] differ-
ent methods can be used to derive an explicit expression. By
using linear truncation, Nicorovici et al. [12] have developed
a relation of low order for the simple cubic lattice of coated
spheres. For the truncation order L = 4, the solution of (15) is
given as follows:

keff = 1 − 3F

D
(19)

where

D = −1/L N
1 + F + c1L N

2 F10/3 1 + c4L N
3 F11/3

1 − c2L N
2 F7/3

+ c3L N
3 F14/3

+ c5L N
4 F6 + c6L N

5 F22/3 + O
(
F25/3) . (20)

The numerical constants are given in [8] and have been repre-
sented here in Table 2. These constants were verified as part
of the current work. In (19), if the terms containing c4 − c6
are neglected, the formula of truncation order L = 3 can be
obtained. By taking c2 to c6 equal to zero, the expression of
the second-order approximation (L = 2), analogous to that of
Lord Rayleigh [2] for the simple cubic lattice of solid spheres,
will be obtained:

keff = 1 − 3F

−1/L N
1 + F + c1L N

2 F10/3
. (21)

To test the correctness of (19) for multi-coated spheres,
the effective thermal conductivity of coated and doubly coated
spheres in the dilute limit was derived. Examination of (19)
shows that it can be reduced to the following relation when
F → 0.

keff = 1 +3FL N
1 + O

(
F2) . (22)

Extending (22) for coated spheres gives the following result:

keff = 1 +3FL3
1 = 1 +3F

× (k2 −1)+ (1 +2k2)

(k2 +2)+2 (k2 −1)

[(k1 − k2) / (k1 +2k2)] (a1/a2)
3

[(k1 − k2) / (k1 +2k2)] (a1/a2)
3 .

(23)

Likewise, the expression for doubly coated spheres is as fol-
lows:

keff = 1 +3FL4
1 = 1 +3F

P + Q

R+ S
(24)

where

P = (k3 −1) {(k2 +2k3)+2 (k2 − k3) [(k1 − k2)

/ (k1 +2k2)] (a1/a2)
3}

Q = (1 +2k3)
{
(k2 − k3) (a2/a3)

3 + (k3 +2k2) [(k1 − k2)

/ (k1 +2k2)] (a1/a3)
3}

R = (k3 +2) {(k2 +2k3)+2 (k2 − k3) [(k1 − k2)

/ (k1 +2k2)] (a1/a2)
3}

S = 2 (k3 −1)
{
(k2 − k3) (a2/a3)

3 + (k3 +2k2) [(k1 − k2)

/ (k1 +2k2)] (a1/a3)
3} . (25)

SC BCC FCC

c1 1.3047 1.29×10−1 7.529×10−2

c2 4.054×10−1 7.642×10−1 –7.410×10−1

c3 7.231×10−2 2.569×10−1 4.195×10−2

c4 2.305×10−1 –4.129×10−1 6.966×10−1

c5 1.526×10−1 1.13×10−2 2.31×10−2

c6 1.05×10−2 5.62×10−3 9.14×10−7

TABLE 2 Numerical constants in explicit expression
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FIGURE 2 Part of the resistor network. Original (a) and simplified arrangements (b, c)

Setting a3 = 1 in (25) will reduce (23) and (24) to the same
equations given by Yu et al. [11, 19] for the effective prop-
erties of coated and doubly coated spheres in the dilute
limit.

3.2 The effect of azimuthal terms for a simple cubic
array

The simple cubic array is of interest since it permits
spheres to come closer to touching for low-volume-fraction
systems as compared to any other arrangement. McPhedran et
al. [6] have inspected the effect of azimuthal terms for a sim-
ple array of solid spheres. Due to the very small differences
between the results, it was not clear whether considering azi-
muthal terms causes these differences or whether they are just
numerical artifacts. This problem was again studied by San-
gani and Acrivos [8], but due to the lack of convergence these
authors were not able to obtain reliable results. Table 3 com-
pares the calculated values of effective thermal conductivity
for the most sensitive case of perfectly conducting spheres
(meaning that the core and all coating layers are perfectly con-
ducting) with the resulting values without azimuthal terms
and with those obtained by McPhedran et al. [6]. For this cal-
culation, the effective conductivity without azimuthal terms
can be obtained by reducing (14) to the following expres-
sion:

An,0

a4n+3
N−1 L N

n+1

=
∞∑

J=1

(
2n +2J
2n +1

)
S2n+2J,0 AJ−1,0 + δn,0 . (26)

Mathematica 3.0 was used to solve the set of linear al-
gebraic equations obtained from (15) and (26). 50 zonal
unknowns and 50 azimuthal unknowns were considered in
solving (15) and (26). All elements of the right-hand-side
column vector have values of zero except for the first pos-
ition, which has a value of unity. Multiplying the matrix of
coefficients in the column vector of the results and compar-
ing with the right-hand-side vector tests the correctness of
the solution. The effective conductivity may be directly cal-
culated from (18). It is clear from the results that there is
a real (although small) effect associated with the azimuthal
terms.

4 Resistor modeling

The unit cell can be considered to consist of an
infinite series of resistors (Fig. 2a). Hsu et al. [20, 21] as-
sumed for two-phase composite materials that all the resis-
tors in the direction normal to the applied heat flow have
infinite resistance. Thus they suggested a simplified config-
uration as shown in Fig. 2b. Another simplified configura-
tion can be considered in which the resistors in the direc-
tion normal to the applied heat flow are perfectly conduct-
ing resistors, as shown in Fig. 2c. In the discussion that fol-
lows, the effective heat conductivity of the system will be
derived using both methods, and the accuracy of the results
and behaviour of the solutions will be compared with the
exact solution. Since similar results could be expected for
three cubic arrays, here only the simple cubic array is investi-
gated.

4.1 First resistor model

Suppose that the unit cell is divided to N paral-
lel regions, each composed of infinite infinitesimal parallel
elementary volumes in annular cylinder geometry. Due to
the symmetry of the problem and for the sake of simpli-
city, only a quarter of the unit cell needs to be considered,
as depicted in Fig. 3a,b. An expression for the thermal con-
ductivity of each element in these parallel regions (κ) can be

F keff k′
eff k′′

eff

0.30 2.3329 2.3326 2.333
0.40 3.2626 3.2612 3.262
0.50 5.8913 5.8875 5.891
0.510 6.7664 6.7623 –
0.520 8.8688 8.8644 –
0.523 11.671 11.666 –

TABLE 3 Effective thermal conductivity for a simple cubic array of per-
fectly conducting solid spheres. k′

eff corresponds to the solution without
considering azimuthal terms and k′′

eff are results of McPhedran et al. [6]
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derived:

1/2

κ
=

N−1∑
j=i

aj

√
1 − (

ai sin θ/aj
)2 −aj−1

√
1 − (

ai sin θ/aj−1
)2

kj

+ 1

2
−aN−1

√
1 − (ai sin θ/aN−1)

2

=
N−1∑
j=i

aj

√
1 − (

ai sin θ/aj
)2

(
1

kj
− 1

kj+1

)
+ 1

2

(i = 1, . . . , N −1) . (27)

Clearly, for the last region, the thermal conductivity is equal
to the unit value. The next step is to determine the relation
for the equivalent thermal conductivity of each region (Ki).
Using (27) and remembering that all elements are in parallel,
the following result is obtained:

Ki = 1

a2
i −a2

i−1

×
π/2∫
θi

a2
i sin 2θdθ∑N−1

j=i 2aj

√
1 − (

ai sin θ/aj
)2 (

1/kj −1/kj+1
)+1

(i = 1, . . . , N −1) (28)

where

θi = sin−1
(

ai−1

ai

)
. (29)

FIGURE 3 Quarter unit cell considered in the derivation of the effective conductivity by using first resistor model: a 3-d view; and b 2-d view

With the above procedures, the effective conductivity of the
unit cell can be derived to be:

keff =
N−1∑
i=1

π
[
a2

i −a2
i−1

]
Ki +1 −πa2

N−1 (30)

4.2 Second resistor model

As shown in Fig. 4a,b, in the second method the
unit cell is divided into infinite slices normal to the applied
field. As for the first method, an infinite number of cells in N
serial regions (i = 1, . . . , N) are considered. For each slice,
the equivalent conductivity may be specified as:

κ =
N∑

j=i

Kjsj/S (i = 1, . . . , N −1) (31)

where

sj = π
4

{
a2

j

[
1 − (

ai cos θ/aj
)2

]
−a2

j−1

[
1 − (

ai cos θ/aj−1
)2

]}
if j = i, . . . , N −1

sj = 1/4 −π
[
a2

j−1 − (ai cos θ)2
]

if j = N



(32)

and S = 1/4 is the non-dimensional cross-sectional area of the
slice. It is then straightforward to derive the equivalent ther-
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FIGURE 4 Quarter unit cell under inspection in second resistor model: a 3-d view; and b 2-d view

mal conductivity of each region as:

Ki = ai −ai−1∫ θi
0

ai sin θdθ

π
{

ki (ai sin θ)2+∑N−1
j=i+1 kj

(
a2

j −a2
j−1

)
−

[
a2

N−1−(ai cos θ)2
]}

+1

(i = 1, . . . , N −1) (33)

where

θi = cos−1

(
ai−1

ai

)
. (34)

Consequently, the effective conductivity of the system is
given as follows:

keff = 1∑N−1
i=1

2(ai −ai−1)
Ki

+1 −2aN−1

(35)

5 Results and discussion

Figure 5 compares the resulting effective thermal
conductivity values from the exact solution for the simple
array of coated spheres with those obtained from resistor
models. The total volume fraction (F ) was selected to be
0.2 ( f1 = 0.1 and f2 = 0.1) and the exact solution was ob-
tained using (19), which should yield reasonable results in this
limit [6]. All integrals in (28) and (33) were calculated using
the Gauss–Legendre integration technique [22]. The results
show that the first method always underestimates the exact
solution except when the conductivity of the core and shell
is equal to the matrix conductivity. This result is consistent
with the finding of Hsu et al. [21] in their comparison of re-
sults for the effective thermal conductivity of non-touching
solid circular cylinders. In reality, the infinite resistance as-
sumption of the resistors in the normal direction to the applied
field introduces a lower bound for the effective conductivity

of the system. The accuracy of the solution depends on the
conductivity and volume fraction of the phases and geometry
under consideration. In contrast to the first approach, the sec-
ond method overestimates the solution except in the situation
mentioned for the first resistor model. Thus, another bound is
introduced for the conductivity of the system.

Of particular interest are the situations where the core and
shell tend to their limiting conductivity values (0,+∞). The
errors for other cases cannot be much higher than the error for
the limiting cases, as is evident from Fig. 5. Thus, the follow-

FIGURE 5 Logarithmic plot of the effective conductivity for the simple
cubic array of coating spheres as a function of the conductivity of the core
and shell. Despite of the accuracy, the first resistor model is unable to show
the same behaviour as the exact solution when the shell is perfectly conduct-
ing. The same condition applies for the second resistor model when the shell
is perfectly insulating
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ing section discusses the ability of the models to predict these
limiting cases.

Relatively good results can be expected from the first
model for the case when both the core and shell have a large
conductivity value. Here the accuracy of the solution is tested
for a perfectly conducting core and coating layer. Since this
case is equal to an array of perfectly conducting solid spheres
of radius a1∗ = a2, it is easier to investigate the solution for the
alternative system. For this case the effective thermal conduc-
tivity can be derived as follows:

K1∗ =
π/2∫
0

sin (2θ)

1 −2a2 cos θ
= − 1

a2
− 1

2a2
2

ln (1 −2a2) dθ (36)

keff = −π

2
ln (1 −2a2)− (

πa2
2 +πa2 −1

)
. (37)

As was predicted by Batchelor and O’Brien [23], for nearly
touching perfectly conducting spheres, the effective thermal
conductivity satisfies the following relation:

keff = −C1 ln (1 −2a2)−C2 (a2 → 1/2) (38)

where C1 and C2 are two positive constants. The constant
C1 was derived by Batchelor and O’Brien [23] to be π/2,
and the second constant has been calculated by Sangani and
Acrivos [8] to be about 0.69. The first resistor model gives
the same value for C1 but the suggested value for C2 is equal
to 1.356, which is almost twice the value given by Sangani
and Acrivos [8]. For this situation, the second resistor model
provides the following simple expression:

keff = 1/2

1/2 −a2
. (39)

Figure 6 compares the results of the two-resistor model with
the data obtained by exact solution and the results of the lower
bound given by Hashin and Shtrikman [10].

Since dispersed phases have small conductivity values,
a second limiting case can be presented for such dispersed
systems. The results of this system have been calculated for
the condition where the core and shell are perfectly insulating
(an array of perfectly insulating solid sphere of radius placed
in a matrix of unit conductivity). It can be seen from Fig. 5
that the second model predicts more accurate results in this
situation. From (33) and (35), the following relations for the
second model can be derived:

K1∗ =
π/2∫
0

sin θ

1 −πa2
2 sin2 θ

=
a2π

√
1/π −a2

2 dθ

arctan
(

a2/

√
1/π −a2

2

) (40)

keff =
π

√
1/π −a2

2

2 arctan

(
a2/

√
1/π −a2

2

)
+ (1 −2a2) π

√
1/π −a2

2

(41)

Also, for the first model one may find:

keff = 1 −πa2
2 . (42)

A comparison between the exact solution with the predicted
results based on the two resistor model and two bounds given
in [10] for the case of perfectly insulating spheres is shown
in Fig. 7.

The results of the resistor models for two rested positions
(k1 = +∞, k2 = 0 and k1 = 0, k2 = +∞) are examined in
a different way. As can be seen from (15) L N

n plays an import-
ant role in the response of the system to the applied field. Due
to the shape of mathematical expression (14), for some cases
a different series of dispersed phases may exist that gives the
same value for L N

n . Nicorovici et al. [12] have studied the be-
haviors of coated spheres. The following discussion considers
the case of multi-coated spheres for three scenarios.

1) ki∗−1 = ki∗
(
2 ≤ i∗ ≤ N −1

)
. (43)

After two successive applications of (13) for i∗ and i∗ +1, the
resulting expression for Li∗+1

n is:

Li∗+1
n =

(2n −1)
(
ki∗−1,i∗+1 −1

)
+ [

2n
(
ki∗−1,i∗+1 +1

)−1
]

Li∗−1
n (ai∗−2/ai∗)4n−1[

(2n −1)
(
ki∗−1,i∗+1 +1

)+1
]

+2n
(
ki∗−1,i∗+1 −1

)
Li∗−1

n (ai∗−2/ai∗)4n−1

.

(44)

Therefore L N
n will not change if these two phases are uni-

fied and considered as a unique phase with volume fraction
4π

(
a3

i∗ −a3
i∗−2

)
/3τ0. If the core and all coating layers have

the same conductivity, the problem can be reduced to the sim-
ple array of solid spheres of radius aN−1 immersed in a matrix
of unit conductivity.

L N
n = k1 −1

k1 +2n/ (2n −1)
. (45)

FIGURE 6 Comparison between the results of the first and second resis-
tor models with the exact solution and the results of the lower bound given
in [10] for perfectly conducting phases
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FIGURE 7 Comparison between the predictions of the first and second re-
sistor models with the exact solution and the results of two bounds given
in [10] for perfectly insulating spheres

It can be shown from (27) and (31) that both resistor models
also demonstrate the same behaviour.
2) kimax = 0, where imax is the largest coating layer which
has conductivity equal to zero. For this case (44) reduces to
a simplified expression:

Limax+1
n = −2n −1

2n
. (46)

This result implies that the phases under imax have no effect
in calculating the and in fact layer imax cuts the relation be-
tween the phases i > imax and i < imax. The first resistor model
also shows the same behaviour. For this case, (28) yields the
following result:

Ki = 0 (i ≤ imax) . (47)

Thus, these phases play the same role as for the exact solution.
In contrast, it can be seen from (33) that the second model does
not demonstrate equal behaviour and the results of this model
have more errors in this situation.
3) kimax = +∞, where imax is the largest coating layer which
is perfectly conducting. Consequently,

Limax+1
n = 1 . (48)

Thus, this phase makes the phases under the phase imax ir-
relevant in the response of the system to the applied field. In
this situation, the second resistor model illustrates similar be-
haviour. All the region conductivities become infinite:

Ki = +∞ (i ≤ imax) . (49)

Therefore, they do not have any effect on the calculation of the
effective thermal conductivity (i.e. (35)). However, the first re-
sistor model is unable to predict this behaviour and the error
tends to increase for this condition.

6 Concluding remarks

The method devised by Zuzovski and Brenner [7]
has been extended to enable the calculation of the effective
conductivity of systems of multi-coated spheres consisting of
SC, BCC and FCC unit cells. An explicit expression for the
effective thermal conductivity to O

(
F9

)
has been presented.

Two resistor models have been developed to obtain alternative
solutions to the problem. By inspection of the results of the
resistor model and comparison with the results of the exact so-
lution, it was found that the results of these models constitute
two bounds for the exact solution. Some scenarios were inves-
tigated to identify and discuss situations in which one of these
models predicts better results.

The use of a more complex method of analysis, such as
combinational theory, should help to improve the accuracy
of the calculations and provide a more thorough explanation
of the physical behaviors of the system. The development of
a method based on combinational theory and its application to
the system studied in this work will be the focus of a future
investigation in this area.
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