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INTEGER PROGRAMMING

10.1 INTRODUCTION

In all the optimization techniques considered so far, the design variables are
assumed to be continuous, which can take any real value. In many situations
it is entirely appropriate and possible to have fractional solutions. For example,
it is possible to use a plate of thickness 2.60 mm in the construction of a boiler
shell, 3.34 hours of labor time in a project, and 1.78 Ib of nitrate to produce
a fertilizer. Also, in many engineering systems, certain design variables can
only have discrete values. For example, pipes carrying water in a heat ex-
changer may be available only in diameter increments of é in. However, there
are practical problems in which the fractional values of the design variables
are neither practical nor physically meaningful. For example, it is not possible
to use 1.6 boilers in a thermal power station, 1.9 workers in a project, and
2.76 lathes in a machine shop. If an integer solution is desired, it is possible
to use any of the techniques described in previous chapters and round off the
optimum values of the design variables to the nearest integer values. However,
in many cases, it is very difficult to round off the solution without violating
any of the constraints. Frequently, the rounding of certain variables requires
substantial changes in the values of some other vanables to satisfy all the con-
straints. Further, the round-off solution may give a value of the objective func-
tion that is very far from the original optimum value. All these difficulties can
be avoided if the optimization problem is posed and solved as an integer pro-
gramming problem.

When all the variables are constrained to take only integer values in an
optimization problem, it is called an (all)-integer programming problem. When
the variables are restricted to take only discrete values, the problem is called
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TABLE 10.1 Integer Programming Methods

i
Linear programming problems Nonlinear pmgrarlnming problems
I 1 1 i 1
All-integer Mixed-integer  Zero-one Polynomial General nonlinear
problem problem problem programming problem
problem
l\c—n'"_‘\-""'-l-._.--/ \\'h,_,_—_-"'\.ﬂ__l-_-j
Cutting plane method Cutting plane method ! 1
Branch-and-bound method  Branch-and-bound method  All-integer  Mixed integer
Balas method problem problem
I\"--.---"'—\/_""-—--)I
Generalized penalty function
method

Sequential linear integer
(discrete) programming
method

a discrete programming problem. When some variables only are restricted to
take integer (discrete) values, the optimization problem is called a mixed-
integer (discrete) programming problem. When all the design variables of an
optimization problem are allowed to take on values of either zero or 1, the
problem is called a zero-one programming problem. Among the several tech-
niques available for solving the all-integer and mixed-integer linear program-
ming problems, the cutting plane algorithm of Gomory [10.7] and the branch-
and-bound algorithm of Land and Doig [10.8] have been quite popular. Al-
though the zero—one linear programming problems can be solved by the gen-
eral cutting plane or the branch-and-bound algorithms, Balas [10.9] developed
an efficient enumerative algorithm for solving those problems. Very little work
has been done in the field of integer nonlinear programming. The generalized
penalty function method and the sequential linear integer (discrete) program-
ming method can be used to solve all integer and mixed-integer nonlinear pro-
gramming problems. The various solution techniques of solving integer pro-
gramming problems are summanzed in Table 10.1. All these techniques are
discussed briefly in this chapter.

INTEGER LINEAR PROGRAMMING
10.2 GRAPHICAL REPRESENTATION
Consider the following integer programming problem:

Maximize f(X) = 3x; + 4x,
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subject to

I, —x = 12
3x; + 11x, < 66
xn =0 (10.1)
xn =0

x; and x, are integers

The graphical solution of this problem, by ignoring the integer requirements,
is shown in Fig. 10.1. It can be seen that the solution is x;, = 53, x, = 4 with
a value of f = 34% Since this is a noninteger solution, we truncate the frac-
tional parts and obtain the new solution as x, = 5, x, = 4, and f = 31. By
comparing this solution with all other integer feasible solutions (shown by dots
in Fig. 10.1), we find that this solution is optimum for the integer LP problem
stated in Egs. (10.1).

It is to be noted that truncation of the fractional part of a LP problem will
not always give the solution of the corresponding integer LP problem. This
can be illustrated by changing the constraint 3x; + 1lx; = 66 to 7x; + 11x,
= 88 in Eqgs. (10.1). With this altered constraint, the feasible region and the

2
Figure 10.1 Graphical solution of the problem stated in Eqs. (10.1).
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Figure 10.2 Graphical solution with modified constraint.

solution of the LP problem, without considering the integer requirement, are
shown in Fig. 10.2. The optimum solution of this problem is identical with
that of the preceding problem: namely, x, = 53, x, = 43, and f = 343. The
truncation of the fractional part of this solution gives xy = 5, x; = 4, and f =
31. Although this truncated solution happened to be optimum to the corre-
sponding integer problem in the earlier case, it is not so in the present case.
In this case the optimum solution of the integer programming problem is given
by x} = 0, xF = 8, and f* = 32,

10.3 GOMORY’S CUTTING PLANE METHOD

10.3.1 Concept of a Cutting Plane

Gomory’s method is based on the idea of generating a cutting plane. To illus-
trate the concept of a cutting plane, we again consider the problem stated in
Eqgs. (10.1). The feasible region of the problem is denoted by ABCD in Fig.
10.1. The optimal solution of the problem, without considering the integer
. N . S _ &l — 4l
requirement, is given by point C. This point corresponds to x| = 53, x; = 43,
and f = 343, which is not optimal to the integer programming problem since
the values of x; and x, are not integers. The feasible integer solutions of the
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problem are denoted by dots in Fig. 10.1. These points are called the infeger
lattice points.

In Fig. 10.3, the original feasible region is reduced to a new feasible region
ABEFGD by including the additional (arbitrarily selected) constraints. The idea
behind adding these additional constraints is to reduce the original feasible
convex region ABCD to a new feasible convex region (such as ABEFGD) such
that an extreme point of the new feasible region becomes an integer optimal
solution to the integer programming problem. There are two main considera-
tions to be taken while selecting the additional constraints: (1) the new feasible
region should also be a convex set, and (2) the part of the original feasible
region that is sliced off because of the additional constraints should not include
any feasible integer solutions of the original problem.

In Fig. 10.3, the inclusion of the two arbitrarily selected additional con-
straints PQ and P’'Q' gives the extreme point F(x, = 5, x; = 4, f = 31) as
the optimal solution of the integer programming problem stated in Egs. (10.1).
Gomory’s method is one in which the additional constraints are developed in
a systematic manner.
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Figure 10.3 Effect of additional constraints.
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10.3.2 Gomory’s Method for All-Integer Programming Problems

In this method the given problem [Eqgs. (10.1)] is first solved as an ordinary
LP problem by neglecting the integer requirement. If the optimum values of
the variables of the problem happen to be integers, there is nothing more to be
done since the integer solution is already obtained. On the other hand, if one
or more of the basic variables have fractional values, some additional con-
straints, known as Gomory constraints, which will force the solution toward
an all-integer point will have to be introduced. To see how the Gomory con-
straints are generated, let the tableau corresponding to the optimum (non-
integer) solution of the ordinary LP problem be as shown in Table 10.2. Here
it is assumed that there are a total of m + n variables (n original variables plus
m slack variables). At the optimal solution, the basic variables are represented
as x; (i = 1,2,.. .,m) and the nonbasic variables as y; (j = 1,2,...,n) for
convenieEnce.

Gomory’s Constraint. From Table 10.2, choose the basic variable with the
largest fractional value, Let this basic variable be x;. When there is a tie in the
fractional values of the basic vaniables, any of them can be taken as x;. This
variable can be expressed, from the ith equation of Table 10.2, as

x; = b, — 2 ayy, (10.2)
i=1
where b; is a noninteger. Let us write
b, = b, + B, (10.3)
a; = d; + o (10.4)

where_!;,- and d; denote the integers obtained by truncating the fractional parts
from b; and @, respectively. Thus 3; will be a strictly positive fraction (0 <
B; < 1) and «; will be a nonnegative fraction (0 = ay < 1). With the help

TABLE 10.2 Optimum Noninteger Solution of Ordinary LP Problem

Coeflicient Corresponding to:

Basic Objective
Variables x;, xpyo'xorx, W Yottt ¥ttt Y, Function  Constants
X 1 o 6 0 a a, a; a, 0 E{r
x; 0 0 1 0 a a, a a, 0 b
X, 0 0 0 1 Ty Ty G G 0 b,
f o 000 F ) [ T, 1 Fi
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of Eqgs. (10.3) and (10.4), Eq. (10.2) can be rewritten as

B; - _E! oYy = X — 54 + 1 agy; (10.5)
1= i=

Since all the variables x; and y; must be integers at an optimal integer solution,
the right-hand side of Eq. (10.5) must be an integer. Thus we obtain

H

8; — _EI @;y; = integer (10.6)
j=

Notice that «;; are nonnegative fractions and y; are nonnegative integers. Hence
'Ihe: quantit:?rp‘-‘;. ;Y will always be a nonnegative number. Since B; is a
strictly positive fraction, we have

(ﬁ.- _.E- a.;,-.v;-) <B <1 (10.7)

As the quantity (3; — Ij_| a;;y;) has to be an integer [from Eq. (10.6)], it can
be either a zero or a negative integer. Hence we obtain the desired constraint
as

6= X ayy < 0 (10.8)
i=

By adding a nonnegative slack variable s;, the Gomory constraint equation
becomes

5 = IZ‘ oV = "'ﬁj (ID<9)
j=

where s5; must also be an integer by definition.

Computational Procedure. Once the Gomory constraint is derived, the coef-
ficients of this constraint are inserted in a new row of the final tableau of the
ordinary LP problem (i.e., Table 10.2). Since all y; = 0 in Table 10.2, the
Gomory constraint equation (10.9), becomes

s; = —f; = negative

which is infeasible. This means that the original optimal solution is not satis-
fying this new constraint. To obtain a new optimal solution that satisfies the
new constraint, Eq. (10.9), the dual simplex method discussed in Chapter 4
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TABLE 10.3 Optimal Solution with Gomory Constraint

Coefficient Corresponding to:

Basic
Vanables x; x'--x;+ " x, ¥ Y2 ¥ttt Ve f s Constants
X 1 0 0 0 a, i ay; a, 0 0 b,
x, 0 0 1 0 i, a, a; a 0 0 b;
x, 0 0 0 1 ., i . a, 0 0 b,
f 0 0 0 0 Z, ) g g 1 0 K
5 0 0 0 0 a tp oy oy, 0 1 -8,

can be used. The new tableau, after adding the Gomory constraint, is as shown
in Table 10.3.

After finding the new optimum solution by applying the dual simplex
method, test whether the new solution is all-integer or not. If the new optimum
solution is all-integer, the process ends. On the other hand, if any of the basic
variables in the new solution take on fractional values, a new Gomory con-
straint is derived from the new simplex tableau and the dual simplex method
is applied again. This procedure is continued until either an optimal integer
solution is obtained or the dual simplex method indicates that the problem has
no feasible integer solution.

Remarks:

1. If there is no feasible integer solution to the given (primal) problem, this
can be detected by noting an unbounded condition for the dual problem.

2. The application of the dual simplex method to remove the infeasibility
of Eq. (10.9) is equivalent to cutting off the original feasible solution
towards the optimal integer solution.

3. This method has a serious drawback. This is associated with the round-
off errors that arise during numerical computations. Due to these round-
off errors, we may ultimately get a wrong optimal integer solution. This
can be rectified by storing the numbers as fractions instead of as decimal
quantities. However, the magnitudes of the numerators and denomina-
tors of the fractional numbers, after some calculations, may exceed the
capacity of the computer. This difficulty can be avoided by using the all-
‘integer integer programming algorithm developed by Gomory [10.10].

4. For obtaining the optimal solution of an ordinary LP problem, we start
from a basic feasible solution (at the start of phase II) and find a sequence
of improved basic feasible solutions until the optimum basic feasible
solution is found. During this process, if the computations have to be
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terminated at any stage (for some reason), the current basic feasible so-
lution can be taken as an approximation to the optimum solution. How-
ever, this cannot be done if we apply Gomory's method for solving an
integer programming problem. This is due to the fact that the problem
remains infeasible in the sense that no integer solution can be obtained
until the whole problem is solved. Thus we will not be having any good
integer solution that can be taken as an approximate optimum solution
in case the computations have to be terminated in the middle of the pro-
Ccess.

5. From the description given above, the number of Gomory constraints to
be generated might appear to be very large, especially if the solution
converges slowly. If the number of constraints really becomes very large,
the size of the problem also grows without bound since one (slack) vari-
able and one constraint are added with the addition of each Gomory
constraint. However, it can be observed that the total number of con-
straints in the modified tableau will not exceed the number of variables
in the original problem, namely, n + m. The original problem has m
equality constraints in n + m variables and we observe that there are n
nonbasic variables. When a Gomory constraint is added, the number of
constraints and the number of variables will each be increased by one,
but the number of nonbasic variables will remain n. Hence at most n
slack variables of Gomory constraints can be nonbasic at any time, and
any additional Gomory constraint must be redundant. In other words, at
most n Gomory constraints can be binding at a time. If at all a (n + 1)th
constraint is there (with its slack variable as a basic and positive vari-
able), it must be implied by the remaining constraints. Hence we drop
any Gomory constraint once its slack variable becomes basic in a feasible
solution.

Example 10.1
Minimize f = —3x, — 4x,
subject to
gy —x a3 =12
ey + 1l + xy = 66

x; =0, i=1t4

all x; are integers.

This problem can be seen to be same as the one stated in Eqgs. (10.1) with the
addition of slack variables x; and x,.
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SOLUTION

Step 1: Solve the LP problem by neglecting the integer requirement of the

variables x;, i = 1 to 4, using the regular simplex method as shown below.

Coefficients of Variables

Basic - _
Variables x, X; X3 Xy -f b b,fa, fora, > 0
X3 3 -1 1 0 0 12
x4 3 (11] 0 1 0 66 6«
Pivot
element
-f -3 —4 0 0 1 0
T
Most negative ¢;
Result of pivoting:
T 1 i
X3 1 0 1 ' 0 18 5 + Smaller
Pivot one
element
X, 2 1 0 =0 6 22
—f -4 0 0 & 1 24
+
Most negative ¢;
Result of pivoting:
Xy ] D % ﬁ [} —'I—z[
Iz D I. _% —:_.2 l] g
-f 0 0 = = e

Since all the cost coefficients are nonnegative, the last tableau gives the
optimum solution as

_ _ 69
n== =

, x3=0, x, =0, Join = —F

=K

which can be seen to be identical to the graphical solution obtained in Sec-
tion 10.2.

Step 2: Generate a Gomory constraint. Since the solution above is noninteger,

a Gomory constraint has to be added to the last tableau. Since there is a tie
between x, and x;, let us select x; as the basic variable having the largest
fractional value. From the row corresponding to x, in the last tableau, we
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can write

XNN=F %N - %N (E,)

where y, and y, are used in place of x; and x, to denote the nonbasic vari-
ables. By comparing Eq. (E,) with Eq. (10.2), we find that

i=1, by=4, b =5 8 =1 @, = 4,

[

P _ - 1 s _ |
ay =0, ayy =3, dz=13 dp=0, and ap =5

From Eq. (10.9), the Gomory constraint can be expressed as
s;—anyr — apy: = —B (Ez)

where 5, is a new nonnegative (integer) slack variable. Equation (E;) can
be written as
11 1 1
S = %N — %N = ~3 (Es)

By introducing this constraint, Eq. (E;), into the previous optimum tableau,
we obtain the new tableau shown below.

. Coefficients of variables b./a,
Basic - Eor?; ':; 0
Variables X X, ¥ ¥; —f 5 b, i
x| 1 0 2 35 0 0 4
X 0 1 -+ = 0 0 2
—f 0 0 % ,5—1 1 0 %
5 0 0 -4 —36 0 1 -

Step 3: Apply the dual simplex method to find a new optimum solution: For
this, we select the pivotal row r such that b, = min (b; < 0) = —% corTe-
sponding to s, in this case. The first column s is selected such that

€, ) T;
—— = min (—-i—)
—ﬂu E.-,.{lfl _arj

Here
T: 7 6 21
—de = — % — = — for column
—a; 12711 11 ”
36
= i = T = 15 for column Y.
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Since 2l is minimum out of 3} and 15, the pivot element will be (—11).

The result of pivot operation is given in the following tableau.

Basic Coefficients of Variables ) Er' /a,
Variables X Xy Y ¥a -f £ b, fora, > 0
x, 1 0 0 0 0 1 5
X 0 1 0 & 0 ] ol
~f 0o 0 0 5 1 i T
Yi 0 0 1 & 0 - 18

The solution given by the present tableau is x; = 5, x; = 4%, ¥ = 1,."—,,

and f = —33 &+, in which some variables are still nonintegers.
Step 4: Generate a new Gomory constraint. To generate the new Gomory
constraint, we arbitrarily select x, as the variable having the largest frac-

tional value (since there is a tie between x; and y,). The row corresponding
to x, gives

N=H-fntas
From this equation, the Gomory constraint [Eq. (10.9)] can be written as
3

1 3 _ 7
S myYtas =

When this constraint is added to the previous tableau, we obtain the follow-
ing tableau:

Coefficients of Variables

Basic _

Variables X, X i 2 —f 5 53 b,

x, 1 0 0 0 0 1 0 5

X; 0 1 0 T 0 -3 0 =

¥i 0 0 1 l 0 - 0 ﬁ
—f 0 0 0 & 1 4 0 e

5 0 0 0 ~& 0 i 1 -4

Step 5: Apply the dual simplex method to find a new optimum solution: To
carry the pivot operation, the pivot row is selected to correspond to the most
negative value of b;. This is the s, row in this case.

Since only @ corresponding to column y, is negative, the pivot element
will be (= 1/11) in the s, row. The pivot operation on this element leads to
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the following tableau:

Coeflicients of Variables

Basic _
Variables X, X, ¥ ¥a -f 5 5 b,
X, 1 0 0 {0 0 1 0 5

X, 0 1 0 o 0 0 1 4

¥ 0 0 1 0 0 =3 | 1

~f 0 0 0 0 1 3 4 31

¥z 0 0 0 1 0 -3 =11 7

The solution given by this tableav isx; = 5, =4, y, =1, » =17,
and f = —31, which can be seen to satisfy the integer requirement. Hence
this is the desired solution.

10.3.3 Gomory’s Method for Mixed-Integer Programming Problems

The method discussed in Section 10.3.2 is applicable to solve all integer pro-
gramming problems where both the decision and slack variables are restricted
to integer values in the optimal solution. In the mixed-integer programming
problems, only a subset of the decision and slack variables are restricted to
integer values. The procedure for solving mixed-integer programming prob-
lems is similar to that of all-integer programming problems in many respects.

Solution Procedure. As in the case of an all-integer programming problem,
the first step involved in the solution of a mixed-integer programming problem
is to obtain an optimal solution of the ordinary LP problem without considering
the integer restrictions. If the values of the basic variables, which were re-
stricted to integer values, happen to be integers in this optimal solution, there
is nothing more to be done. Otherwise, a Gomory constraint is formulated by
taking the integer-restricted basic variable, which has the largest fractional
value in the optimal solution of the ordinary LP problem.

Let x; be the basic variable which has the largest fractional value in the
optimal solution (as shown in Table 10.2), although it is restricted to take on
only integer values. If the nonbasic variables are denoted as y;. j = 1.2,. . .,n,
the basic variable x; can be expressed as {from Table 10.2)

M
x; = b, — Ej a;y; (10.2)

We can write

b, = b; + B; (10.3)
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where b, is the integer obtained by truncating the fractional part of b; and B; is
the fractional part of b;. By defining

a; = a; + aj (10.10)
where
a, if a;=0
af =4 " / (10.11)
0 if a; <0

(0 if a;=0
ay =} (10.12)

Eq. (10.2) can be rewritten as

E, (@ +aj)y; =B + (b = x) (10.13)

Here, by assumption, x; is restricted to integer values while b, is not an integer.
Since 0 < B; < 1 and b is an integer, we can have the valuc of B; + (b, —
x;) either = 0 or < 0. First, we consider the case where

Bi+(hi—x)=0 (10.14)
In this case, in order for x; to be an integer, we must have
Bi+ (b, —x)=p; or B;+1 or B +2,... (10.15)
Thus Eq. (10.13) gives
"
E] (aj + aj)y = B; (10.16)
Since @; are nonpositive and y; are nonnegative by definition, we have
E ajy = Z} (aj = a;)y (10.17)

and hence

2 ajy, = B (10.18)

)¢
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Next, we consider the case where
Bi+ (b —x) <0 (10.19)
For x; to be an integer, we must have (since 0 < 8; < 1)
B+ B —x)=—-1+8 or —2+B8; or =3 +B;,... (10.20)

Thus Eq. (10.13) yields

2 (aj +ap)y, =B -1 (10.21)
j=
Since
" n
E a.f} y) -~ _J'g:l (aq + ai'; :l_}}
we obtain

Zoajy, < B~ 1 (10.22)
JF

2ia;y =1 (10.23)

Multiplying both sides of this inequality by 8; > 0, we can write the inequality
(10.23) as

mn

B -
- 1;-?' a;y; = B (10.24)

Since one of the inequalities in (10.18) and (10.24) must be satisfied, the fol-
lowing inequality must hold true:

i

iy = B (10.25)

I_IJ

By introducing a slack variable s;, we obtain the desired Gomory constraint as

]
- Sapy+

B
10.26
z 57 2 B (10.26)
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This constraint must be satisfied before the variable x; becomes an integer. The
slack variable s; is not required to be an integer. At the optimal solution of the
ordinary LP problem (given by Table 10.2), all y; = 0 and hence Eq. (10.26)
becomes

5; = —f; = negative

which can be seen to be infeasible. Hence the constraint Eq. (10.26) is added
at the end of Table 10.2, and the dual simplex method applied. This procedure
is repeated the required number of times until the optimal mixed integer so-
lution is found.

Discussion. In the derivation of the Gomory constraint, Eq. (10.26), we have
not made use of the fact that some of the variables (y;) might be integer vari-
ables. We notice that any integer value can be added to or subtracted from the
coefficient of @y (= ay, + ay ) of an integer variable y; provided that we sub-
tract or add, respectively, the same value to x; in Eq. (10.13), that is,

121 @gy; + @ + Oy = B + b — (x; F 8) (10.27)

j*+k

From Eq. (10.27), the same logic as was used in the derivation of Egs. (10.18)
and (10.24) can be used to obtain the same final equation, Eq. (10.26). Of
course, the coefficients of integer variables y, will be altered by integer amounts
in Eq. (10.26). It has been established that to cut the feasible region as much
as possible (through the Gomory constraint), we have to make the coefficients
of integer variables y, as small as possible. We can see that the smallest pos-
itive coefficient we can have for y; in Eq. (10.13) is

Qy = dy — 4y

and the largest negative coefficient as
1 —a; =1-a;+ d;

where d; is the integer obtained by truncating the fractional part of @; and oy
is the fractional part. Thus we have a choice of two expressions, (@; — d;)
and (1 — a; + 4;), for the coefficients of y; in Eq. (10.26). We choose the
smaller one out of the two to make the Gomory constraint, Eq. (10.26), cut
deeper into the original feasible space. Thus Eq. (10.26) can be rewritten
as
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+ Bi -
3f=;zﬂrﬂ’i+ﬂ_ll§{+aﬁb'f + 2 @ — dyy,
- J
L. ' I —_—
for noninterger varables y; Lo integer variables )

and for a; — 4; = 6,

o s

g

for integer variables y,
and for ay - d; >

where the slack variable s; is not restricted to be an integer.

Example 10.2 Solve the problem of Example 10.1 with x, only restricted to
take integer values.

SOLUTION

Step 1: Solve the LP problem by simplex method by neglecting the integer
requirement. This gives the following optimal tableau:

. Coefficients of Variables
Basic N
Vanables X Xy ¥ ¥a —f b;
% : 0 % % 0 4
x 0 1 —1'? é 0 6’;9
~f 0 0 i [ 1 2

The noninteger solution given by this tableau is
X\ =5, , =45, yy=y, =0 and f, = —344

Step 2: Formulate a Gomory constraint. Since x, is the only variable that is

restricted to take integer values, we construct the Gomory constraint for xs.
From the tableau of step 1, we obtain

Xy = by — @y, — any:
where
by =% @y = —15 and @ = |
2 = 3, a4y = —1, A dp =3

According to Eq. (10.3), we write b, as b, = b, + f8, where b, = 4 and 8,
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1. Similarly, we write from Eq. (10.10)

m— + -
ay = ay + ay
s ~
a;; = ay + axp

where

=

- 1oy - .
a), = a;; = —73 (since @, 1s negative)

ay = 13, @ = 0 (since @, is nonnegative)

=

The Gomory constraint can be expressed as [from Eq. (10.26)]:
2
_ E Ty Y = —
P 31 1 ,>—:| @i 5

where s, is a slack variable which is not required to take integer values. By
substituting the values of a; , a; , and ;, this constraint can be written as

1 1 i
tEy—E»n= -3

When this constraint is added to the tableau above, we obtain the following:

Coefficients of Variables

Basic -

Variables X, X3 » Y2 =f 52 b,
x 1 0 ;‘;', i 0 0 v

X3 0 1 —% = 0 0 2
-f 0 0 % & 1 0 7

5 0 0 5 - 0 1 —3

Step 3: Apply dual simplex method to find a new optimum solution. Since

—1 is the only negative b; term, the pivot operation has to be done in s,
mw Further, a; correspondmg to y, column is the only negatwe coefficient
in 5, row and hence pivoting has to be done on this element, —55 ,2 The result
of pivot operation is shown in the following tableau.

Coefficients of Variables

Basic _
Variables X X5 ¥i ¥z —f 5 b,
X, 1 0 3 0 0 5 B
Xy 0 1 0 0 0 1 4
—f 0 0 1 0 1 5 32
¥ 0 0 ~1 1 0 ~12 6
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This tableau gives the desired integer solution as

JC::S%t X2=4, »=6 y»=0 s=0 and f,, = —32

10.4 BALAS' ALGORITHM FOR ZERO-ONE PROGRAMMING
PROBLEMS

When all the variables of a LP problem are constrained to take values of 0 or
| only, we have a zero-one (or binary) LP problem. A study of the various
techniques available for solving zero—one programming problems is important
because of the following reasons.

1. As we shall see later in this chapter (Section 10.5), a certain class of
integer nonlinear programming problems can be converted into equiva-
lent zero-one LP problems,

2. A wide variety of industrial, management, and engineering problems can
be formulated as zero—one problems. For example, in structural control,
the problem of selecting optimal locations of actuators (or dampers) can
be formulated as a zero—one problem. In this case, if a variable is zero
or 1, it indicates the absence or presence of the actuator, respectively,
at a particular location [10.31].

The zero-one LP problems can be solved by using any of the general integer
LP techniques like Gomory’s cutting plane method and Land and Doig’s
branch-and-bound method by introducing the additional constraint that all the
variables must be less than or equal to 1. This additional constraint will restrict
each of the vanables to take a value of either zero () or one (1). Since the
cutting plane and the branch-and-bound algorithms were developed primarily
to solve a general integer LP problem, they do not take advantage of the special
features of zero—one LP problems. Thus several methods have been proposed
to solve zero—one LP problems more efficiently. In this section we present an
algorithm developed by Balas (in 1965) for solving LP problems with binary
variables only [10.9].

If there are n binary variables in a problem, an explicit enumeration process
will involve testing 2" possible solutions against the stated constraints and the
objective function. In Balas method, all the 2" possible solutions are enumer-
ated, explicitly or implicitly. The efficiency of the method arises out of the
clever strategy it adopts in selecting only a few solutions for explicit enumer-
ation.

The method starts by setting all the n variables equal to zero and consists
of a systematic procedure of successively assigning to certain variables the
value 1, in such a way that after trying a (small) part of all the 2" possible
combinations, one obtains either an optimal solution or evidence of the fact
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that no feasible solution exists. The only operations required in the computa-
tion are additions and subtractions, and hence the round-oft errors will not be
there. For this reason the method is some times referred to as additive algo-
rithm.

Standard Form of the Problem. To describe the algorithm, consider the fol-
lowing form of the LP problem with zero-one variables:

Xy

Aa
Find X = . such that f(X) = C'X - minimum

Xy
subject to (10.28)
AX +Y=8B
X = 0 or 1
Y=0
where
) ¥i by
s ya b,
C= =0, Y=4§.¢( B-=
cﬂ yPﬂ‘ bﬂl
ay dp T dyy
A = ﬂ.zi dy =" dy
Ay Ay T Ay

where Y is the vector of slack variables and ¢; and a; need not be integers.

Initial Solution. An initial solution for the problem stated in Eqs. (10.28) can
be taken as

Jo=10
xi =0, i=1,2,. ...n (10.29)
Y{UJ =B
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If B = 0, this solution will be feasible and optimal since C = 0 in Eqgs.
(10.28). In this case there is nothing more to be done as the starting solution
itself happens to be optimal. On the other hand, if some of the components b;
are negative, the solution given by Egs. (10.29) will be optimal (since C =
0) but infeasible. Thus the method starts with an optimal (actually betier than
optimal) and infeasible solution. The algorithm forces this solution toward fea-
sibility while keeping it optimal all the time. This is the reason why Balas
called his method the pseudo dual simplex method. The word pseudo has been
used since the method is similar to the dual simplex method only as far as the
starting solution is concemed and the subsequent procedure has no similarity
at all with the dual simplex method. The details can be found in Ref. [10.9].

INTEGER NONLINEAR PROGRAMMING
10.5 INTEGER POLYNOMIAL PROGRAMMING
Watters [10.2] has developed a procedure for converting integer polynomial
programming problems to zero-one LP problems. The resulting zero-one LP
problem can be solved conveniently by the Balas method discussed in Section
10.4. Consider the optimization problem:

Xy

X
Find X = { . ¢ which minimizes f(X)

subject to the constraints (10.30)
gX) =0, j=12,....m
X; = integer, i=12,....n
where fand g;, j = 1,2,. . .,m, are polynomials in the variables x,, x5, . . .,
X, . A typical term in the polynomials can be represented as

; rI=II (x,)% (10.31)

where ¢, is a constant, a;; a nonnegative constant exponent, and n, the number
of variables appearing in the kth term. We shall convert the integer polynomial
programming problem stated in Eq. (10.30) into an equivalent zero-one LP
problem in two stages. In the first stage we see how an integer variable, x;,
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can be represented by an equivalent system of zero—one (binary) variables. We
consider the conversion of a zero-one polynomial programming problem into
a zero—one LP problem in the second stage.

10.5.1 Representation of an Integer Variable by an Equivalent System
of Binary Variables

Let x; be any integer variable whose upper bound is given by w; so that
X <= u < oo (10.32)

We assume that the value of the upper bound «; can be determined from the
constraints of the given problem.
We know that in the decimal number system, an integer p is represented as

p=po+10'p, +10p, + ...,0=<p;, < (10 —1=09)
for i =0,1.2,...
and written as p = * * * pyp,py by neglecting the zeros to the left. For ex-
ample, we write the number p = 008076 as 8076 to represent p = 6 + (10')

7 + (10%) (0) + (108 + (100 + (10°0. In a similar manner, the integer p
can also be represented in binary number system as

p=got2q +2q + 2%, +---

where0 =g =2 —-1=Nfori=0,172,. ...

In general, if y{”, y{", ¥, ... denote binary numbers (which can take a

value of 0 or 1), the variable x; can be expressed as

Ni
5= 2 2y (10.33)

where N, is the smallest integer such that

H,'+1

< 2M 10.34
2 =2 ( )

Thus the value of N; can be selected for any integer variable x; once its upper
bound u; is known. For example, for the number 97, we can take u; = 97 and
hence the relation

w; + 1 08

I = Ni
5 2 49 = 2
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is satisfied for N; = 6. Hence by taking N; = 6, we can represent «; as
97 = gy + 2'q, + 22q, + 25 + 2%qy + 2°¢5 + 2%,

where gy = 1,9, = g = ¢g; = g4 = 0, and g5 = g¢ = 1. A systematic method
of finding the values of gy, q;, g, . . . is given below.

Method of Finding gy, q;, g3, . ... Let M be the given positive integer. To

find its binary representation g,qg,_; * * * ¢; o, We compute the following
recursively:
bﬂ. = M
b, —
b, = o 5 qo
b, —
b, = I 5 q
by 1 — qy-
b= 2 LS (10.35)

where g, = 1 if b, is odd and ¢, = 0 if b, is even. The procedure terminates
when bt = 0.

Equation (10.33) guarantees that x; can take any feasible integer value less
than or equal to &;. The use of Eq. (10.33) in the problem stated in Eq. (10.30)
will convert the integer programming problem into a binary one automatically.
The only difference is that the binary problem will have N, + N, + + -+ +
N, zero-one variables instead of the n original integer variables.

10.5.2 Conversion of a Zero-One Polynomial Programming Problem
into a Zero—One LP Problem

The conversion of a polynomial programming problem into a LP problem is
based on the fact that

= x (10.36)
if x; is a binary variable (0 or 1) and ay; is a positive exponent. If a;; = 0, then

obviously the variable x; will not be present in the kth term. The use of Eq.
(10.36) permits us to write the kth term of the polynomial, Eq. (10.31), as

Rk i
Cy 11}. (x)™ = ¢, :1;'[| X; = ¢ (X4, . . X,,) (10.37)



@ s (gudife 5O (§ilwaige sla by,

Since each of the variables x;, x5, . .. can take a value of either O or 1, the
product (x, x; -+ - Xx,) also will take a value of 0 or 1. Hence by defining
a binary variable y; as

Ve S XXy 7t Xy = IT X (10.38)

the kth term of the polynomial simply becomes ¢,y,. However, we need to
add the following constraints to ensure that y, = 1 when all x; = 1 and zero
otherwise:

Ve = (21 x.—) — (e — 1) (10.39)
1 ik

Ve < — (_E x.-) (10.40)
e \i=lI

It can be seen that if all x; = 1, Ef% | x; = n;, and Eqgs. (10.39) and (10.40)
yield

ye = 1 (10.41)
ye < 1 (10.42)

which can be satisfied only if y, = 1. If at least one x; = 0, we have £7L | x;
< ny, and Eqs. (10.39) and (10.40) give

e = —(ne — 1) (10.43)
e < 1 (10.44)

Since n, is a positive integer, the only way to satisfy Eqs. (10.43) and (10.44)
under all circumstances is to have y, = 0.

This procedure of converting an integer polynomial programming problem
into an equivalent zero—one LP problem can always be applied, at least in
theory.

10.6 BRANCH-AND-BOUND METHOD

The branch-and-bound method is very effective in solving mixed-integer linear
and nonlinear programming problems. The method was originally developed
by Land and Doig [10.8] to solve integer linear programming problems and
was later modified by Dakin [10.23]. Subsequently, the method has been ex-
tended to solve nonlinear mixed-integer programming problems. To see the

Y¢
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basic solution procedure, consider the following nonlinear mixed-integer pro-
gramming problem:

Minimize f(X) (10.45)
subject to
gX) =0, j=12,....m (10.46)
h(X) =0, k=12, ..p (10.47)
x; = integer, j = 12,...,np(ny = n) (10.48)

where X = {x, x, **+ x,}". Note that in the design vector X, the first r,
variables are identified as the integer variables. If ny = n, the problem becomes
an all-integer programming problem. A design vector X is called a continuous
feasible solution if X satisfies constraints (10.46) and (10.47). A design vector
X that satisfies all the constraints, Eqs. (10.46) to (10.48), is called an integer
feasible solution.

The simplest method of solving an integer optimization problem involves
enumerating all integer points, discarding infeasible ones, evaluating the ob-
jective function at all integer feasible points, and identifying the point that has
the best objective function value. Although such an exhaustive search in the
solution space is simple to implement, it will be computationally expensive
even for moderate-size problems. The branch-and-bound method can be con-
sidered as a refined enumeration method in which most of the nonpromising
integer points are discarded without testing them. Also note that the process
of complete enumeration can be used only if the problem is an all-integer pro-
gramming problem. For mixed-integer problems in which one or more vari-
ables may assume continuous values, the process of complete enumeration
cannot be used.

In the branch-and-bound method, the integer problem is not directly solved.
Rather, the method first solves a continuous problem obtained by relaxing the
integer restrictions on the variables. If the solution of the continuous problem
happens to be an integer solution, it represents the optimum solution of the
integer problem. Otherwise, at least one of the integer vanables, say x;, must
assume a nonintegral value. If x; is not an integer, we can always find an
integer [x;] such that

] < x < [x] +1 (10.49)

Then two subproblems are formulated, one with the additional upper bound
constraint

X = [.I;'] []GSD]
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and another with the lower bound constraint
= [x] +1 (10.51)

The process of finding these subproblems is called branching.

The branching process eliminates some portion of the continuous space that
is not feasible for the integer problem, while ensuring that none of the integer
feasible solutions are eliminated. Each of these two subproblems are solved
again as a continuous problem. It can be seen that the solution of a continuous
problem forms a node and from each node two branches may originate.

The process of branching and solving a sequence of continuous problems
discussed above is continued until an integer feasible solution is found for one
of the two continuous problems. When such a feasible integer solution is found,
the corresponding value of the objective function becomes an upper bound on
the minimum value of the objective function. At this stage we can eliminate
from further consideration all the continuous solutions (nodes) whose objective
function values are larger than the upper bound. The nodes that are eliminated
are said to have been fathomed because it is not possible to find a better integer
solution from these nodes (solution spaces) than what we have now. The value
of the upper bound on the objective function is updated whenever a better
bound is obtained.

It can be seen that a node can be fathomed if any of the following conditions
are true:

1. The continuous solution is an integer feasible solution.
2. The problem does not have a continuous feasible solution.

3. The optimal value of the continuous problem is larger than the current
upper bound.

The algorithm continues to select a node for further branching until all the
nodes have been fathomed. At that stage, the particular fathomed node that
has the integer feasible solution with the lowest value of the objective function

gives the optimum solution of the original nonlinear integer programming
problem.

Example 10.3 Solve the following LP problem using the branch-and-bound
method:

Maximize f = 3x, + 4x,
subject to (Ep)

Txp + 1lxy = 88, 3 —xn=12, x =0, x=0

x; = integer, i=1,2 (E,)

Y
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SOLUTION The various steps of the procedure are illustrated using graphi-
cal method.

Step 1: First the problem is solved as a continuous variable problem [without

Eq. (E;)] to obtain:
Problem (E,): Fig. 10.2; (x{ = 5.5, x3 = 4.5, f* = 34.5)
Step 2: The branching process, with integer bounds on x,, yields the problems:

Maximize f = 3x; + 4x,
subject to (E3)

?x[+ll.x3588, 3.1'|—.1'2£12, .1'|£5, .1'22'0
x2

10~

SN fr=34.2727

Figure 10.4 Graphical solution of problem (E;).



@ s (gudife 5O (§ilwaige sla by,

Xz

10

“/
]

23

.

n

(=3}

ARARLL R LR RS

Mo feasible
solution

Rt et T T T N R R R A R s,

24
El i i i i "I’I 1 ’ I - J:]_
0 2 ﬁ ] 8 10
Figure 10.5 Graphical solution of problem (E,).
and
Maximize f = 3x; + 4x,
subject to (Eg)

Tx, + 1lx, = 88, Ixy—x =12, x;=26, x,=0

The solutions of problems (E;) and (E,) are given by:
Problem (E;): Fig. 10.4; (x{ = 5, x7 = 4.8182, f* = 34.2727)

Problem (E,): Fig. 10.5; no feasible solution exists.

Step 3: The next branching process, with integer bounds on x,, leads to the
following problems:

Maximize f = 3x; + 4x;
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|

Figure 10.6 Graphical solution of problem (Es).

subject to (Es)
Txy + llx, = 88, Ixy—x=12, x =5 x=4
and
Maximize f = 3x; + 4x;
subject to (Ee)
T, + 1lx, <88, 3x—-x=12, x =5 x=35

The solutions of problems (Es) and (Eg) are given by:

Problem (Es): Fig. 10.6; (x] = 5, x5 = 4, f* = 31)
Problem (Eg): Fig. 10.7; (x} = 0, x7 = 8, f* = 32)
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10 +

Lw x

10

Figure 10.7 Graphical solution of problem (E;).

Since both the variables assumed integer values, the optimum solution of
the integer LP problem, Eqgs. (E,) and (E,), is given by (x{ = 0, x} = 8,
* = 32).

Example 10.4 Find the solution of the welded beam problem of Section
7.22.3 by treating it as a mixed-integer nonlinear programming problem by
requiring x; and x, to take integer values.

SOLUTION The solution of this problem using the branch-and-bound method
was reported in Ref. [10.25]. The optimum solution of the continuous variable
nonlinear programming problem is given by

X* = {0.24,622,8.29,0.24})7,  f* = 2.38
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Continuous solution: .
x* =10.24,6.22,8.29, 0.24)T, f* = 2.38

I329 x353

Cuntmuuus solution: Continuous solution:
=(0.24, 5.75, 9, 0.24)7, f* = 2.417| [x* =10.26, 5.89, 89, 0.26)7T, f* = 2.46

xywn xdy\g]

Xt = [0 74, 1,39, 9, 117| | Not feasible x Mot feasible x x* ={0.63, 3.83, 4.1, 1},
= ?.516 =521

x* = {0.65, 3.78, 4, 1.05}T,| | x* = (0.67, 2.84, 5, 1T,
f* =536 f* =547

Optimum solution
= 1 xq22 P

Mot feasible x x* ={0.48, 5.94, 2.89, 21T,
fr=762

Figure 10.8 Solution of the welded beam problem using branch-and-bound method.
[10.25] (Reprinted with permission from ASME).

Next, the branching problems, with integer bounds on x;, are solved and the
procedure is continued until the desired optimum solution is found. The results
are shown in Fig. 10.8.

10.7 SEQUENTIAL LINEAR DISCRETE PROGRAMMING

Let the nonlinear programming problem with discrete variables be stated as
follows:

Minimize f(X) (10.52)

subject to
£X) =0, j=12,....m (10.53)
h(X) = 0, k=12,...p (10.54)
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X € {dnsffm . -1di'q}9 | = ]>2H sl (10'55}

W =sx=x, i=m+1, m+2,....n  (10.56)

where the first ny design variables are assumed to be discrete, d;; is the jth

discrete value for the variable i, and X = {x, x, - - - x,}". It is possible

to find the solution of this problem by solving a series of mixed-integer linear
programming problems.

The nonlinear expressions in Egs. (10.52) to (10.54) are linearized about a

point X" using a first-order Taylor’s series expansion and the problem is stated
as!

Minimize f(X) = f(X%) + VF(X") 6X (10.57)
subject to

gX) = g(X) + VX)X =0, j=12....m (10.58)
h(X) = (X% + Vi, (X)) 86X =0, k=12,...p (10.59)

.I? + &r,- 1= {d“, dﬂ, e ey d.'q}i i = 1.2,. < ally {lﬂﬁﬁ)
" < xV + bx, = X, i=nyg+ l,ng+2,...,n (10.61)
X =X - X° (10.62)

The problem stated in Eqs. (10.57) to (10.62) cannot be solved using mixed-
integer linear programming techniques since some of the design variables are
discrete and noninteger. The discrete variables are redefined as [10.26]

q
X = Yady + Ypdp + 0 0 0+ yidiy = ; d;, i=12,...m
(10.63)
with
Ya b ynt oty = Ey.;*l (10.64)
yi=0orl, i=12,...m, j=12,..4 (10.65)

Using Egs. (10.63) to (10.65) in Egs. (10.57) to (10.62), we obtain
Minimize f(X) = f(X") + Z o, ( 2 yidy — x':')

+ Z f{x - x (10.66)

i=nmp+1 ﬂx
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subject to
g(X) = g;(X% + E:ﬂ_g_{ %y-a‘-j—xg + E L{x—x} 0,
j Jj =:6‘x¢ (=i k! i i= m+la;_ i i =
= 12....m (10.67)
) A h
e — il % B |
h(X) = m(X% + ; ax, (le Vady — ) o Eﬂ ax, (x; —x;) =0,
k= (10.68)
q
Zy;=1, i=12...n (10.69)
ji=1
yy=0orl, i=12...m j=12...4 (10.70)
O =xl v =x, di=ng+l,ng+2,...,n (10.71)

The problem stated in Egs. (10.66) to (10.71) can now be solved as a mixed-
integer LP problem by treating both y; (i = 1,2,.. .,ny,j = 1,2,. . .,9) and x;
(i=ny+ 1,ny+ 2,...,n)as unknowns.

In practical implementation, the initial linearization point X° is to be se-
lected carefully. In many cases the solution of the discrete problem is expected
to lie in the vicinity of the continuous optimum. Hence the original problem
can be solved as a continuous nonlinear programming problem (by ignoring
the discrete nature of the vanables) using any of the standard nonlinear pro-
gramming techniques. If the resulting continuous optimum solution happens
to be a feasible discrete solution, it can be used as X”. Otherwise, the values
of x; from the continuous optimum solution are rounded (in a direction away
from constraint violation) to obtain an initial feasible discrete solution X°. Once
the first linearized discrete problem is solved, the subsequent linearizations can
be made using the result of the previous optimization problem.

Example 10.5 (10.26]
Minimize f(X) = 2x] + 3x3
subject to

1 1
=—+—=—4=0
sX) x1+x2 =

x, € {0.3,0.7,0.8,1.2,1.5,1.8}
x, € {0.4,0.8,1.1,1.4,1.6}

SOLUTION In this example, the set of discrete values of each variable is
truncated by allowing only three values—its current value, the adjacent higher
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value, and the adjacent lower value—for simplifying the computations. Using

X = }% , we have
fX% =651, gX%=-226
.
4x, 4.8 X; ~0.69
VXD = [ﬁx;}xu B [ﬁ_ﬁz’ VX = "'lz B {-0.33}
Xy A xo
Now

X = yn(0.8) + yia(1.2) + y5(1.5)
xy = ¥3,(0.8) + yn(1.1) + ya3(1.4)
by, = v (0.8 — 1.2) + yi(1.2 — 1.2) + yi3(1.5 — 1.2)
0x; = y5,(0.8 — 1.1) + yn(1.1 = 1.1) + yu(l.4 — 1.1)

_ﬂ.4}"|| + ﬂ.ﬁfu]
—0.3yy + 0.3y2

_ﬁ.4}1\l + 0.3}«'!3]
_0.3}’21 + D.3}’13

f= 651 + {4.8 6.6} [

g = —2.26 + {—0.69 4}.33}[

Thus the first approximate problem becomes (in terms of the unknowns y,,,
Yizs Y13, Yai» Y22, and ya3):

M].ﬂ.lm]fﬁf= 6.51 — 192}'“ + 1.44}'” - lgsyu + 198}’23
subject to

—2.26 + 0.28y,; + 0.21y;; + 0.25y;; — 0.25y,; = 0
Yu t oy tys=1
Yu tyn tyn=1
yy=0orl, i=12, j=1273

In this problem, there are only nine possible solutions and hence they can all
be enumerated and the optimum solution can be found as

yu=1 ¥=0, y3=0, yy=1, yp=0, y3=0
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Thus the solution of the first approximate problem, in terms of original vari-
ables, is given by

X, =08, x>=0.8 f(X)=261, and gX) = —1.5

This point can be used to generate a second approximate problem and the
process can be repeated until the final optimum solution is found.

10.8 GENERALIZED PENALTY FUNCTION METHOD

The solution of an integer nonlinear programming problem, based on the con-
cept of penalty functions, was originally suggested by Gellatly and Marcal in
1967 [10.5]. This approach was later applied by Gisvold and Moe [10.4] and
Shin et al. [10.24] to solve some design problems that have been formulated
as nonlinear mixed-integer programming problems. The method can be con-
sidered as an extension of the interior penalty function approach considered in
Section 7.13. To see the details of the approach, let the problem be stated as
follows:

X
X2 X4
FindX =14 . ¢ = {X ] which minimizes f(X)
Ii'l
subject to the constraints (10.72)

gj{x) ; O'I j = 1,2,. 0 .,m
X. €8 and X;€eS,,

where the vector of variables (X) is composed of two vectors X, and X, with
X, representing the set of integer variables and X, representing the set of con-
tinuous variables. Notice that X, will not be there if all the variables are con-
strained to take only integer values and X, will not be there if none of the
variables 1s restricted to take only integer values. The sets §, and 5; denote the
feasible sets of continuous and integer variables, respectively. To extend the
interior penalty function approach to solve the present problem, given by Eq.
(10.72), we first define the following transformed problem.

Minimize (f.'k (X,Fk w5k )
where

o (X,ry,5) = f(X) + r";g}. Gilg(X)] + 5.0 (Xy) (10.73)
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In this equation, r; is a weighing factor (penalty parameter) and
e 24 Gilg Xl

is the contribution of the constraints to the ¢, function, which can be taken as

(10.74)

It can be noted that this term is positive for all X satisfying the relations g;(X)
> 0 and tends to +ce if any one particular constraint tends to have a value of
zero. This property ensures that once the minimization of the ¢, function is
started from a feasible point, the point always remains in the feasible region.
The term s, 0, (X,;) can be considered as a penalty term with s; playing the role
of a weighing factor (penalty parameter). The function @, (X,) is constructed
so as to give a penalty whenever some of the variables in X take values other
than integer values. Thus the function Q,(X,) has the property that

(X 0 it XaeS5, 10.75
W) = u>0 ifX, €S, (10.75)

We can take, for example,

B
oo 2 322) (-423)] oom

where v, < x;, 2, = x;, and §; = 1 is a constant. Here y; and z; are the two
neighboring integer values for the value x;. The function Oy (X,) is a normal-
ized, symmetric beta function integrand. The variation of each of the terms
under summation sign in Eq. (10.76) for different values of 8, is shown in Fig.
10.9. The value of 3; has to be greater than or equal to 1 if the function Q, is
to be continuous in its first derivative over the discretization or integer points.

The use of the penalty term defined by Eq. (10.76) makes it possible to
change the shape of the ¢, function by changing 3, , while the amplitude can
be controlled by the weighting factor s, . The ¢, function given in Eq. (10.73)
is now minimized for a sequence of values of r; and s; such that for k — oo,
we obtain

Min ¢k[x,rk,.\‘k) —* M]n f{X)
gX)y=0, j=12,...m (10.77)
O (Xy) > 0

Y1
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Figure 10.9 Contour of typical term in Eq. (10.62). [10.4] (Reprinted with permis-
sion from ASME.)

0

In most of the practical problems, one can obtain a reasonably good solution
by carrying out the minimization of ¢, even for 5 to 10 values of k. The method
is illustrated in Fig. 10.10 in the case of a single-variable problem. It can be
noticed from Fig. 10.10 that the shape of the ¢ function (also called the re-
sponse function) depends strongly on the numerical values of ry, s, and 8.

fi
&

Figure 10.10 Solution of a single-variable integer problem by penalty function
method. x,, discrete variable; x4, jth value of x,. [10.4] (Reprinted with permission
from ASME.)
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Choice of the Initial Values of ry, s;, and B;. The numerical values of ry, s;.
and 3, have to be chosen carefully to achieve fast convergence. If these values
are chosen such that they give the response surfaces of ¢ function as shown in
Fig. 10.10¢, several local minima will be introduced and the risk in finding
the global minimum point will be more. Hence the initial value of s, (namely,
5y) is to be chosen sufficiently small to yield a unimodal response surface. This
can be achieved by setting

50 << Py (10.78)

where Q] is an estimate of the maximum magnitude of the gradient to the @,
surface and Pj; is a measure of the gradient of the function Py defined by

P, =f(X) +r, E Gilg(X)] (10.79)

Gisvold and Moe [10.4] have taken the values of Q; and P} as

o = i 428, (8 — D*T'2B, — 1! TH (10.80)
T
P, = ( P"W") (10.81)
where
aP,/ox,
P /ax;
VP, = . (10.82)
aP,/ax,
The initial value of 5y, according to the requirement of Eq. (10.78), is given
by
P;(xh-”l]
5 10.83
1 Q (x{d} ﬁl) ( )

where X, is the initial starting point for the minimization of ¢,, X'*’ the set of
starting values of integer-restricted variables, and ¢; a constant whose value is
generally taken in the range 0.001 and 0.1.

To choose the weighting factor r;, the same consideration as discussed in
Section 7.13 are to be taken into account. Accordingly, the value of r, is cho-
sen as

f Xy
P+ I g (X))

(10.84)

YA
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with the value of ¢, ranging between 0.1 and 1.0. Finally, the parameter 3,
must be taken greater than | to maintain the continuity of the first derivative
of the function ¢, over the discretization points. Although no systematic study
has been conducted to find the effect of choosing different values for 3;, the
value of 3; = 2.2 has been found to give satisfactory convergence in some of
the design problems. .

Once the initial values of r,, 5., and 8, (for £ = 1) are chosen, the subse-
quent values also have to be chosen carefully based on the numerical results
obtained on similar formulations. The sequence of values r, are usually deter-
mined by using the relation

Fraey = C3Fgs k=12, .. (10.85)

where ¢, < 1. Generally, the value of ¢; is taken in the range 0.05 to 0.5. To
select the values of s;, we first notice that the effect of the term Q,(X,) is
somewhat similar to that of an equality constraint. Hence the method used in
finding the weighting factors for equality constraints can be used to find the
factor s, , . For equality constraints, we use

172
Sk Fi
= (10.86)
S T+

From Egs. (10.85) and (10.86), we can take

Spa1 = CaSk (10.87)

with ¢; approximately lying in the range +'1/0.5 and +'1/0.05 (i.e., 1.4 and
4.5). The values of 8, can be selected according to the relation

Brir = 5By (10.88)

with ¢5 lying in the range 0.7 to 0.9.

A general convergence proof of the penalty function method, including the
integer programming problems, was given by Fiacco [10.6]. Hence the present
method is guaranteed to converge at least to a local minimum if the recovery
procedure is applied the required number of times.

Example 10.6 [10.24] Find the minimum weight design of the three-bar truss
shown in Fig. 10.11 with constraints on the stresses induced in the members.
Treat the areas of cross section of the members as discrete variables with per-
missible values of the parameter A;0,,,/P given by 0.1, 0.2, 0.3, 0.5, 0.8,
1.0, and 1.2.

SOLUTION By defining the nondimensional quantities f and x; as

wamax Aidma.: .
f_ pr 3 -xg - P & [ = 1,2,3‘
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Figure 10.11 Three-bar truss.

where W is the weight of the truss, o,,, the permissible (absolute) value of
stress, P the load, p the density, [ the depth, and A; the area of cross section
of member i (i = 1,2,3), the discrete optimization problem can be stated as
follows:

Minimize f = 2x, + x, + Ji_’x3

subject to
V3 x, + 1.932x,
gX)=1- =
1.5x3x3 + V2 xax3 + 1.319xx,
0.634x, + 2.828x
aX) =1- : : =
1.5xx, + \Ex}xg, + 1.319xx;
. -2
8X) =1 - 0.5 2 =0
1.5xx, + \fExzxj + 1.319xx;
0.5x, — 2x
g(X) = 1 + =2

=0
1.5,%, + V2 1axy + 1.319xx,
x €40.1,0.2,0.3,0.5,08,1.0,1.2}, i=1.2,3

The optimum solution of the continuous variable problem is given by f* =
2.7336, x{ = 1.1549, x§ = 0.4232, and x§ = 0.0004. The optimum solution
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of the discrete variable problem is given by f* = 3.0414, x{ = 1.2, xJ =
0.5, and x¥ = 0.1.
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