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Sharif University of Technology - Department of Physics

Quantum Field Theory 1 - Midterm Exam - Take Home - Fall 2022

Due: Saturday Azar 19, 1401
Submit your responses to sadooghi@physics.sharif.ir in a PDF format. Be sure that your scans

are readable. Do not forget your names on the answer sheets

Exercise 1 = Problem 12.2 Peskin-Schroeder (5 pts):

Compute the one-loop β(g) in the two-dimensional Gross-Neveu model

L = ψ̄i(iγ · ∂)ψi +
1

g2
(ψ̄iψi)

2, (1)

with i = 1, · · · , N .

Exercise 2 = Part of Problem 10.1 Peskin-Schroeder (10 pts)

Exercise 3 = Part of Problem 10.2 Peskin-Schroeder (10 pts)

Exercise 4 = Part of Problem 11.2 Peskin-Schroeder (10 pts):

Consider the Lagrangian density

L =
1

2
(∂µϕ

i)2 +
1

2
µ2(ϕi)2 − λ

4
((ϕi)2)2 + ψ̄(iγ · ∂)ψ − gψ̄

(
ϕ1 + iγ5ϕ2

)
ψ, (2)

where ϕi is a two-component field i=1,2.

a) Denote the vacuum expection value (VEV) of ϕi by v and make the change of variables

ϕi(x) = (v + σ(x), π(x)) . (3)

Write out the Lagrangian in these new variables, and show that the fermion aquires a mass given
by

mf = gv. (4)

b) Compute the one-loop radiative correction to mf , choosing renormalization conditions so that
v and g (defined as the vertex ψ̄ψπ vertex at zero momentum transfer) receive no radiative
corrections. Show that relation (4) receives nonzero corrections, but these corrections are finite.

Exercise 5 [See Pokorski Chapter 2] (15 pts):

a) Prove the relation ∫
dz1dz

⋆
1 · · · dzndz⋆n exp (i(z⋆, Az)) =

(2π)nin

detA
, (5)

for complex vector z = (z1, · · · , zn) and a generic (n × n) dimensional complex matrix A.
Here, (z⋆, Az) ≡ ∑

i,j z
⋆
iAijzj .



2

b) For a real Grassmann variables ηi prove the formula∫
dη1 · · · dηn exp

(
1

2
(η, Aη)

)
= (detA)1/2 , (6)

for an antisymmetric matrix A, where (η, Aη) =
∑

i,j ηiAijηj .
c) Show that for complex Grassmann variables, Eq. (9) is generalized by∫

dη1dη
⋆
1 · · · dηndη⋆n exp ((η⋆, Aη)) = detA, (7)

where (η⋆, Aη) =
∑

i,j η
⋆
iAijηj .

Exercise 6 (25 pts):

Consider the derivative expansion of the effective action Γ[Φ] for Φ = (φ0, · · · , φN−1)

Γ[Φ] = Γ[Φ0] +
∫
ddx

δΓ[Φ0]

δφi(x)
φ̄i(x) +

1

2

∫
ddxddy

δ2Γ[Φ0]

δφi(x)δφj(y)
φ̄i(x)φ̄j(y) + · · · , (8)

where Φ(x) = Φ0 + Φ̄(x) is used.

a) Assuming that Φ0 describes a configuration that minimizes the effective action, and using the
Taylor expansion Φ(y) = Φ(x) + zµ∂µΦ(x) +

1
2
zµzν∂µ∂µΦ(x) + · · · , with z = y − x, show

that Γ[Φ] can be written as

Γ[Φ] = Γ[Φ0]−
1

2

∫
ddxM2

ij[Φ0]φ̄i(x)φ̄j(x) +
1

2

∫
ddx χµν

ij [Φ0]∂µφ̄i(x)∂νφ̄j(x) + · · · , (9)

with

M2
ij[Φ0] = −

∫
ddz

δ2Γ[Φ0]

δφi(0)δφj(z)
, and χµν

ij [Φ0] = −1

2

∫
ddz zµzν

δ2Γ[Φ0]

δφi(0)δφj(z)
.(10)

As we have mentioned in the class, the above derivative expansion of Γ[Φ] can alternatively be
given as

Γ[Φ] =
∫
ddx

(
−V [Φ] +

1

2
χµν
ij [Φ]∂µφi∂νφj(x) + · · ·

)
. (11)

b) Let us now break the O(N) symmetry of the original action by choosing a constant field con-
figuration for Φ0 = (σ0, 0, · · · , 0). To determine the kinetic part of the effective action, we use
the ansatz

χµν
ij [Φ] = (F µν

1 )ij + 2F µν
2

φiφj

Φ2
, (12)

where i, j = 0, · · · , N − 1 and Φ2 =
∑N−1

i=0 φ2
i . Show that the “kinetic” part of the effective

Lagrangian density including two derivatives is then given by

Lk =
1

2
(F µν

1 )ij∂µφi∂νφj +
F µν
2

Φ2
(φi∂µφi)(φj∂νφj). (13)
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c) To determine the “form factors” F µν
1 and F µν

2 , or at least a combination of them, let us use the
definition Γk ≡

∫
ddxLk as a part of the effective action including only two derivatives. Show

that

δ2Γk[ϕ0]

δφ0(x)δφ0(0)
= −Gµν [Φ0]∂µ∂νδ

d(x),

δ2Γk[ϕ0]

δφℓ(x)δφm(0)
= −Fµν

ℓm[Φ0]∂µ∂νδ
d(x), ∀ℓ,m ≥ 1, (14)

with Gµν = [(F µν
1 )00 + 2F µν

2 ] and Fµν
ℓm = 1

2
[(F µν

1 )ℓm + (F µν
1 )ℓm].

d) Assuming that M2
ℓm = −M2

mℓ and Fµν
ℓm = −Fµν

mℓ, for all ℓ ̸= m and ℓ,m ≥ 1, and denoting
M2

aa by M2
a for all a = 0, · · · , N − 1, show that the effective action is given by

Γ[Φ] = Γ[Φ0]−
1

2

∫
ddx φ̄0(x)(M

2
0 + Gµµ∂2µ)φ̄0(x)

−1

2

N−1∑
ℓ=1

∫
ddx φ̄ℓ(x)(M

2
ℓ + Fµµ

ℓℓ ∂
2
µ)φ̄ℓ(x), (15)

where Gµν = Gµµgµν and Fµν
ℓm = Fµµ

ℓmg
µν is also assumed.

e) Show finally that the energy dispersion relations for φ0 and φℓ, ℓ = 1, · · · , N − 1 are given by

ω2
0 = u

(1)2
0 p21 + u

(2)2
0 p21 + u

(2)2
0 p21 +m2

0,

ω2
ℓ = u

(1)2
ℓ p21 + u

(2)2
ℓ p21 + u

(2)2
ℓ p21 +m2

ℓ , ∀ℓ ≥ 1, (16)

with the pole masses

m2
0 =

M2
0

G00
, and m2

ℓ =
M2

ℓ

F00
ℓℓ

(17)

and the refraction indices

u
(i)2
0 =

Gii

G00
, and u

(i)2
ℓ =

F ii
ℓℓ

F00
ℓℓ

(18)


