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Abstract
We extend the Rayleigh method for the calculation of the effective
conductivity to three-phase composite materials. The materials under study
consist of two types of circular cylinders in a periodic arrangement
embedded in a matrix. Highly accurate values for lattice sums were obtained
using algorithms which have been recently developed. A series of explicit
formulations, which are used to facilitate the calculation of the effective
conductivity of the composites under study, are reported. We also perform a
series of numerical calculations to study the behaviour of these composites.

1. Introduction

Multi-phase heterogeneous systems can be found in a
wide range of practical processes and are of considerable
technological importance. Colloidal dispersions, emulsions,
solid rocket propellant, oil-filled porous rocks, concrete,
reinforced materials are a few examples of such systems.
To handle these systems optimally one needs to know how
they behave at the macroscopic level; therefore a great deal
of interest has been focused on relating the microstructural
and macroscopic properties of these systems, such as the
effective thermal, or electrical, conductivity [1, 2], dielectric
permittivity [3, 4] and permeability of a porous medium [5].

One common type of these systems consists of a matrix
and a series of dispersed phases. Of these systems those
with circular cylinders were among the first to be studied
by researchers for deriving the effective conductivity, as
is the case in Rayleigh’s studies [1]. Rayleigh took into
account a rectangular array of circular cylinders and showed
that to completely relate the microstructural and macroscopic
properties, the effect of interaction between the cylinders
should be taken into account. This fact was later extensively
used for obtaining more accurate analytical relations for
calculating the effective conductivity of these composite
systems [6, 7]. Recently, some attempts have been made to
generalize the study by developing formulations for multi-
phase cases [8]. Clearly, this is an important task since
the behaviour demonstrated by multi-phase systems can be

completely different from that understood on the basis of
two-phase systems and further investigation is necessary.

In this paper, we are concerned with the problem of
calculating the effective conductivity of three-phase periodic
structures composed of two types of circular cylinders. The
unit cell of the composites under study is a rectangular cylinder
with a circular cylinder of type one at the centre and a
circular cylinder of type two at each corner, as depicted in
figure 1. The phases can be solid or stagnant fluid. The

Figure 1. The unit cell of the three-phase composites under study.
Cylinders of the same type have a distance equal to a unity in the
x-direction and b in the y-direction.
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configuration of the geometry selected for study makes it
possible to construct many periodic structures, which can be
widely found in literature. In what follows, we first develop
the Rayleigh method to the three-phase composites. Then, we
verify the algorithm, comparing our results with some existing
results. Finally, we inspect the behaviour of the systems.
We shall use terms and notations appropriate to the case of
thermal conduction for convenience. It is worth noting that the
results of this study can be applied to many transport properties
besides thermal or electrical conductivity [9, 10].

2. Governing equations

Suppose that the origin of cartesian coordinates has been placed
at the centre of a cylinder of type one in a unit cell of the
system in which the x- and y-axes are parallel to the sides
of the unit cell (see figure 1). Furthermore, assume that the
matrix of the composite under study has unit conductivity and
the periodicity of the system in the x-direction is equal to b

and in the y-direction is equal to a unity for greater generality.
Applying these conditions, we denote the conductivity of the
cylinders by k1 and k2, the radii a1 and a2 and the volume
fractions f1 and f2 for the cylinders of type one and two,
respectively.

For the case b �= 1, the effective conductivity of the
system in the x-direction (parallel) would be different from
that of the y-direction (perpendicular) and one should calculate
both these conductivities. In order to simplify the presentation
without loss of generality herein, we only consider the parallel
direction. The necessary comments for the perpendicular
direction shall be outlined in a separate section.

Let us apply a uniform temperature gradient of unit
magnitude externally to the system along the x-axis in the
negative direction. By taking the centre of any cylinder of
type i (i = 1 or 2) as the origin of polar coordinates (r, θ),
the temperature within that cylinder and outside it through the
matrix can be given as

Ti(r, θ) = C0,i +
∞∑

n=1

C2n−1,i r
2n−1 cos(2n − 1)θ, (1)

Tm,i(r, θ) = A0,i +
∞∑

n=1

(A2n−1,i r
2n−1 + B2n−1,i r

−2n+1)

× cos(2n − 1)θ, (2)

where the set of coefficients C2n−1,i , A2n−1,i and B2n−1,i are
unknowns to be determined. The periodicity of the system
implies that these coefficients be exactly the same for all
cylinders of the same type. C0,i and A0,i express the average of
the temperature within the cylinder and outside it, respectively.
Thus, they are exactly the same only for cylinders of the
same type placed in a column normal to the applied field. In
equations (1) and (2), also note that the cosines of the even
multiples have been ignored. This is because of anti-symmetric
behaviour of the temperature around θ = π/2, where θ is
measured from the parallel direction.

At the surface of the cylinders, the temperature and the
normal component of heat flux are continuous, i.e.

Ti = Tm,i, ki

∂Ti

∂r
= ∂Tm,i

∂r
r = ai. (3)

By applying the above-mentioned boundary conditions, we can
obtain

A2n−1,i = B2n−1,i

γia
4n−2
i

, (4)

C2n−1,i = B2n−1,i

χia
4n−2
i

, (5)

where

γi = 1 − ki

1 + ki

, χi = 1 − ki

2
. (6)

For the case of non-conducting cylinders, ki = 0, we have
γi = 1 and χi = 0.5. Also, applying perfectly conducting
cylinders, ki = ∞, implies that γi = −1 and χi = −∞.
The unknown coefficients still cannot be determined since
the relations given in equations (4) and (5) do not provide a
complete set of equations in terms of the unknowns; we require
a further series of relations between the coefficients. For this
purpose, we employ Rayleigh’s strategy which is based on the
fact that at any point the temperature may be regarded due
to external sources and multiple sources placed at the centre
of the cylinders. By examination of temperature function (2)
written for a cylinder, we find that terms with radius raised to
a positive power cannot be due to sources placed at the centre
of that cylinder since they increase when r increases; therefore
they stem from the external field and sources originated from
the centre of other cylinders. As a result, we can write

A0,i +
∞∑

n=1

A2n−1,i r
2n−1 cos(2n − 1)θ

= x +
∑
j �=0

∞∑
n=1

B2n−1,i

r2n−1
j,i

cos (2n − 1) θj,i

+
∑

j

∞∑
n=1

B2n−1,2−δi2

r2n−1
j,2−δi2

cos (2n − 1) θj,2−δi2 , (7)

where rj,i and θj,i are measured from the centre of cylinder j

situated in the array of cylinders of type i. As is specified in
equation (7), in the sum over the cylinders of type i, all the
cylinders, except the cylinder under study (j = 0), should
be taken into account but in the sum over the cylinders of the
other type, all the cylinders are to be considered without any
exception. The above expression can be considered as the real
part of the following relation:

A0,i +
∞∑

n=1

A2n−1,i[x − ξ0,i + i(y − η0,i )]
2n−1

= x + iy +
∑
j �=0

∞∑
n=1

B2n−1,i[x − ξ0,i − ξj,i

+i(y − η0,i − ηj,i)]
−2n+1 +

∑
j

∞∑
n=1

B2n−1,2−δi2

×[x − ξ0,i − ξj,2−δi2 + i(y − η0,i − ηj,2−δi2)]
−2n+1,

(8)

where ξj,i and ηj,i are the coordinates of cylinder j of type i

in the coordinate system (x, y). Now we perform successive
differentiation with respect to x on both sides of the above
equation and evaluate the results at the centre of the cylinder
under study (ξ0,i , η0,i ). After applying equation (4), the
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process yields the following set of linear algebraic equations
in the unknowns B2n−1,i (i = 1, 2):

B2n−1,i

γia
4n−2
i

+
∞∑

m=1

(
2n + 2m − 3

2n − 1

)
(S2n+2m−2,1B2m−1,i

+S2n+2m−2,2B2m−1,2−δi2) = δn1, (9)

where S2l,i = ∑
j �=0 (ξj,i + iηj,i)

−2l are lattice sums over
cylinders of type i. Solving equation (9) and using
equations (4) and (5) we can obtain all the unknown coefficients
and as a result the temperature functions. Since considering
B2n−1,i (i = 1, 2) for a sufficiently large n has no significant
effect on the values of the temperature functions, in practice,
the system of equation (9) is truncated.

3. Determining the effective conductivity of the
system

Based on Fourier’s law, the effective conductivity of the system
can be derived using the following formula [11]:

〈F〉 = −ke〈∇T 〉, (10)

where

〈F〉 =
(

1

Vcell

) ∫
Vcell

F dV ,

〈∇T 〉 =
(

1

Vcell

) ∫
Vcell

∇T dV ,

are the average heat flux and temperature gradient over the unit
cell, respectively. To proceed, let us decompose the average
heat flux as the following:

〈F〉 = 1

Vcell

[∫
V1

F dV +
∫

V2

F dV +
∫

Vm

F dV

]
, (11)

whence

〈F〉 = 1 − k1

Vcell

∫
V1

∇T1 dV +
1 − k2

Vcell

∫
V2

∇T2 dV

− 1

Vcell

∫
Vcell

∇T dV, (12)

where V1, V2 and Vm are the volumes of cylinders of
type one and two and the matrix placed in the unit cell,
respectively. After performing the integrals (see appendix A),
from equation (12) we may find

〈F〉 = 2πB1,1

Vcell
i +

2πB1,2

Vcell
i − 〈∇T 〉. (13)

Taking into account that 〈∇T 〉 = i and Vcell = b, the final result
for the effective conductivity from equations (13) and (10) can
be given as

ke = 1 − 2π(B1,1 + B1,2)

b
= 1 − 2f1γ1A1,1 + 2f2γ2A1,2.

(14)

As can be seen from equation (14), knowing B1,1 and B1,2 is
enough for obtaining the effective conductivity of the system.
The term 2π(B1,1 + B1,2)/b was produced because of the
presence of the inclusions in the matrix. It can be positive
(impairing case), negative (enhancing case) or equal to zero.

For the case in which N types of cylinders are placed in the unit
cell, the effective conductivity of the system can be obtained
using

ke = 1 − 2π

N∑
i=1

B1,i

Vcell
. (15)

4. The effective conductivity for the perpendicular
direction

For deriving the effective conductivity in this direction in order
to make it similar with the foregone relations, we rotate the
system through an angle of α = π/2. If we follow the above-
mentioned procedures for the parallel direction, we get

B ′
2n−1,i

γia
4n−2
i

+
∞∑

m=1

(
2n + 2m − 3

2n − 1

)
(S ′

2n+2m−2,1B
′
2m−1,i

+S ′
2n+2m−2,2B

′
2m−1,2−δi2

) = δn1, (16)

where S ′
2l,i are lattice sums over cylinders of type i in this

new position. It can be proved that S ′
2l,i = (−1)lS2l,i for

l > 1 and also S ′
2,i = 2π/b − S2,i (see [6, 12]). The effective

conductivity of the system may be obtained using the similar
formula as (14), i.e.

k′
e = 1 − 2π(B ′

1,1 + B ′
1,2)

b
. (17)

Since the composite under study is a two-dimensional
structure, through a methodology (see appendix B) we can
show that the effective conductivity in the perpendicular
direction has been linked to that in the parallel direction using
the well-known reciprocal theorem of Keller [13–15], i.e.

ke(k1, k2, 1) × k′
e

(
1

k1
,

1

k2
, 1

)
= 1. (18)

5. Explicit solutions

For low-volume fractions or when the conductivity of the
cylinders is small, considering a few numbers of B2n−1,1 and
B2n−1,2 in the process of solving (9) may yield reasonable
results for B1,1 and B1,2 and as a result, based on equation (14),
for the effective conductivity. It is more useful that, within
these boundaries, we manage to derive an explicit relation for
the effective conductivity of the system. Based on the method
used for truncating (e.g. square or triangular manner) and on the
number of the unknowns taken into account, one may obtain
different expressions. If we truncate equation (9) in a triangular
manner and keep only the coefficient B1,i and B3,i (i = 1, 2),
we find
B1,1

γ1a
2
1

+ S2,1B1,1 + S2,2B1,2 + 3S4,1B3,1 + 3S4,2B3,2 = 1,

B3,1

γ1a
6
1

+ S4,1B1,1 + S4,2B1,2 = 0,

B1,2

γ2a
2
2

+ S2,1B1,2 + S2,2B1,1 + 3S4,1B3,2 + 3S4,2B3,1 = 1,

B3,2

γ2a
6
2

+ S4,1B1,2 + S4,2B1,1 = 0.

(19)

1646



The effective conductivity of composites

Deriving B1,1 and B1,2 from the above equation and using
equation (14), we can obtain the effective conductivity of the
system in an explicit relation, i.e.

ke = 1 − 2f1

(λ1λ2 − ξ1ξ2)/(λ2 − ξ2)

− 2f2

(λ1λ2 − ξ1ξ2)/(λ1 − ξ1)
(20)

with

λi = 1

γi

+ c1fi − c2γif
4
i − c3γ2−δi2fif

3
2−δi2

, (21)

ξi = c4fi − c5(γif
4
i + γ2−δi2fif

3
2−δi2

), (22)

where

c1 = S2,1
b

π
, c2 = 3

(
b

π

)4

S2
4,1, c3 = 3

(
b

π

)4

S2
4,2,

c4 = S2,2
b

π
and c5 = 3S4,1S4,2

(
b

π

)4

.

One may leave the higher orders and obtain a simpler relation

ke = 1 − 2f1

ω/υ2
− 2f2

ω/υ1
, (23)

where

ω =
(

1

γ1
+ c1f1

) (
1

γ2
+ c1f2

)
− c2

4f1f2, (24)

υi = 1

γi

+ (c1 − c4)fi . (25)

For the case of uniform cylinders (f1 = f2 = f ∗,
γ1 = γ2 = γ ∗) from equation (20), we obtain the following
formula:

ke = 1 − 2F

1/γ ∗ + F − dγ ∗F 4
, (26)

where F = f1 + f2 = 2f ∗ is the total volume fraction and
d1 = 3(b/π)4(S4,1 + S4,2)

2/16. We have listed c1, . . . , c5

for the case b = √
3 in table 1, calculating highly accurate

values for lattice sums using integral representation technique
[16]. For this case, d = 0 as we expected [6]. Note
that equation (20) can also be applied for the perpendicular
direction if we calculate the coefficients for this direction. In
table 1 we have also reported these values.

6. Results and discussion

Before starting the discussion on the results of the three-phase
system, it is helpful to verify the validity of the extension to

Table 1. The calculated values for c1, . . . , c5 used in the analytical
formula (20) for determining the effective conductivity in the
parallel and perpendicular directions for the case b = √

3.

Parallel Perpendicular

c1 0.187 018 134 1.812 981 866
c2 1.310 523 128 1.310 523 128
c3 1.310 523 128 1.310 523 128
c4 1.812 981 866 0.187 018 134
c5 −1.310 523 128 −1.310 523 128

the three-phase system. We perform a series of calculations
for two-phase composites with uniform cylinders arranged
either in square (b = 1) or hexagonal orders (b = √

3) and
then compare the results with those reported by Perrins et al
[6]. The two-phase cases can be constructed from the three-
phase one simply by applying f1 = f2 and k1 = k2. For this
purpose highly accurate values for lattice sums over cylinders
of type one and two were derived and equation (9) (i = 1, 2)
was solved numerically using LU decomposition method [17].
Taking into account 100 unknowns of B2n−1,1 and B2n−1,2 gives
us a measure of obtaining accurate results for all the volume
fractions and conductivities considered (see [6]). Table 2
shows a part of the calculated lattice sums used in the procedure
of the solutions. In figure 2 the results are compared for both
the square and hexagonal arrays for the most challenging case,
i.e. the case of perfectly conducting cylinders. As can be seen
for all the values of volume fractions, the results of the two
studies are in excellent agreement.

Figure 3 shows a typical result for the effective
conductivity of the system for both the parallel and
perpendicular directions. The volume fractions are f1 = 0.4
and f2 = 0.4, and the periodicity in the x-direction was
supposed to be b = √

3. For deriving the conductivity
of the system in the perpendicular direction we can either
solve equation (16) and apply equation (17) or, alternatively,
use the Keller theorem for this purpose. Through a careful
examination of this figure, it appears that increasing or
decreasing the conductivity of both the types of cylinders
may enhance or diminish the conductivity of the system,
respectively, which is obvious and remains correct for both
directions. Furthermore, the system demonstrates higher
effective conductivity in the perpendicular direction. This
behaviour is a consequence of the rectangular shape of
the unit cell which provides a more (less) important role
for the cylinders with lower conductivity in the parallel
(perpendicular) direction. Interestingly, for the case of mono-
sized cylinders with k1 = ∞ and k2 = 0, increasing the volume
fraction of the cylinders causes the conductivity of the system
to approach zero in the parallel direction and approach infinity
in the perpendicular direction (see table 3). When perfectly
insulating cylinders touch each other, they form a barrier which
prevents heat flow in the parallel direction (note that for the
case of spherical inclusions this behaviour does not hold true
since heat can pass through the gaps between spheres). This
behaviour can also be observed for all systems for which b > 1.
For the case b = 1, however, the system is isotropic and the
same results can be expected for both directions. For this case,
the same type cylinders are not able to touch each other and
a limited value for the effective conductivity of the system
can be expected. Surprisingly, we found that the effective
conductivity of the system is simply a unity. This result can
be confirmed using the Keller theorem as follows: since the
system is isotropic and interchange between the material of
the cylinders keeps the system unchanged, using equation (18)
we can get

ke

(
k,

1

k
, 1

)
× k′

e

(
1

k
, k, 1

)

= ke

(
k,

1

k
, 1

)
× ke

(
k,

1

k
, 1

)
= 1. (27)
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Table 2. The calculated lattice sums over cylinders of type one (Sn,1) and two (Sn,2) for the case b = √
3 for n � 40. The fourth column

shows that the sum of these two lattice sums is zero for cases n �= 2 and n �= 6m (m = 1, . . . ,∞).

n Sn,1 Sn,2 Sn = Sn,1 + Sn,2

2 0.339 213 371 863 0 3.288 385 356 605 4 3.627 598 728 468 4
4 2.174 403 848 897 3 −2.174 403 848 897 3 0.0
6 −2.015 417 144 615 0 −3.847 614 548 810 4 −5.863 031 693 425 3
8 2.026 299 470 614 1 −2.026 299 470 614 1 0.0

10 −1.991 968 543 811 1 1.991 968 543 811 1 0.0
12 2.004 191 455 405 0 4.005 448 516 292 6 6.009 639 971 697 7
14 −1.999 081 877 790 2 1.999 081 877 790 2 0.0
16 2.000 305 162 759 2 −2.000 305 162 759 2 0.0
18 −1.999 921 376 863 0 −3.999 796 979 507 5 −5.999 718 356 370 5
20 2.000 033 868 833 5 −2.000 033 868 833 5 0.0
22 −1.999 988 707 980 1 1.999 988 707 980 1 0.0
24 2.000 004 120 945 6 4.000 007 526 634 1 6.000 011 647 579 8
26 −1.999 998 745 589 4 1.999 998 745 589 4 0.0
28 2.000 000 418 152 9 −2.000 000 418 152 9 0.0
30 −1.999 999 866 203 8 −3.999 999 721 231 7 −5.999 999 587 435 6
32 2.000 000 046 461 1 −2.000 000 046 461 1 0.0
34 −1.999 999 984 513 0 1.999 999 984 513 0 0.0
36 2.000 000 005 249 7 4.000 000 010 324 7 6.000 000 015 574 4
38 −1.999 999 998 279 2 1.999 999 998 279 2 0.0
40 2.000 000 000 573 6 −2.000 000 000 573 6 0.0

Figure 2. The effective conductivity of two-phase composites with
mono-sized perfectly conducting circular cylinders arranged in
square and hexagonal orders. F shows the volume fraction of the
cylinders. The solid lines are the results of Perrins et al [6] and the
dotted lines are those obtained by solving the governing equations
of the three-phase composites.

Considering k = 0 proves our case. Sculgasser [18] has shown
that in a three-phase system with interchangeable phases (see
figure 4), when one of the phases has conductivity equal to
k and the two remaining phases are perfectly conducting and
non-conducting, the effective conductivity of the system is k.
From the above results, it is clear that it is not necessary for
the first phase to be interchangeable, and it can simply be a
matrix.

For the case b = 1 with non-equal sized cylinders, if fi �
(π/4)(

√
2 − 1)2, f2−δi2 can be increased freely to the touching

value limit and the effective conductivity of the system can

Figure 3. The contours of the effective conductivity in the parallel
and perpendicular directions for the case of equal sized cylinders.
f1 = 0.4, f2 = 0.4 and b = √

3.

approach infinity or zero, depending on the conductivity of the
touching cylinders.

Figure 5 shows the results of the effective conductivity
for a system with a lower total volume fraction, i.e. f1 = 0.4
and f2 = 0.2. b as before is equal to

√
3. Comparing with

figure 4 we can see that the case k1 = k2 = 1 is the only
situation in which both systems for the given conductivities
present the same effective conductivity. In this situation
γ1 = γ2 = 0, which leads to B1,1 = B1,2 = 0, and as a
result, ke = 1. Figures 3 and 5 also show that having cylinders
with conductivities equal to the conductivity of the matrix is
not the only condition for the effective conductivity to be equal
to the conductivity of the matrix. In fact, this case is a special
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Table 3. The effective conductivity in the parallel and perpendicular
directions, with respect to the total volume fraction (F ). The
cylinders are mono-sized, k1 = 0, k2 = ∞ and b = √

3 (b > 1).

F ke k′
e

0.1 0.983 871 1.016 39
0.2 0.937 008 1.067 23
0.3 0.863 599 1.157 94
0.4 0.769 417 1.299 69
0.5 0.660 207 1.514 68
0.6 0.539 863 1.852 32
0.7 0.408 730 2.446 60
0.8 0.261 159 3.829 08
0.9 3E−7 19.253
π/(2

√
3) 0 —

Figure 4. The three-phase structure investigated by Schulgasser
et al [18]. All the phases are interchangeable.

state of the following general situation:

B1,1 + B1,2 = f1γ1A1,1 + f2γ2A1,2 = 0. (28)

The importance of the situation k1 = k2 = 1 (B1,1 = B1,2 = 0)

is that it is independent of the values of f1, f2 and b, and for all
these situations, we would find that ke = 1, which is physically
obvious. This behaviour does not hold for the other values of
the conductivities.

7. Conclusion

The effective conductivity of three-phase composites with
circular cylindrical inclusions in a periodic arrangement was
derived by extending a method put forward by Lord Rayleigh
[1]. Considering the recent development in the fast and
accurate calculation of lattice sums [16, 19], such an extension
can be used efficiently for calculating the conductivity of
the system. A study of the behaviour of the composites
revealed that they may exhibit unexpected results in particular
states. The structure considered in this paper was an ideal one,
but the results can be useful for understanding the interplay
between microstructures and the effective property of real
multi-phase fibre composites and specifically those which can
be approximated with the use of periodic structures and circular

Figure 5. The contours of the effective conductivity in the parallel
and perpendicular directions for the case of unequal sized cylinders.
f1 = 0.4, f2 = 0.2 and b = √

3.

cylindrical inclusions. Also, the results provide a helpful
resource in the process of testing and developing well-known
classical numerical methods such as the boundary element
method [20] or other proposed schemes in calculating the
effective conductivity of multi-phase composite materials.
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Appendix A

We would like to calculate the following term:

〈S〉i = 1 − ki

Vcell

∫
Vi

∇Ti dV . (A1)

By using Green’s first identity [21], the above relation becomes

〈S〉i = 1 − ki

Vcell

∫
σi

Tin dS, (A2)

where σi is the surface of the cylinder of type i in the unit
cell and n expresses the unit outward normal vector to the
surface. Taking into account the temperature function given
in equation (1) and after using the orthogonality properties of
trigonometric functions, we can obtain

〈S〉i = 1 − ki

Vcell

∫ 2π

0
a2

i C1,i cos2 θ dθ i =πa2
i (1 − ki)

Vcell
C1,i i

= 2πB1,i

Vcell
i. (A3)
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Appendix B

Here extending the procedure given by Perrins et al [6] we
prove Keller’s theorem for the system under study as follows:
considering that reversing the conductivity of the phases
only makes the sign of γi (i = 1, 2) negative and applying
the mentioned property of lattice sums in section 4, from
equation (16), we may write

(−1)nB ′
2n−1,i

γia
4n−2
i

+
∞∑

m=1

(
2n + 2m − 3

2n − 1

)
(S2n+2m−2,1(−1)mB ′

2m−1,i

+(−1)mS2n+2m−2,2B
′
2m−1,2−δi2

)

=
[

1 − 2π(B ′
1,i + B ′

1,2−δi2
)

b

]
δn1. (B1)

Using equation (17) and comparing the above relation with
equation (9), we find that

B ′
2n−1,i

k′
e (1/k1, 1/k2, 1)

= (−1)nB2n−1,i . (B2)

Writing the above relation for n = 1 and using again
equation (17) we have

k′
e

(
1

k1
,

1

k2
, 1

)
= 1 +

2π(B1,1 + B1,2)k
′
e(1/k1, 1/k2, 1)

b
.

(B3)

Applying equation (14) gives

ke(k1, k2, 1) × k′
e

(
1

k1
,

1

k2
, 1

)
= 1. (B4)
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