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Exercise 1 = Problem 12.2 Peskin-Schroeder (5 pts):

Compute the one-loop 3(g) in the two-dimensional Gross-Neveu model
o 1 -
L =iy 0)i + ?(%%)27 (D

withi = 1,---, N.

Exercise 2 = Part of Problem 10.1 Peskin-Schroeder (10 pts)

Exercise 3 = Part of Problem 10.2 Peskin-Schroeder (10 pts)

Exercise 4 = Part of Problem 11.2 Peskin-Schroeder (10 pts):

Consider the Lagrangian density
A

L= S0 + 320 = (6 + 0l - 0) — g0 (61 +ir°6?) v, )
where ¢ is a two-component field i=1,2.

a) Denote the vacuum expection value (VEV) of ¢’ by v and make the change of variables

¢'(z) = (v+o(x),7(x)). 3)

Write out the Lagrangian in these new variables, and show that the fermion aquires a mass given
by

my = guv. (4)

b) Compute the one-loop radiative correction to m ¢, choosing renormalization conditions so that
v and ¢ (defined as the vertex i m vertex at zero momentum transfer) receive no radiative
corrections. Show that relation (4) receives nonzero corrections, but these corrections are finite.

Exercise 5 [See Pokorski Chapter 2] (15 pts):

a) Prove the relation

, (27)m4m
dzydz? - dzyd” * Az)) = , 5
/ 21dz] zpdzy exp (i(2*, Az)) Jet A (5)
for complex vector z = (z1,---,2,) and a generic (n X n) dimensional complex matrix A.

Here, (2*, Az) = > 2 Az



b) For a real Grassmann variables 7); prove the formula

1
[ dm - dnexo (5. An) = (et 4)”, ©

for an antisymmetric matrix A, where (1, An) = >, ; 9 Ai;n;.
¢) Show that for complex Grassmann variables, Eq. (9) is generalized by

/ dmdny - - - dnndny; exp (%, An)) = det A, (7)

where (n*, An) = i n; Aijnj-

Exercise 6 (25 pts):

Consider the derivative expansion of the effective action I'|®] for & = (g, -+, on_1)

T[®] = T[d,] + / ddxgrf)

where ®(z) = ®, + ®(x) is used.
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a) Assuming that &, describes a configuration that minimizes the effective action, and using the
Taylor expansion ®(y) = ®(z) + 2#0,P(x) + 52/20,0,P(x) + - - -, with z = y — x, show
that I'[®] can be written as

I[@] = D[®g] — - / dia M2 [ D) 5 / A X [D0)0,54(2)0,5i(x) + -+, (9)
with
5*T[®o) 0°T'[®o]
M2 [Dy] = /dd and  "[D] = /ddz b .(10)
5i(0)30;(2)’ ’ 0i(0)dep;(2)
As we have mentioned in the class, the above derivative expansion of I'[®] can alternatively be
given as
b) Let us now break the O(/N) symmetry of the original action by choosing a constant field con-
figuration for &5 = (09,0, - - -, 0). To determine the kinetic part of the effective action, we use
the ansatz
18] = (1), + 2 28 (12)

where i,j = 0,---, N — 1 and ®* = YN 2. Show that the “kinetic” part of the effective

Lagrangian density including two derivatives is then given by
| — 5"
L= 5 (F17)ij0upiOvps + 5 (9i0u01) (90005, (13)
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¢) To determine the “form factors” F{" and FL", or at least a combination of them, let us use the
definition 'y, = [ d?zL}, as a part of the effective action including only two derivatives. Show
that

52Fk [¢0] v d
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with G, = [(F1")oo + 2F4"] and FJ = S[(F") o + (F{") o]
d) Assuming that M2 = —M?, and F} = —F", forall ¢ # m and ¢,m > 1, and denoting
M2 by M?foralla=0,---, N — 1, show that the effective action is given by

rfe] = @]~ [ d% go(e) (M + G o) gn(a)
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where G = GM g and F,, = F}tg"" is also assumed.

e) Show finally that the energy dispersion relations for ¢ and ¢y, ¢ = 1,---, N — 1 are given by

wi = ugpt + upt + upt + mi,
Wi o= P dPP Rl e m? e, (16)
with the pole masses
mg JQWO%Q and  m) = ﬁfo (17)
and the refraction indices
(2 _ 9 and 2= Jit (18)



